Search results for: Heat transfer experiment
2872 Convective Heat Transfer of Internal Electronic Components in a Headlight Geometry
Authors: Jan Langebach, Peter Fischer, Christian Karcher
Abstract:
A numerical study is presented on convective heat transfer in enclosures. The results are addressed to automotive headlights containing new-age light sources like Light Emitting Diodes (LED). The heat transfer from the heat source (LED) to the enclosure walls is investigated for mixed convection as interaction of the forced convection flow from an inlet and an outlet port and the natural convection at the heat source. Unlike existing studies, inlet and outlet port are thermally coupled and do not serve to remove hot fluid. The input power of the heat source is expressed by the Rayleigh number. The internal position of the heat source, the aspect ratio of the enclosure, and the inclination angle of one wall are varied. The results are given in terms of the global Nusselt number and the enclosure Nusselt number that characterize the heat transfer from the source and from the interior fluid to the enclosure walls, respectively. It is found that the heat transfer from the source to the fluid can be maximized if the source is placed in the main stream from the inlet to the outlet port. In this case, the Reynolds number and heat source position have the major impact on the heat transfer. A disadvantageous position has been found where natural and forced convection compete each other. The overall heat transfer from the source to the wall increases with increasing Reynolds number as well as with increasing aspect ratio and decreasing inclination angle. The heat transfer from the interior fluid to the enclosure wall increases upon decreasing the aspect ratio and increasing the inclination angle. This counteracting behaviour is caused by the variation of the area of the enclosure wall. All mixed convection results are compared to the natural convection limit.Keywords: Enclosure, heat source, heat transfer, mixed convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17902871 Combining Molecular Statics with Heat Transfer Finite Difference Method for Analysis of Nanoscale Orthogonal Cutting of Single-Crystal Silicon Temperature Field
Authors: Zone-Ching Lin, Meng-Hua Lin, Ying-Chih Hsu
Abstract:
This paper uses quasi-steady molecular statics model and diamond tool to carry out simulation temperature rise of nanoscale orthogonal cutting single-crystal silicon. It further qualitatively analyzes temperature field of silicon workpiece without considering heat transfer and considering heat transfer. This paper supposes that the temperature rise of workpiece is mainly caused by two heat sources: plastic deformation heat and friction heat. Then, this paper develops a theoretical model about production of the plastic deformation heat and friction heat during nanoscale orthogonal cutting. After the increased temperature produced by these two heat sources are added up, the acquired total temperature rise at each atom of the workpiece is substituted in heat transfer finite difference equation to carry out heat transfer and calculates the temperature field in each step and makes related analysis.
Keywords: Quasi-steady molecular statics, Nanoscale orthogonal cutting, Finite difference, Temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19342870 New Effect of Duct Cross Sectional Shape on the Nanofluid Flow Heat Transfer
Authors: Mohammad R. Salimpour, Amir Dehshiri
Abstract:
In the present article, we investigate experimental laminar forced convective heat transfer specifications of TiO2/water nanofluids through conduits with different cross sections. we check the effects of different parameters such as cross sectional shape, Reynolds number and concentration of nanoparticles in stable suspension on increasing convective heat transfer by designing and assembling of an experimental apparatus. The results demonstrate adding a little amount of nanoparticles to the base fluid, improves heat transfer behavior in conduits. Moreover, conduit with circular cross-section has better performance compared to the square and triangular cross sections. However, conduits with square and triangular cross sections have more relative heat transfer enchantment than conduit with circular cross section.Keywords: Nanofluid, cross-sectional shape, TiO2, convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10822869 Numerical Simulation of Heat Exchanger Area of R410A-R23 and R404A-R508B Cascade Refrigeration System at Various Evaporating and Condensing Temperature
Authors: A. D. Parekh, P. R. Tailor
Abstract:
Capacity and efficiency of any refrigerating system diminish rapidly as the difference between the evaporating and condensing temperature is increased by reduction in the evaporator temperature. The single stage vapour compression refrigeration system is limited to an evaporator temperature of -40 0C. Below temperature of -40 0C the either cascade refrigeration system or multi stage vapour compression system is employed. Present work describes thermal design of main three heat exchangers namely condenser (HTS), cascade condenser and evaporator (LTS) of R404A-R508B and R410A-R23 cascade refrigeration system. Heat transfer area of condenser (HTS), cascade condenser and evaporator (LTS) for both systems have been compared and the effect of condensing and evaporating temperature on heat-transfer area for both systems have been studied under same operating condition. The results shows that the required heat-transfer area of condenser and cascade condenser for R410A-R23 cascade system is lower than the R404A-R508B cascade system but heat transfer area of evaporator is similar for both the system. The heat transfer area of condenser and cascade condenser decreases with increase in condensing temperature (Tc), whereas the heat transfer area of cascade condenser and evaporator increases with increase in evaporating temperature (Te).Keywords: Heat-transfer area, R410A, R404A, R508B, R23, Refrigeration system, Thermal design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24392868 Lattice Boltzmann Simulation of MHD Natural Convection Heat Transfer of Cu-Water Nanofluid in a Linearly/Sinusoidally Heated Cavity
Authors: Bouchmel Mliki, Chaouki Ali, Mohamed Ammar Abbassi
Abstract:
In this numerical study, natural convection of Cu–water nanofluid in a cavity submitted to different heating modes on its vertical walls is analyzed. Maxwell-Garnetts (MG) and Brinkman models have been utilized for calculating the effective thermal conductivity and dynamic viscosity of nanofluid, respectively. Influences of Rayleigh number (Ra = 103−106), nanoparticle volume concentration (f = 0-0.04) and Hartmann number (Ha = 0-90) on the flow and heat transfer characteristics have been examined. The results indicate that the Hartmann number influences the heat transfer at Ra = 106 more than other Raleigh numbers, as the least effect is observed at Ra = 103. Moreover, the results show that the solid volume fraction has a significant influence on heat transfer, depending on the value of Hartmann, heat generation or absorption coefficient and Rayleigh numbers.Keywords: Heat transfer, linearly/sinusoidally heated, Lattice Boltzmann Method, natural convection, nanofluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7762867 Numerical Heat Transfer Performance of Water-Based Graphene Nanoplatelets
Authors: Ahmad Amiri, Hamed K. Arzani, S. N. Kazi, B. T. Chew
Abstract:
Since graphene nanoplatelet (GNP) is a promising material due to desirable thermal properties, this paper is related to the thermophysical and heat transfer performance of covalently functionalized GNP-based water/ethylene glycol nanofluid through an annular channel. After experimentally measuring thermophysical properties of prepared samples, a computational fluid dynamics study has been carried out to examine the heat transfer and pressure drop of well-dispersed and stabilized nanofluids. The effect of concentration of GNP and Reynolds number at constant wall temperature boundary condition under turbulent flow regime on convective heat transfer coefficient has been investigated. Based on the results, for different Reynolds numbers, the convective heat transfer coefficient of the prepared nanofluid is higher than that of the base fluid. Also, the enhancement of convective heat transfer coefficient and thermal conductivity increase with the increase of GNP concentration in base-fluid. Based on the results of this investigation, there is a significant enhancement on the heat transfer rate associated with loading well-dispersed GNP in base-fluid.Keywords: Nanofluid, turbulent flow, forced convection flow, graphene, annular, annulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15882866 Unsteady Flow and Heat Transfer of Nanofluid from Circular Tube in Cross-Flow
Authors: H. Bayat, M. Majidi, M. Bolhasani, A. Karbalaie Alilou, A. Mirabdolah Lavasani
Abstract:
Unsteady flow and heat transfer from a circular cylinder in cross-flow is studied numerically. The governing equations are solved by using finite volume method. Reynolds number varies in range of 50 to 200; in this range flow is considered to be laminar and unsteady. Al2O3 nanoparticle with volume fraction in range of 5% to 20% is added to pure water. Effects of adding nanoparticle to pure water on lift and drag coefficient and Nusselt number is presented. Addition of Al2O3 has inconsiderable effect on the value of drags and lift coefficient. However, it has significant effect on heat transfer; results show that heat transfer of Al2O3 nanofluid is about 9% to 36% higher than pure water.
Keywords: Nanofluid, heat transfer, unsteady flow, forced convection, cross-flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25222865 Numerical Simulation of R410a-R23 and R404A-R508B Cascade Refrigeration System
Authors: A. D. Parekh, P. R. Tailor, Tejendra Patel
Abstract:
Capacity and efficiency of any refrigerating system diminish rapidly as the difference between the evaporating and condensing temperature is increased by a reduction in the evaporator temperature. The single stage vapour compression refrigeration system using various refrigerants are limited to an evaporator temperature of -40 0C. Below temperature of -40 0C the either cascade refrigeration system or multi stage vapour compression system is employed. Present work describes thermal design of condenser (HTS), cascade condenser and evaporator (LTS) of R404A-R508B and R410A-R23 cascade refrigeration system. Heat transfer area of condenser, cascade condenser and evaporator for both systems are compared and the effect of condenser and evaporator temperature on heat-transfer area for both systems is studied under same operating condition. The results shows that the required heat-transfer area of condenser and cascade condenser for R410A-R23 cascade system is lower than the R404A-R508B cascade system but heat transfer area of evaporator is similar for both the system. The heat transfer area of condenser and cascade condenser decreases with increase in condenser temperature (Tc), whereas the heat transfer area of cascade condenser and evaporator increases with increase in evaporator temperature (Te).Keywords: Heat-transfer area, R410A, R404A, R508B, R23, Refrigeration system, Thermal design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45692864 Optimization of Design Parameters for Wire Mesh Fin Arrays as a Heat Sink Using Taguchi Method
Authors: Kavita H. Dhanawade, Hanamant S. Dhanawade
Abstract:
Heat transfer enhancement objects like extended surfaces, fins etc. are chosen for their thermal performance as well as for other design parameters depending on various applications. The present paper is on experimental study to investigate the heat transfer enhancement through wire mesh fin arrays equipped with horizontal base plate. The data used in performance analysis were obtained experimentally for the material (mild steel) for different heat inputs such as 40, 60, 80, 100 and 120 watt, by varying wire mesh diameter, fin height and spacing between two fin arrays. Using the Taguchi experimental design method, optimum design parameters and their levels were investigated. Average heat transfer coefficient was considered as a performance characteristic parameter. An L9 (33) orthogonal array was selected as an experimental plan. Optimum results were found by experimenting. It is observed that the wire mesh diameter and fin height have a higher impact on heat transfer coefficient as compared to spacing between two fin arrays.Keywords: Heat transfer enhancement, finned surface, wire mesh diameter, natural convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8132863 Thermophysical and Heat Transfer Performance of Covalent and Noncovalent Functionalized Graphene Nanoplatelet-Based Water Nanofluids in an Annular Heat Exchanger
Authors: Hamed K. Arzani, Ahmad Amiri, Hamid K. Arzani, Salim Newaz Kazi, Ahmad Badarudin
Abstract:
The new design of heat exchangers utilizing an annular distributor opens a new gateway for realizing higher energy optimization. To realize this goal, graphene nanoplatelet-based water nanofluids with promising thermophysical properties were synthesized in the presence of covalent and noncovalent functionalization. Thermal conductivity, density, viscosity and specific heat capacity were investigated and employed as a raw data for ANSYS-Fluent to be used in two-phase approach. After validation of obtained results by analytical equations, two special parameters of convective heat transfer coefficient and pressure drop were investigated. The study followed by studying other heat transfer parameters of annular pass in the presence of graphene nanopletelesbased water nanofluids at different weight concentrations, input powers and temperatures. As a result, heat transfer performance and friction loss are predicted for both synthesized nanofluids.Keywords: Heat transfer, nanofluid, turbulent flow, forced convection flow, graphene nanoplatelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21712862 Thermal Performance Analysis of Nanofluids in a Concetric Heat Exchanger Equipped with Turbulators
Authors: Feyza Eda Akyurek, Bayram Sahin, Kadir Gelis, Eyuphan Manay, Murat Ceylan
Abstract:
Turbulent forced convection heat transfer and pressure drop characteristics of Al2O3–water nanofluid flowing through a concentric tube heat exchanger with and without coiled wire turbulators were studied experimentally. The experiments were conducted in the Reynolds number ranging from 4000 to 20000, particle volume concentrations of 0.8 vol.% and 1.6 vol.%. Two turbulators with the pitches of 25 mm and 39 mm were used. The results of nanofluids indicated that average Nusselt number increased much more with increasing Reynolds number compared to that of pure water. Thermal conductivity enhancement by the nanofluids resulted in heat transfer enhancement. Once the pressure drop of the alumina/water nanofluid was analyzed, it was nearly equal to that of pure water at the same Reynolds number range. It was concluded that nanofluids with the volume fractions of 0.8 and 1.6 did not have a significant effect on pressure drop change. However, the use of wire coils in heat exchanger enhanced heat transfer as well as the pressure drop.
Keywords: Turbulators, heat exchanger, nanofluids, heat transfer enhancement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16592861 Heat transfer Characteristics of Fin-and-Tube heat Exchanger under Condensing Conditions
Authors: Abdenour Bourabaa, Mohamed Saighi, Said El Metenani
Abstract:
In the present work an investigation of the effects of the air frontal velocity, relative humidity and dry air temperature on the heat transfer characteristics of plain finned tube evaporator has been conducted. Using an appropriate correlation for the air side heat transfer coefficient the temperature distribution along the fin surface was calculated using a dimensionless temperature distribution. For a constant relative humidity and bulb temperature, it is found that the temperature distribution decreases with increasing air frontal velocity. Apparently, it is attributed to the condensate water film flowing over the fin surface. When dry air temperature and face velocity are being kept constant, the temperature distribution decreases with the increase of inlet relative humidity. An increase in the inlet relative humidity is accompanied by a higher amount of moisture on the fin surface. This results in a higher amount of latent heat transfer which involves higher fin surface temperature. For the influence of dry air temperature, the results here show an increase in the dimensionless temperature parameter with a decrease in bulb temperature. Increasing bulb temperature leads to higher amount of sensible and latent heat transfer when other conditions remain constant.Keywords: Fin efficiency, heat and mass transfer, dehumidifying conditions, finned tube heat exchangers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21892860 A New Analytic Solution for the Heat Conduction with Time-Dependent Heat Transfer Coefficient
Authors: Te Wen Tu, Sen Yung Lee
Abstract:
An alternative approach is proposed to develop the analytic solution for one dimensional heat conduction with one mixed type boundary condition and general time-dependent heat transfer coefficient. In this study, the physic meaning of the solution procedure is revealed. It is shown that the shifting function takes the physic meaning of the reciprocal of Biot function in the initial time. Numerical results show the accuracy of this study. Comparing with those given in the existing literature, the difference is less than 0.3%.
Keywords: Analytic solution, heat transfer coefficient, shifting function method, time-dependent boundary condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30122859 Influence of Thermal Cycle on Temperature Dependent Process Parameters Involved in GTA Welded High Carbon Steel Joints
Authors: J. Dutta, Narendranath S.
Abstract:
In this research article a comprehensive investigation has been carried out to determine the effect of thermal cycle on temperature dependent process parameters developed during gas tungsten arc (GTA) welding of high carbon (AISI 1090) steel butt joints. An experiment based thermal analysis has been performed to obtain the thermal history. We have focused on different thermophysical properties such as thermal conductivity, heat transfer coefficient and cooling rate. Angular torch model has been utilized to find out the surface heat flux and its variation along the fusion zone as well as along the longitudinal direction from fusion boundary. After welding and formation of weld pool, heat transfer coefficient varies rapidly in the vicinity of molten weld bead and heat affected zone. To evaluate the heat transfer coefficient near the fusion line and near the rear end of the plate (low temperature region), established correlation has been implemented and has been compared with empirical correlation which is noted as coupled convective and radiation heat transfer coefficient. Change in thermal conductivity has been visualized by analytical model of moving point heat source. Rate of cooling has been estimated by using 2-dimensional mathematical expression of cooling rate and it has shown good agreement with experimental temperature cycle. Thermophysical properties have been varied randomly within 0 -10s time span.
Keywords: Thermal history, Gas tungsten arc welding, Butt joint, High carbon steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27702858 Numerical Analysis of Air Flow and Conjugated Heat Transfer in Internally Grooved Parallel- Plate Channels
Authors: Hossein Shokouhmand , Koohyar Vahidkhah, Mohammad A. Esmaeili
Abstract:
A numerical investigation of surface heat transfer characteristics of turbulent air flows in different parallel plate grooved channels is performed using CFD code. The results are obtained for Reynolds number ranging from 10,000 to 30,000 and for arc-shaped and rectangular grooved channels. The influence of different geometric parameters of dimples as well as the number of them and the geometric and thermophysical properties of channel walls are studied. It is found that there exists an optimum value for depth of dimples in which the largest wall heat flux can be achieved. Also, the results show a critical value for the ratio of wall thermal conductivity to the one of fluid in which the dependence of wall heat flux to this ratio almost vanishes. In most cases examined, heat transfer enhancement is larger for arc-shaped grooved channels than rectangular ones.Keywords: dimple, heat transfer enhancement, Numerical, optimum value, turbulent air flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18892857 Performance Characteristics of a Closed Circuit Cooling Tower with Multi Path
Authors: Gyu-Jin Shim, Seung-Moon Baek, Choon-Geun Moon, Ho-Saeng Lee, Jung-In Yoon
Abstract:
The experimental thermal performance of two heat exchangers in closed-wet cooling tower (CWCT) was investigated in this study. The test sections are heat exchangers which have multi path that is used as the entrance of cooling water and are consisting of bare-type copper tubes between 15.88mm and 19.05mm. The process fluids are the cooling water that flows from top part of heat exchanger to bottom side in the inner side of tube, and spray water that flows gravitational direction in the outer side of it. Air contacts its outer side of that as it counterflows. Heat and mass transfer coefficients and cooling capacity were calculated with variations of process fluids, multi path and different diameter tubes to figure out the performance of characteristics of CWCT. The main results were summarized as follows: The results show this experiment is reliable with values of heat and mass transfer coefficients comparing to values of correlations. Heat and mass transfer coefficients and cooling capacity of two paths are higher than these with one path using 15.88 and 19.05mm tubes. Cooling capacity per unit volume with 15.88mm tube using one and two paths are higher than 19.05mm tube due to increase of surface area per unit volume.Keywords: Closed–Wet Cooling Tower, Cooling Capacity, Heatand Mass Transfer Coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24402856 Numerical Study of Heat Transfer and Laminar Flow over a Backward Facing Step with and without Obstacle
Authors: Hussein Togun, Tuqa Abdulrazzaq, S. N. Kazi, A. Badarudin, M. K. A. Ariffin, M. N. M. Zubir
Abstract:
Heat transfer and laminar fluid flow over backward facing step with and without obstacle numerically studied in this paper. The finite volume method adopted to solve continuity, momentum and energy equations in two dimensions. Backward facing step without obstacle and with different dimension of obstacle were presented. The step height and expansion ratio of channel were 4.8mm and 2 respectively, the range of Reynolds number varied from 75 to 225, constant heat flux subjected on downstream of wall was 2000W/m2, and length of obstacle was 1.5, 3, and 4.5mm with width 1.5mm. The separation length noticed increase with increase Reynolds number and height of obstacle. The result shows increase of heat transfer coefficient for backward facing step with obstacle in compared to those without obstacle. The maximum enhancement of heat transfer observed at 4.5mm of height obstacle due to increase recirculation flow after the obstacle in addition that at backward. Streamline of velocity showing the increase of recirculation region with used obstacle in compared without obstacle and highest recirculation region observed at obstacle height 4.5mm. The amount of enhancement heat transfer was varied between 3-5% compared to backward without obstacle.
Keywords: Separation flow, Backward facing step, Heat transfer, Laminar flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43062855 Numerical Investigation of the Effect of Flow and Heat Transfer of a Semi-Cylindrical Obstacle Located in a Channel
Authors: Omer F. Can, Nevin Celik
Abstract:
In this study, a semi-cylinder obstacle placed in a channel is handled to determine the effect of flow and heat transfer around the obstacle. Both faces of the semi-cylinder are used in the numerical analysis. First, the front face of the semi-cylinder is stated perpendicular to flow, than the rear face is placed. The study is carried out numerically, by using commercial software ANSYS 11.0. The well-known κ-ε model is applied as the turbulence model. Reynolds number is in the range of 104 to 105 and air is assumed as the flowing fluid. The results showed that, heat transfer increased approximately 15 % in the front faze case, while it enhanced up to 28 % in the rear face case.Keywords: External flow, semi-cylinder obstacle, heat transfer, friction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31822854 A Numerical Study on Heat Transfer in Laminar Pulsed Slot Jets Impinging on a Surface
Authors: D. Kim
Abstract:
Numerical simulations are performed for laminar continuous and pulsed jets impinging on a surface in order to investigate the effects of pulsing frequency on the heat transfer characteristics. The time-averaged Nusselt number of pulsed jets is larger in the impinging jet region as compared to the continuous jet, while it is smaller in the outer wall jet region. At the stagnation point, the mean and RMS Nusselt numbers become larger and smaller, respectively, as the pulsing frequency increases. Unsteady behaviors of vortical fluid motions and temperature field are also investigated to understand the underlying mechanisms of heat transfer enhancement.Keywords: Pulsed slot jet, impingement, pulsing frequency, heat transfer enhancement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17312853 Comparison on Electrode and Ground Arrangements Effect on Heat Transfer under Electric Force in a Channel and a Cavity Flow
Authors: Suwimon Saneewong Na Ayuttaya, Chainarong Chaktranond, Phadungsak Rattanadecho
Abstract:
This study numerically investigates the effects of Electrohydrodynamic on flow patterns and heat transfer enhancement within a cavity which is on the lower wall of channel. In this simulation, effects of using ground wire and ground plate on the flow patterns are compared. Moreover, the positions of electrode wire respecting with ground are tested in the range of angles θ = 0 - 180o. High electrical voltage exposes to air is 20 kV. Bulk mean velocity and temperature of inlet air are controlled at 0.1 m/s and 60 OC, respectively. The result shows when electric field is applied, swirling flow is appeared in the channel. In addition, swirling flow patterns in the main flow of using ground plate are widely spreader than that of using ground wire. Moreover, direction of swirling flow also affects the flow pattern and heat transfer in a cavity. These cause the using ground wire to give the maximum temperature and heat transfer higher than using ground plate. Furthermore, when the angle is at θ = 60o, high shear flow effect is obtained. This results show high strength of swirling flow and effective heat transfer enhancement.
Keywords: Swirling Flow, Heat Transfer, Electrohydrodynamic, Numerical Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21232852 Lattice Boltzmann Method for Turbulent Heat Transfer in Wavy Channel Flows
Authors: H.Y. Lai, S. C. Chang, W. L. Chen
Abstract:
The hydrodynamic and thermal lattice Boltzmann methods are applied to investigate the turbulent convective heat transfer in the wavy channel flows. In this study, the turbulent phenomena are modeling by large-eddy simulations with the Smagorinsky model. As a benchmark, the laminar and turbulent backward-facing step flows are simulated first. The results give good agreement with other numerical and experimental data. For wavy channel flows, the distribution of Nusselt number and the skin-friction coefficients are calculated to evaluate the heat transfer effect and the drag force. It indicates that the vortices at the trough would affect the magnitude of drag and weaken the heat convection effects on the wavy surface. In turbulent cases, if the amplitude of the wavy boundary is large enough, the secondary vortices would be generated at troughs and contribute to the heat convection. Finally, the effects of different Re on the turbulent transport phenomena are discussed.
Keywords: Heat transfer, lattice Boltzmann method, turbulence, wavy channel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25012851 Heat and Mass Transfer of an Oscillating Flow in a Porous Channel with Chemical Reaction
Authors: Z. Neffah, H. Kahalerras
Abstract:
A numerical study is made in a parallel-plate porous channel subjected to an oscillating flow and an exothermic chemical reaction on its walls. The flow field in the porous region is modeled by the Darcy–Brinkman–Forchheimer model and the finite volume method is used to solve the governing equations. The effects of the modified Frank-Kamenetskii (FKm) and Damköhler (Dm) numbers, the amplitude of oscillation (A), and the Strouhal number (St) are examined. The main results show an increase of heat and mass transfer rates with A and St, and their decrease with FKm and Dm.Keywords: Chemical reaction, heat transfer, mass transfer, oscillating flow, porous channel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20112850 Coil and Jacket's Effects on Internal Flow Behavior and Heat Transfer in Stirred Tanks
Authors: B. Lakghomi, E. Kolahchian, A. Jalali, F. Farhadi
Abstract:
Different approaches for heating\cooling of stirred tanks, coils and jackets, are investigated using computational fluid dynamics (CFD).A time-dependant sliding mesh approach is applied to simulate the flow in both conditions. The investigations are carried out under the turbulent flow conditions for a Rushton impeller and heating elements are considered isothermal. The flow behavior and temperature distribution are studied for each case and heat transfer coefficient is calculated. Results show different velocity profiles for each case. Unsteady temperature distribution is not similar for different cases .In the case of the coiled stirred vessel more uniform temperature and higher heat transfer coefficient is resulted.
Keywords: CFD, coil and jacket, heat transfer, stirred tank.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49122849 Investigation of Increasing the Heat Transfer from Flat Surfaces Using Boundary Layer Excitation
Authors: M.H.Ghaffari
Abstract:
The present study is concerned with effect of exciting boundary layer on increase in heat transfer from flat surfaces. As any increase in heat transfer between a fluid inside a face and another one outside of it can cause an increase in some equipment's efficiency, so at this present we have tried to increase the wall's heat transfer coefficient by exciting the fluid boundary layer. By a collision between flow and the placed block at the fluid way, the flow pattern and the boundary layer stability will change. The flow way inside the channel is simulated as a 2&3-dimensional channel by Gambit TM software. With studying the achieved results by this simulation for the flow way inside the channel with a block coordinating with Fluent TM software, it's determined that the figure and dimensions of the exciter are too important for exciting the boundary layer so that any increase in block dimensions in vertical side against the flow and any reduction in its dimensions at the flow side can increase the average heat transfer coefficient from flat surface and increase the flow pressure loss. Using 2&3-dimensional analysis on exciting the flow at the flow way inside a channel by cylindrical block at the same time with the external flow, we came to this conclusion that the heat flux transferred from the surface, is increased considerably in terms of the condition without excitation. Also, the k-e turbulence model is used.Keywords: Cooling, Heat transfer, Turbulence, Excitingboundary layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11992848 Study on Cross-flow Heat Transfer in Fixed Bed
Authors: Hong-fang Ma, Hai-tao Zhang, Wei-yong Ying, Ding-ye Fang
Abstract:
Radial flow reactor was focused for large scale methanol synthesis and in which the heat transfer type was cross-flow. The effects of operating conditions including the reactor inlet air temperature, the heating pipe temperature and the air flow rate on the cross-flow heat transfer was investigated and the results showed that the temperature profile of the area in front of the heating pipe was slightly affected by all the operating conditions. The main area whose temperature profile was influenced was the area behind the heating pipe. The heat transfer direction according to the air flow directions. In order to provide the basis for radial flow reactor design calculation, the dimensionless number group method was used for data fitting of the bed effective thermal conductivity and the wall heat transfer coefficient which was calculated by the mathematical model with the product of Reynolds number and Prandtl number. The comparison of experimental data and calculated value showed that the calculated value fit the experimental data very well and the formulas could be used for reactor designing calculation.Keywords: Cross-flow, Heat transfer, Fixed bed, Mathematical model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18742847 Investigations of Natural Convective Heat Transfer in Rectangular Thermal Passages
Authors: Hussain H. Al-Kayiem, Ahmed K. Hussein, Toh Seng Peow
Abstract:
The evaluation of the convective heat transfer of flow in passages with rectangular cross section is still of interest for the heat transfer investigators, as in the air heater solar collectors. The aim of this paper is to present investigation results on the natural convection heat transfer in a solar air heater. The effect of the channel length as heat transfer surface and the inclination of the passage were investigated. The results were obtained experimentally and theoretically. For that, an experimental test rig was fabricated with channel lengths of 1m, 1.5m, and 2m. For each length, the air outlet and inlet temperatures, absorber and cover temperatures, solar radiation intensity and air flow rate were measured at 10o, 30o, 50o, 70o, and 90o tilt angles. Measurements were recorded every 2 hours interval to investigate the transient behavior of the system. The experimental and theoretical results are presented in terms of Nu number versus Ra number and discussed. The percentages of differences between experimental and theoretical results are within the margin of 6% to 13%, effectively. It is recommended to extend the investigation to study the same configurations with different artificial surface roughing by ribs or pins.
Keywords: Convective heat transfer, Flat plate, Natural convection, Passage flow, Solar energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20662846 Effect of Two Radial Fins on Heat Transfer and Flow Structure in a Horizontal Annulus
Authors: Anas El Amraoui, Abdelkhalek Cheddadi, Mohammed Touhami Ouazzani
Abstract:
Laminar natural convection in a cylindrical annular cavity filled with air and provided with two fins is studied numerically using the discretization of the governing equations with the Centered Finite Difference method based on the Alternating Direction Implicit (ADI) scheme. The fins are attached to the inner cylinder of radius ri (hot wall of temperature Ti). The outer cylinder of radius ro is maintained at a temperature To (To < Ti). Two values of the dimensionless thickness of the fins are considered: 0.015 and 0.203. We consider a low fin height equal to 0.078 and medium fin heights equal to 0.093 and 0.203. The position of the fin is 0.82π and the radius ratio is equal to 2. The effect of Rayleigh number, Ra, on the flow structure and heat transfer is analyzed for a range of Ra from 103 to 104. The results for established flow structures and heat transfer at low height indicate that the flow regime that occurs is unicellular for all Ra and fin thickness; in addition, the heat transfer rate increases with increasing Rayleigh number and is the same for both thicknesses. At median fin heights 0.093 and 0.203, the increase of Rayleigh number leads to transitions of flow structure which correspond to significant variations of the heat transfer. The critical Rayleigh numbers, Rac.app and Rac.disp corresponding to the appearance of the bicellular flow regime and its disappearance, are determined and their influence on the change of heat transfer rate is analyzed.
Keywords: Natural convection, fins, critical Rayleigh number, heat transfer, fluid flow regime, horizontal annulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5322845 Heat and Mass Transfer for Viscous Flow with Radiation Effect past a Nonlinearly Stretching Sheet
Authors: Kai-Long Hsiao
Abstract:
In this study, an analysis has been performed for heat and mass transfer of a steady laminar boundary-layer flow of a viscous flow past a nonlinearly stretching sheet. Parameters n, Ec, k0, Sc represent the dominance of the nonlinearly effect, viscous effect, radiation effect and mass transfer effect which have presented in governing equations, respectively. The similarity transformation and the finite-difference method have been used to analyze the present problem.Keywords: Nonlinearly stretching sheet, heat and mass transfer, radiation effect, viscous effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15062844 Effect of Sintering Temperature Curve in Wick Manufactured for Loop Heat Pipe
Authors: Shen-Chun Wu, Chuo-Jeng Huang, Wun-Hong Yang, Jy-Cheng Chang, Chien-Chun Kung
Abstract:
This investigation examines the effect of the sintering temperature curve in manufactured nickel powder capillary structure (wick) for a loop heat pipe (LHP). The sintering temperature curve is composed of a region of increasing temperature; a region of constant temperature and a region of declining temperature. The most important region is that in which the temperature increases, as an index in the stage in which the temperature increases. The wick of nickel powder is manufactured in the stage of fixed sintering temperature and the time between the stage of constant temperature and the stage of falling temperature. When the slope of the curve in the region of increasing temperature is unity (equivalent to 10 °C/min), the structure of the wick is complete and the heat transfer performance is optimal. The result of experiment test demonstrates that the heat transfer performance is optimal at 320W; the minimal total thermal resistance is approximately 0.18°C/W, and the heat flux is 17W/cm2; the internal parameters of the wick are an effective pore radius of 3.1 μm, a permeability of 3.25×10-13m2 and a porosity of 71%.Keywords: Loop heat pipe (LHP), capillary structure (wick), sintered temperature curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20942843 Study of Heat Transfer of Nanofluids in a Circular Tube
Authors: M. Amoura, M. Alloti, A. Mouassi, N. Zeraibi
Abstract:
Heat transfer behavior of three different types of nanofluids flowing through a horizontal tube under laminar regime has been investigated numerically. The wall of tube is maintained at constant temperature. Al2O3-water, CuO-water and TiO2-water are used with different Reynolds number and different volume fraction. The numerical results of heat transfer indicate that the Nusselt number of nanofluids is larger than that of the base fluid. The Pressure loss coefficient decreases by increasing Reynolds number for all types of nanofluids. Results of Nusselt number enhancement and pressure loss coefficient enhancement indicate that Al2O3 nanoparticules give the best results in term of thermal-hydrolic properties.
Keywords: Heat transfer, Laminar flow, Nanofluid, Numerical study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3067