Search results for: HPLC.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 62

Search results for: HPLC.

2 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs based on Machine Learning Algorithms

Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios

Abstract:

Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity and aflatoxinogenic capacity of the strains, topography, soil and climate parameters of the fig orchards are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high-performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques i.e., dimensionality reduction on the original dataset (Principal Component Analysis), metric learning (Mahalanobis Metric for Clustering) and K-nearest Neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson Correlation Coefficient (PCC) between observed and predicted values.

Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 649
1 Changes in Amino Acids Content in Muscle of European Eel (Anguilla anguilla) in Relation to Body Size

Authors: L. Gómez-Limia, I. Franco, T. Blanco, S. Martínez

Abstract:

European eels (Anguilla anguilla) belong to Anguilliformes order and Anguillidae family. They are generally classified as warm-water fish. Eels have a great commercial value in Europe and Asian countries. Eels can reach high weights, although their commercial size is relatively low in some countries. The capture of larger eels would facilitate the recovery of the species, as well as having a greater number of either glass eels or elvers for aquaculture. In the last years, the demand and the price of eels have increased significantly. However, European eel is considered critically endangered by the International Union for the Conservation of Nature (IUCN) Red List. The biochemical composition of fishes is an important aspect of quality and affects the nutritional value and consumption quality of fish. In addition, knowing this composition can help predict an individual’s condition for their recovery. Fish is known to be important source of protein rich in essential amino acids. However, there is very little information about changes in amino acids composition of European eels with increase in size. The aim of this study was to evaluate the effect of two different weight categories on the amino acids content in muscle tissue of wild European eels. European eels were caught in River Ulla (Galicia, NW Spain), during winter. The eels were slaughtered in ice water immersion. Then, they were purchased and transferred to the laboratory. The eels were subdivided into two groups, according to the weight. The samples were kept frozen (-20 °C) until their analysis. Frozen eels were defrosted and the white muscle between the head and the anal hole. was extracted, in order to obtain amino acids composition. Thirty eels for each group were used. Liquid chromatography was used for separation and quantification of amino a cids. The results conclude that the eels are rich in glutamic acid, leucine, lysine, threonine, valine, isoleucine and phenylalanine. The analysis showed that there are significant differences (p < 0.05) among the eels with different sizes. Histidine, threonine, lysine, hydroxyproline, serine, glycine, arginine, alanine and proline were higher in small eels. European eels muscle presents between 45 and 46% of essential amino acids in the total amino acids. European eels have a well-balanced and high quality protein source in the respect of E/NE ratio. However, eels with higher weight showed a better ratio of essential and non-essential amino acid.

Keywords: European eels, amino acids, HPLC, body size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837