Search results for: Mass entrainment
988 Investigating the Role of Emergency Nurses and Disaster Preparedness during Mass Gathering in Saudi Arabia
Authors: Fuad Alzahrani, Yiannis Kyratsis
Abstract:
Although emergency nurses, being the frontline workers in mass-gatherings, are essential for providing an effective public health response, little is known about the skills that emergency nurses have, or require, in order to respond effectively to a disaster event. This paper is designed to address this gap in the literature by conducting an empirical study on emergency nurses’ preparedness at the mass-gathering event of Hajj in Mecca city. To achieve this aim, this study conducted a cross-sectional survey among 106 emergency department nurses in all the public hospitals in Mecca in 2014. The results revealed that although emergency nurses’ role understanding is high; they have limited knowledge and awareness of how to respond appropriately to mass-gathering disaster events. To address this knowledge gap, the top three most beneficial types of education and training courses suggested are: hospital education sessions, the Emergency Management Saudi Course and workshop; and short courses in disaster management. Finally, recommendations and constructive strategies are developed to provide the best practice in enhancing disaster preparedness. This paper adds to the body of knowledge regarding emergency nurses and mass gathering disasters. This paper measures the level of disaster knowledge, previous disaster response experience and disaster education and training amongst emergency nurses in Mecca, Saudi Arabia. It is anticipated that this study will provide a foundation for future studies aimed at better preparing emergency nurses for disaster response. This paper employs new strategies to improve the emergency nurses’ response during mass gatherings for the Hajj. Increasing the emergency nurses’ knowledge will develop their effective responses in mass-gathering disasters.
Keywords: Emergency nurses, mass-gatherings, disaster preparedness, perceived role.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419987 The Effects of Electrical Muscle Stimulation (EMS) towards Male Skeletal Muscle Mass
Authors: Mohd Faridz Ahmad, Amirul Hakim Hasbullah
Abstract:
Electrical Muscle Stimulation (EMS) has been introduced and globally gained increasing attention on its usefulness. Continuous application of EMS may lead to the increment of muscle mass and indirectly will increase the strength. This study can be used as an alternative to help people especially those living a sedentary lifestyle to improve their muscle activity without having to go through a heavy workout session. Therefore, this study intended to investigate the effectiveness of EMS training program in 5 weeks interventions towards male body composition. It was a quasiexperimental design, held at the Impulse Studio Bangsar, which examined the effects of EMS training towards skeletal muscle mass among the subjects. Fifteen subjects (n = 15) were selected to assist in this study. The demographic data showed that, the average age of the subjects was 43.07 years old ± 9.90, height (173.4 cm ± 9.09) and weight was (85.79 kg ± 18.07). Results showed that there was a significant difference on the skeletal muscle mass (p = 0.01 < 0.05), upper body (p = 0.01 < 0.05) and lower body (p = 0.00 < 0.05). Therefore, the null hypothesis has been rejected in this study. As a conclusion, the application of EMS towards body composition can increase the muscle size and strength. This method has been proven to be able to improve athlete strength and thus, may be implemented in the sports science area of knowledge.
Keywords: Body composition, EMS, skeletal muscle mass, strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6381986 Lattice Boltzmann Simulation of the Carbonization of Wood Particle
Authors: Ahmed Mahmoudi, Imen Mejri, Mohamed A. Abbassi, Ahmed Omri
Abstract:
A numerical study based on the Lattice Boltzmann Method (LBM) is proposed to solve one, two and three dimensional heat and mass transfer for isothermal carbonization of thick wood particles. To check the validity of the proposed model, computational results have been compared with the published data and a good agreement is obtained. Then, the model is used to study the effect of reactor temperature and thermal boundary conditions, on the evolution of the local temperature and the mass distributions of the wood particle during carbonization
Keywords: Lattice Boltzmann Method, pyrolysis conduction, carbonization, Heat and mass transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2709985 Effects of Mach Number and Angle of Attack on Mass Flow Rates and Entropy Gain in a Supersonic Inlet
Authors: Taher Fodeibou, Ziaul Huque, Jenny Galvis
Abstract:
A parametric study of a mixed-compression supersonic inlet is performed and reported. The effects of inlet Mach Numbers, varying from 4 to 10, and angle of attack, varying from 0 to 10, are reported for a constant inlet dynamic pressure. The paper looked at the variations of mass flow rates through the inlet, gain in entropy through the inlet, and the angles of the external oblique shocks. The mass flow rates were found to decrease monotonically with Mach numbers and increase with angle of attacks. On the other hand the entropy gain through the inlet increased with increasing Mach number and angle of attack. The variation in static pressure was found to be identical from the inlet throat to the exit for Mach number values higher than 6.Keywords: Angle of attack, entropy gain, mass flow rates, supersonic inlets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2613984 Mass Customization in Supply Chain Management Environment: A Review
Authors: Nirjhar Roy, V. R. Komma, Jitendra Kumar
Abstract:
In the supply chain management customer is the most significant component and mass customization is mostly related to customers because it is the capability of any industry or organization to deliver highly customized products and its services to the respective customers with flexibility and integration, providing such a variety of products that nearly everyone can find what they want. Today all over the world many companies and markets are facing varied situations that at one side customers are demanding that their orders should be completed as quickly as possible while on other hand it requires highly customized products and services. By applying mass customization some companies face unwanted cost and complexity. Now they are realizing that they should completely examine what kind of customization would be best suited for their companies. In this paper authors review some approaches and principles which show effect in supply chain management that can be adopted and used by companies for quickly meeting the customer orders at reduced cost, with minimum amount of inventory and maximum efficiency.Keywords: Mass customization and supply chain management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7045983 Analysis of Drying Kinetics of a Slurry Droplet in the Falling Rate Period of Spray Drying
Authors: Boris Golman, Wittaya Julklang
Abstract:
The heat and mass transfer was investigated during the falling rate period of spray drying of a slurry droplet. The effect of the porosity of crust layer formed from primary particles during liquid evaporation was studied numerically using the developed mathematical model which takes into account the heat and mass transfer in the core and crust regions, the movement of the evaporation interface, and the external heat and mass transfer between the drying air and the droplet surface. It was confirmed that the heat transfer through the crust layer was more intense in the case of the dense droplet than the loose one due to the enhanced thermal conduction resulting in the higher average droplet temperature. The mass transfer was facilitated in the crust layer of loose droplet owing to the large pore space available for diffusion of water vapor from the evaporation interface to the outer droplet surface. The longer drying time is required for the droplet of high porosity to reach the final moisture content than that for the dense one due to the larger amount of water to be evaporated during the falling rate.
Keywords: Spray Drying, Slurry Droplet, Heat and Mass Transfer, Crust Layer Porosity, Mathematical Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3627982 Tuned Mass Damper Effects of Stationary People on Structural Damping of Footbridge Due to Dynamic Interaction in Vertical Motion
Authors: M. Yoneda
Abstract:
It is known that stationary human occupants act as dynamic mass-spring-damper systems and can change the modal properties of civil engineering structures. This paper describes the full scale measurement to explain the tuned mass damper effects of stationary people on structural damping of footbridge with center span length of 33 m. A human body can be represented by a lumped system consisting of masses, springs, and dashpots. Complex eigenvalue calculation is also conducted by using ISO5982:1981 human model (two degree of freedom system). Based on experimental and analytical results for the footbridge with the stationary people in the standing position, it is demonstrated that stationary people behave as a tuned mass damper and that ISO5982:1981 human model can explain the structural damping characteristics measured in the field.Keywords: Dynamic interaction, footbridge, stationary people, structural damping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117981 New Complexes of Nickel (II) Using 4-Hydroxy-2-Oxo-2H-Chromene-3-Carboxamide as Ligand
Authors: Dije Dehari, Ahmed Jashari, Shefket Dehari, Agim Shabani
Abstract:
New complexes of nickel (II) have been synthesized in the reaction mixture of nickel (II) acetate and 4-hydroxy-2-oxo-2H-chromene-3-carboxamide. Bis(4-hydroxy-2-oxo-2H-chromene-3-carboxamidato-O,O)nickel (II) and diaquabis(4-hydroxy-2-oxo-2H-chromene-3-carboxamidato-O,O)nickel (II) were characterized by elemental analysis, IR spectroscopy and ESI mass spectrometry. Elemental analysis and mass spectrometry data of the complexes suggests the stoichiometry of 1:2 (metal-ligand).
Keywords: Nickel complexes, 4-hydroxy-2-oxo-2H-chromene-3-carboxamide, IR spectroscopy, mass spectrometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236980 A Unification and Relativistic Correction for Boltzmann’s Law
Authors: Lloyd G. Allred
Abstract:
The distribution of velocities of particles in plasma is a well understood discipline of plasma physics. Boltzmann’s law and the Maxwell-Boltzmann distribution describe the distribution of velocity of a particle in plasma as a function of mass and temperature. Particles with the same mass tend to have the same velocity. By expressing the same law in terms of energy alone, the author obtains a distribution independent of mass. In summary, for particles in plasma, the energies tend to equalize, independent of the masses of the individual particles. For high-energy plasma, the original law predicts velocities greater than the speed of light. If one uses Einstein’s formula for energy (E=mc2), then a relativistic correction is not required.
Keywords: Cosmology, EMP, Euclidean, plasma physics, relativity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1076979 A Comparative Study on Air Permeability Properties of Multilayered Nonwoven Structures
Authors: M. Kucukali Ozturk, B. Nergis, C. Candan
Abstract:
Air permeability plays an important role for applications such as filtration, thermal and acoustic insulation. The study discussed in this paper was conducted in an attempt to investigate air permeability property of various combinations of nonwovens. The PROWHITE air permeability tester was used for the measurement of the air permeability of the samples in accordance with the relevant standards and a comparative study of the results were made. It was found that the fabric mass per unit area was closely related to the air-permeability. The air permeability decreased with the increase in mass per unit area. Additionally, the air permeability of nonwoven fabrics decreased with the increase in thickness. Moreover, air permeability of multilayered SMS nonwoven structures was lower than those of single layered ones.
Keywords: Air permeability, mass per unit area, nonwoven structure, polypropylene nonwoven, thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660978 A Large-Eddy Simulation of Vortex Cell flow with Incoming Turbulent Boundary Layer
Authors: Arpiruk Hokpunna, Michael Manhart
Abstract:
We present a Large-Eddy simulation of a vortex cell with circular shaped. The results show that the flow field can be sub divided into four important zones, the shear layer above the cavity, the stagnation zone, the vortex core in the cavity and the boundary layer along the wall of the cavity. It is shown that the vortex core consits of solid body rotation without much turbulence activity. The vortex is mainly driven by high energy packets that are driven into the cavity from the stagnation point region and by entrainment of fluid from the cavity into the shear layer. The physics in the boundary layer along the cavity-s wall seems to be far from that of a canonical boundary layer which might be a crucial point for modelling this flow.Keywords: Turbulent flow, Large eddy simulations, boundary layer and cavity flow, vortex cell flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8239977 Evaluating Residual Mechanical and Physical Properties of Concrete at Elevated Temperatures
Authors: S. Hachemi, A. Ounis, S. Chabi
Abstract:
This paper presents the results of an experimental study on the effects of elevated temperature on compressive and flexural strength of Normal Strength Concrete (NSC), High Strength Concrete (HSC) and High Performance Concrete (HPC). In addition, the specimen mass and volume were measured before and after heating in order to determine the loss of mass and volume during the test. In terms of non-destructive measurement, ultrasonic pulse velocity test was proposed as a promising initial inspection method for fire damaged concrete structure. 100 Cube specimens for three grades of concrete were prepared and heated at a rate of 3°C/min up to different temperatures (150, 250, 400, 600, and 900°C). The results show a loss of compressive and flexural strength for all the concretes heated to temperature exceeding 400°C. The results also revealed that mass and density of the specimen significantly reduced with an increase in temperature.
Keywords: High temperature, Compressive strength, Mass loss, Ultrasonic pulse velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224976 The Relationship between the Energy of Gravitational Field and the Representative Pseudotensor
Authors: R. I. Khrapko
Abstract:
As is known, the role of the energy-momentum pseudotensors of the gravitational field is to extend the conservation law to the gravitational interaction by taking into account the energy and momentum of the gravitational field. We calculated the contribution of the Einstein pseudotensor to the total mass of a stationary material body and its gravitational field. It turned out that this contribution is positive, despite the fact that the mass-energy of a stationary gravitational field is negative. We concluded that the pseudotensor incorrectly describes the energy of the gravitational field. Nevertheless, this pseudotensor has been used in a large number of scientific works for 100 years. We explain this by the fact that the covariant component of the pseudotensor was regarded as the mass-energy. Besides, we prove the advantage of the covariant energy-momentum conservation law for matter in the Minkowski space-time.
Keywords: Conservation law, covariant integration, gravitation field, isolated system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 752975 Effect of Conjugate Heat and Mass Transfer on MHD Mixed Convective Flow past Inclined Porous Plate in Porous Medium
Authors: Md. Nasir Uddin, M. A. Alim, M. M. K. Chowdhury
Abstract:
This analysis is performed to study the momentum, heat and mass transfer characteristics of MHD mixed convective flow past inclined porous plate in porous medium, including the effect of fluid suction. The fluid is assumed to be steady, incompressible and dense. Similarity solution is used to transform the problem under consideration into coupled nonlinear boundary layer equations which are then solved numerically by using the Runge-Kutta sixth-order integration scheme together with Nachtsheim-Swigert shooting iteration technique. Numerical results for the various types of parameters entering into the problem for velocity, temperature and concentration distributions are presented graphically and analyzed thereafter. Moreover, expressions for the skin-friction, heat transfer co-efficient and mass transfer co-efficient are discussed with graphs against streamwise distance for various governing parameters.
Keywords: Fluid suction, heat and mass transfer, inclined porous plate, MHD, mixed convection, porous medium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277974 Modeling of Cross Flow Classifier with Water Injection
Authors: E. Pikushchak, J. Dueck, L. Minkov
Abstract:
In hydrocyclones, the particle separation efficiency is limited by the suspended fine particles, which are discharged with the coarse product in the underflow. It is well known that injecting water in the conical part of the cyclone reduces the fine particle fraction in the underflow. This paper presents a mathematical model that simulates the water injection in the conical component. The model accounts for the fluid flow and the particle motion. Particle interaction, due to hindered settling caused by increased density and viscosity of the suspension, and fine particle entrainment by settling coarse particles are included in the model. Water injection in the conical part of the hydrocyclone is performed to reduce fine particle discharge in the underflow. The model demonstrates the impact of the injection rate, injection velocity, and injection location on the shape of the partition curve. The simulations are compared with experimental data of a 50-mm cyclone.Keywords: Classification, fine particle processing, hydrocyclone, water injection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956973 Stability of a Self-Excited Machine Due to the Mechanical Coupling
Authors: M. Soltan Rezaee, M. R. Ghazavi, A. Najafi, W.-H. Liao
Abstract:
Generally, different rods in shaft systems can be misaligned based on the mechanical system usages. These rods can be linked together via U-coupling easily. The system is self-stimulated and may cause instabilities due to the inherent behavior of the coupling. In this study, each rod includes an elastic shaft with an angular stiffness and structural damping. Moreover, the mass of shafts is considered via attached solid disks. The impact of the system architecture and shaft mass on the instability of such mechanism are studied. Stability charts are plotted via a method based on Floquet theory. Eventually, the unstable points have been found and analyzed in detail. The results show that stabilizing the driveline is feasible by changing the system characteristics which include shaft mass and architecture.
Keywords: Coupling, mechanical systems, oscillations, rotating shafts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 763972 Numerical Investigation of the Thermal Separation in a Vortex Tube
Authors: N.Pourmahmoud, S.Akhesmeh
Abstract:
This work has been carried out in order to provide an understanding of the physical behaviors of the flow variation of pressure and temperature in a vortex tube. A computational fluid dynamics model is used to predict the flow fields and the associated temperature separation within a Ranque–Hilsch vortex tube. The CFD model is a steady axisymmetric model (with swirl) that utilizes the standard k-ε turbulence model. The second–order numerical schemes, was used to carry out all the computations. Vortex tube with a circumferential inlet stream and an axial (cold) outlet stream and a circumferential (hot) outlet stream was considered. Performance curves (temperature separation versus cold outlet mass fraction) were obtained for a specific vortex tube with a given inlet mass flow rate. Simulations have been carried out for varying amounts of cold outlet mass flow rates. The model results have a good agreement with experimental data.
Keywords: Ranque–Hilsch vortex tube, Temperature separation, k–ε model, cold mass fraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2429971 Centre Of Mass Selection Operator Based Meta-Heuristic For Unbounded Knapsack Problem
Authors: D.Venkatesan, K.Kannan, S. Raja Balachandar
Abstract:
In this paper a new Genetic Algorithm based on a heuristic operator and Centre of Mass selection operator (CMGA) is designed for the unbounded knapsack problem(UKP), which is NP-Hard combinatorial optimization problem. The proposed genetic algorithm is based on a heuristic operator, which utilizes problem specific knowledge. This center of mass operator when combined with other Genetic Operators forms a competitive algorithm to the existing ones. Computational results show that the proposed algorithm is capable of obtaining high quality solutions for problems of standard randomly generated knapsack instances. Comparative study of CMGA with simple GA in terms of results for unbounded knapsack instances of size up to 200 show the superiority of CMGA. Thus CMGA is an efficient tool of solving UKP and this algorithm is competitive with other Genetic Algorithms also.
Keywords: Genetic Algorithm, Unbounded Knapsack Problem, Combinatorial Optimization, Meta-Heuristic, Center of Mass
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700970 Unsteady Natural Convection Heat and Mass Transfer of Non-Newtonian Casson Fluid along a Vertical Wavy Surface
Authors: A. Mahdy, Sameh E. Ahmed
Abstract:
Detailed numerical calculations are illustrated in our investigation for unsteady natural convection heat and mass transfer of non-Newtonian Casson fluid along a vertical wavy surface. The surface of the plate is kept at a constant temperature and uniform concentration. To transform the complex wavy surface to a flat plate, a simple coordinate transformation is employed. The resulting partial differential equations are solved using the fully implicit finite difference method with SUR procedure. Flow and heat transfer characteristics are investigated for a wide range of values of the Casson parameter, the dimensionless time parameter, the buoyancy ratio and the amplitude-wavelength parameter. It is found that, the variations of the Casson parameter have significant effects on the fluid motion, heat and mass transfer. Also, the maximum and minimum values of the local Nusselt and Sherwood numbers increase by increase either the Casson parameter or the buoyancy ratio.Keywords: Casson fluid, wavy surface, mass transfer, transient analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918969 Kinetics of Hydrodesulphurization of Diesel: Mass Transfer Aspects
Authors: Sudip K. Ganguly
Abstract:
In order to meet environmental norms, Indian fuel policy aims at producing ultra low sulphur diesel (ULSD) in near future. A catalyst for meeting such requirements has been developed and kinetics of this catalytic process is being looked into. In the present investigations, effect of mass transfer on kinetics of ultra deep hydrodesulphurization (UDHDS) to produce ULSD has been studied to determine intrinsic kinetics over a pre-sulphided catalyst. Experiments have been carried out in a continuous flow micro reactor operated in the temperature range of 330 to 3600C, whsv of 1 hr-1 at a pressure of 35 bar, and its parameters estimated. Based on the derived rate expression and estimated parameters optimum operation range has been determined for this UDHDS catalyst to obtain ULSD product.Keywords: Diesel, hydrodesulphurization, kinetics, mass transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801968 Evaluation of Bone and Body Mineral Profile in Association with Protein Content, Fat, Fat-Free, Skeletal Muscle Tissues According to Obesity Classification among Adult Men
Authors: Orkide Donma, Mustafa M. Donma
Abstract:
Obesity is associated with increased fat mass as well as fat percentage. Minerals are the elements, which are of vital importance. In this study, the relationships between body as well as bone mineral profile and the percentage as well as mass values of fat, fat-free portion, protein, skeletal muscle were evaluated in adult men with normal body mass index (N-BMI), and those classified according to different stages of obesity. A total of 103 adult men classified into five groups participated in this study. Ages were within 19-79 years range. Groups were N-BMI (Group 1), overweight (OW) (Group 2), first level of obesity (FLO) (Group 3), second level of obesity (SLO) (Group 4) and third level of obesity (TLO) (Group 5). Anthropometric measurements were performed. BMI values were calculated. Obesity degree, total body fat mass, fat percentage, basal metabolic rate (BMR), visceral adiposity, body mineral mass, body mineral percentage, bone mineral mass, bone mineral percentage, fat-free mass, fat-free percentage, protein mass, protein percentage, skeletal muscle mass and skeletal muscle percentage were determined by TANITA body composition monitor using bioelectrical impedance analysis technology. Statistical package (SPSS) for Windows Version 16.0 was used for statistical evaluations. The values below 0.05 were accepted as statistically significant. All the groups were matched based upon age (p > 0.05). BMI values were calculated as 22.6 ± 1.7 kg/m2, 27.1 ± 1.4 kg/m2, 32.0 ± 1.2 kg/m2, 37.2 ± 1.8 kg/m2, and 47.1 ± 6.1 kg/m2 for groups 1, 2, 3, 4, and 5, respectively. Visceral adiposity and BMR values were also within an increasing trend. Percentage values of mineral, protein, fat-free portion and skeletal muscle masses were decreasing going from normal to TLO. Upon evaluation of the percentages of protein, fat-free portion and skeletal muscle, statistically significant differences were noted between NW and OW as well as OW and FLO (p < 0.05). However, such differences were not observed for body and bone mineral percentages. Correlation existed between visceral adiposity and BMI was stronger than that detected between visceral adiposity and obesity degree. Correlation between visceral adiposity and BMR was significant at the 0.05 level. Visceral adiposity was not correlated with body mineral mass but correlated with bone mineral mass whereas significant negative correlations were observed with percentages of these parameters (p < 0.001). BMR was not correlated with body mineral percentage whereas a negative correlation was found between BMR and bone mineral percentage (p < 0.01). It is interesting to note that mineral percentages of both body as well as bone are highly affected by the visceral adiposity. Bone mineral percentage was also associated with BMR. From these findings, it is plausible to state that minerals are highly associated with the critical stages of obesity as prominent parameters.
Keywords: Bone, men, minerals, obesity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 699967 An Optimization Analysis on an Automotive Component with Fatigue Constraint Using HyperWorks Software for Environmental Sustainability
Authors: W. M. Wan Muhamad, E. Sujatmika, M.R. Idris, S.A. Syed Ahmad
Abstract:
A finite element analysis (FEA) computer software HyperWorks is utilized in re-designing an automotive component to reduce its mass. Reduction of components mass contributes towards environmental sustainability by saving world-s valuable metal resources and by reducing carbon emission through improved overall vehicle fuel efficiency. A shape optimization analysis was performed on a rear spindle component. Pre-processing and solving procedures were performed using HyperMesh and RADIOSS respectively. Shape variables were defined using HyperMorph. Then optimization solver OptiStruct was utilized with fatigue life set as a design constraint. Since Stress-Number of Cycle (S-N) theory deals with uni-axial stress, the Signed von Misses stress on the component was used for looking up damage on S-N curve, and Gerber criterion for mean stress corrections. The optimization analysis resulted in mass reduction of 24% of the original mass. The study proved that the adopted approach has high potential use for environmental sustainability.
Keywords: Environmental Sustainability, Shape Optimization, Fatigue, Rear Spindle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4294966 Soil Mass Loss Reduction during Rainfalls by Reinforcing the Slopes with the Surficial Confinement
Authors: Ramli Nazir, Hossein Moayedi
Abstract:
Soil confinement systems serve as effective solutions to any erosion control project. Various confinements systems, namely triangular, circular and rectangular with the size of 50, 100, and 150 mm, and with a depth of 10 mm, were embedded in soil samples at slope angle of 60°. The observed soil mass losses for the confined soil systems were much smaller than those from unconfined system. As a result, the size of confinement and rainfall intensity have a direct effect on the soil mass loss. The triangular and rectangular confinement systems showed the lowest and highest soil loss masses, respectively. The slopes also failed much faster in the unconfined system than in the confined slope.
Keywords: Erosion control, Soil confinement, Soil erosion, Slope stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864965 Independent Component Analysis to Mass Spectra of Aluminium Sulphate
Authors: M. Heikkinen, A. Sarpola, H. Hellman, J. Rämö, Y. Hiltunen
Abstract:
Independent component analysis (ICA) is a computational method for finding underlying signals or components from multivariate statistical data. The ICA method has been successfully applied in many fields, e.g. in vision research, brain imaging, geological signals and telecommunications. In this paper, we apply the ICA method to an analysis of mass spectra of oligomeric species emerged from aluminium sulphate. Mass spectra are typically complex, because they are linear combinations of spectra from different types of oligomeric species. The results show that ICA can decomposite the spectral components for useful information. This information is essential in developing coagulation phases of water treatment processes.
Keywords: Independent component analysis, massspectroscopy, water treatment, aluminium sulphate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2371964 CFD Simulation of SO2 Removal from Gas Mixtures using Ceramic Membranes
Authors: Azam Marjani, Saeed Shirazian
Abstract:
This work deals with modeling and simulation of SO2 removal in a ceramic membrane by means of FEM. A mass transfer model was developed to predict the performance of SO2 absorption in a chemical solvent. The model was based on solving conservation equations for gas component in the membrane. Computational fluid dynamics (CFD) of mass and momentum were used to solve the model equations. The simulations aimed to obtain the distribution of gas concentration in the absorption process. The effect of the operating parameters on the efficiency of the ceramic membrane was evaluated. The modeling findings showed that the gas phase velocity has significant effect on the removal of gas whereas the liquid phase does not affect the SO2 removal significantly. It is also indicated that the main mass transfer resistance is placed in the membrane and gas phase because of high tortuosity of the ceramic membrane.
Keywords: Gas separation, finite element, ceramic, sulphur dioxide, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281963 Performance of a Transcritical CO2 Heat Pump for Simultaneous Water Cooling and Heating
Authors: J. Sarkar, Souvik Bhattacharyya, M. Ramgopal
Abstract:
This paper presents the experimental as well as the simulated performance studies on the transcritical CO2 heat pumps for simultaneous water cooling and heating; effects of water mass flow rates and water inlet temperatures of both evaporator and gas cooler on the cooling and heating capacities, system COP and water outlets temperatures are investigated. Study shows that both the water mass flow rate and inlet temperature have significant effect on system performances. Test results show that the effect of evaporator water mass flow rate on the system performances and water outlet temperatures is more pronounced (COP increases 0.6 for 1 kg/min) compared to the gas cooler water mass flow rate (COP increases 0.4 for 1 kg/min) and the effect of gas cooler water inlet temperature is more significant (COP decreases 0.48 for given ranges) compared to the evaporator water inlet temperature (COP increases 0.43 for given ranges). Comparisons of experimental values with simulated results show the maximum deviation of 5% for cooling capacity, 10% for heating capacity, 16% for system COP. This study offers useful guidelines for selecting appropriate water mass flow rate to obtain required system performance.Keywords: CO2 heat pump, experiment, simulation, performance characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2723962 A TIPSO-SVM Expert System for Efficient Classification of TSTO Surrogates
Authors: Ali Sarosh, Dong Yun-Feng, Muhammad Umer
Abstract:
Fully reusable spaceplanes do not exist as yet. This implies that design-qualification for optimized highly-integrated forebody-inlet configuration of booster-stage vehicle cannot be based on archival data of other spaceplanes. Therefore, this paper proposes a novel TIPSO-SVM expert system methodology. A non-trivial problem related to optimization and classification of hypersonic forebody-inlet configuration in conjunction with mass-model of the two-stage-to-orbit (TSTO) vehicle is solved. The hybrid-heuristic machine learning methodology is based on two-step improved particle swarm optimizer (TIPSO) algorithm and two-step support vector machine (SVM) data classification method. The efficacy of method is tested by first evolving an optimal configuration for hypersonic compression system using TIPSO algorithm; thereafter, classifying the results using two-step SVM method. In the first step extensive but non-classified mass-model training data for multiple optimized configurations is segregated and pre-classified for learning of SVM algorithm. In second step the TIPSO optimized mass-model data is classified using the SVM classification. Results showed remarkable improvement in configuration and mass-model along with sizing parameters.
Keywords: TIPSO-SVM expert system, TIPSO algorithm, two-step SVM method, aerothermodynamics, mass-modeling, TSTO vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2319961 Model based Soft-Sensor for Industrial Crystallization: On-line Mass of Crystals and Solubility Measurement
Authors: Cédric Damour, Michel Benne, Brigitte Grondin-Perez, Jean-Pierre Chabriat
Abstract:
Monitoring and control of cane sugar crystallization processes depend on the stability of the supersaturation (σ ) state. The most widely used information to represent σ is the electrical conductivity κ of the solutions. Nevertheless, previous studies point out the shortcomings of this approach: κ may be regarded as inappropriate to guarantee an accurate estimation of σ in impure solutions. To improve the process control efficiency, additional information is necessary. The mass of crystals in the solution ( c m ) and the solubility (mass ratio of sugar to water / s w m m ) are relevant to complete information. Indeed, c m inherently contains information about the mass balance and / s w m m contains information about the supersaturation state of the solution. The main problem is that c m and / s w m m are not available on-line. In this paper, a model based soft-sensor is presented for a final crystallization stage (C sugar). Simulation results obtained on industrial data show the reliability of this approach, c m and the crystal content ( cc ) being estimated with a sufficient accuracy for achieving on-line monitoring in industryKeywords: Soft-sensor, on-line monitoring, cane sugarcrystallization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137960 Study on Electrohydrodynamic Capillary Instability with Heat and Mass Transfer
Authors: D. K. Tiwari, Mukesh Kumar Awasthi, G. S. Agrawal
Abstract:
The effect of an axial electric field on the capillary instability of a cylindrical interface in the presence of heat and mass transfer has been investigated using viscous potential flow theory. In viscous potential flow, the viscous term in Navier-Stokes equation vanishes as vorticity is zero but viscosity is not zero. Viscosity enters through normal stress balance in the viscous potential flow theory and tangential stresses are not considered. A dispersion relation that accounts for the growth of axisymmetric waves is derived and stability is discussed theoretically as well as numerically. Stability criterion is given by critical value of applied electric field as well as critical wave number. Various graphs have been drawn to show the effect of various physical parameters such as electric field, heat transfer capillary number, conductivity ratio, permittivity ratio on the stability of the system. It has been observed that the axial electric field and heat and mass transfer both have stabilizing effect on the stability of the system.
Keywords: Capillary instability, Viscous potential flow, Heat and mass transfer, Axial electric field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969959 Preservation of Carbon Dioxide Clathrate Hydrate Coexisting with Sucrose at Temperatures below the Water Freezing Point under Atmospheric Pressure
Authors: Tadaaki Sato, Ryo Ohmura
Abstract:
This paper reports the influence of sucrose on the preservation of CO2 hydrate crystal samples. The particle diameter of hydrate samples were 1.0 and 5.6-8.0 mm. Mass fraction of sucrose in the sample was 0.16. The samples were stored at the aerated condition under atmospheric pressure and at the temperature of 253 or 258 K. The results indicated that the mass fractions of CO2 hydrate in the samples with sucrose were 0.10 ± 0.03 at the end of 3-week preservation, regardless of temperature and particle diameter. Mass fraction of CO2 hydrate in the samples with sucrose was higher than that of pure CO2 hydrate for 1.0 mm particle diameter, while was lower than that of pure CO2 hydrate for 5.6-8.0 mm particle diameter. Discussion is made on the influence of sucrose on the dissociation of CO2 hydrate and the resulting formation of ice.Keywords: Clathrate hydrates, Carbon dioxide
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907