Search results for: Delay Differential Equation
2090 Exact Solutions of the Helmholtz equation via the Nikiforov-Uvarov Method
Authors: Said Laachir, Aziz Laaribi
Abstract:
The Helmholtz equation often arises in the study of physical problems involving partial differential equation. Many researchers have proposed numerous methods to find the analytic or approximate solutions for the proposed problems. In this work, the exact analytical solutions of the Helmholtz equation in spherical polar coordinates are presented using the Nikiforov-Uvarov (NU) method. It is found that the solution of the angular eigenfunction can be expressed by the associated-Legendre polynomial and radial eigenfunctions are obtained in terms of the Laguerre polynomials. The special case for k=0, which corresponds to the Laplace equation is also presented.
Keywords: Helmholtz equation, Nikiforov-Uvarov method, exact solutions, eigenfunctions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30032089 Critical Buckling Load of Carbon Nanotube with Non-Local Timoshenko Beam Using the Differential Transform Method
Authors: Tayeb Bensattalah, Mohamed Zidour, Mohamed Ait Amar Meziane, Tahar Hassaine Daouadji, Abdelouahed Tounsi
Abstract:
In this paper, the Differential Transform Method (DTM) is employed to predict and to analysis the non-local critical buckling loads of carbon nanotubes with various end conditions and the non-local Timoshenko beam described by single differential equation. The equation differential of buckling of the nanobeams is derived via a non-local theory and the solution for non-local critical buckling loads is finding by the DTM. The DTM is introduced briefly. It can easily be applied to linear or nonlinear problems and it reduces the size of computational work. Influence of boundary conditions, the chirality of carbon nanotube and aspect ratio on non-local critical buckling loads are studied and discussed. Effects of nonlocal parameter, ratios L/d, the chirality of single-walled carbon nanotube, as well as the boundary conditions on buckling of CNT are investigated.
Keywords: Boundary conditions, buckling, non-local, the differential transform method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9612088 Physical Conserved Quantities for the Axisymmetric Liquid, Free and Wall Jets
Authors: Rehana Naz, D. P. Mason, Fazal Mahomed
Abstract:
A systematic way to derive the conserved quantities for the axisymmetric liquid jet, free jet and wall jet using conservation laws is presented. The flow in axisymmetric jets is governed by Prandtl-s momentum boundary layer equation and the continuity equation. The multiplier approach is used to construct a basis of conserved vectors for the system of two partial differential equations for the two velocity components. The basis consists of two conserved vectors. By integrating the corresponding conservation laws across the jet and imposing the boundary conditions, conserved quantities are derived for the axisymmetric liquid and free jet. The multiplier approach applied to the third-order partial differential equation for the stream function yields two local conserved vectors one of which is a non-local conserved vector for the system. One of the conserved vectors gives the conserved quantity for the axisymmetric free jet but the conserved quantity for the wall jet is not obtained from the second conserved vector. The conserved quantity for the axisymmetric wall jet is derived from a non-local conserved vector of the third-order partial differential equation for the stream function. This non-local conserved vector for the third-order partial differential equation for the stream function is obtained by using the stream function as multiplier.
Keywords: Axisymmetric jet, liquid jet, free jet, wall jet, conservation laws, conserved quantity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14622087 Optimal Control of Volterra Integro-Differential Systems Based On Legendre Wavelets and Collocation Method
Authors: Khosrow Maleknejad, Asyieh Ebrahimzadeh
Abstract:
In this paper, the numerical solution of optimal control problem (OCP) for systems governed by Volterra integro-differential (VID) equation is considered. The method is developed by means of the Legendre wavelet approximation and collocation method. The properties of Legendre wavelet together with Gaussian integration method are utilized to reduce the problem to the solution of nonlinear programming one. Some numerical examples are given to confirm the accuracy and ease of implementation of the method.
Keywords: Collocation method, Legendre wavelet, optimal control, Volterra integro-differential equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28942086 Traveling Wave Solutions for Shallow Water Wave Equation by (G'/G)-Expansion Method
Authors: Anjali Verma, Ram Jiwari, Jitender Kumar
Abstract:
This paper presents a new function expansion method for finding traveling wave solution of a non-linear equation and calls it the (G'/G)-expansion method. The shallow water wave equation is reduced to a non linear ordinary differential equation by using a simple transformation. As a result the traveling wave solutions of shallow water wave equation are expressed in three forms: hyperbolic solutions, trigonometric solutions and rational solutions.
Keywords: Shallow water wave equation, Exact solutions, (G'/G) expansion method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18392085 Solving of the Fourth Order Differential Equations with the Neumann Problem
Authors: Marziyeh Halimi, Roushanak Lotfikar, Simin Mansouri Borojeni
Abstract:
In this paper we considered the Neumann problem for the fourth order differential equation. First we define the weighted Sobolev space 2 Wα and generalized solution for this equation. Then we consider the existence and uniqueness of the generalized solution, as well as give the description of the spectrum and of the domain of definition of the corresponding operator.Keywords: Neumann problem, weighted Sobolev spaces, generalized solution, spectrum of linear operators.2000 mathematic subject classification: 34A05, 34A30.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14272084 Lagrangian Method for Solving Unsteady Gas Equation
Authors: Amir Taghavi, kourosh Parand, Hosein Fani
Abstract:
In this paper we propose, a Lagrangian method to solve unsteady gas equation which is a nonlinear ordinary differential equation on semi-infnite interval. This approach is based on Modified generalized Laguerre functions. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also compare this work with some other numerical results. The findings show that the present solution is highly accurate.
Keywords: Unsteady gas equation, Generalized Laguerre functions, Lagrangian method, Nonlinear ODE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15222083 Stability Analysis of Fractional Order Systems with Time Delay
Authors: Hong Li, Shou-Ming Zhong, Hou-Biao Li
Abstract:
In this paper, we mainly study the stability of linear and interval linear fractional systems with time delay. By applying the characteristic equations, a necessary and sufficient stability condition is obtained firstly, and then some sufficient conditions are deserved. In addition, according to the equivalent relationship of fractional order systems with order 0 < α ≤ 1 and with order 1 ≤ β < 2, one may get more relevant theorems. Finally, two examples are provided to demonstrate the effectiveness of our results.
Keywords: Fractional order systems, Time delay, Characteristic equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36612082 Some Solitary Wave Solutions of Generalized Pochhammer-Chree Equation via Exp-function Method
Authors: Kourosh Parand, Jamal Amani Rad
Abstract:
In this paper, Exp-function method is used for some exact solitary solutions of the generalized Pochhammer-Chree equation. It has been shown that the Exp-function method, with the help of symbolic computation, provides a very effective and powerful mathematical tool for solving nonlinear partial differential equations. As a result, some exact solitary solutions are obtained. It is shown that the Exp-function method is direct, effective, succinct and can be used for many other nonlinear partial differential equations.
Keywords: Exp-function method, generalized Pochhammer- Chree equation, solitary wave solution, ODE's.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15902081 Globally Exponential Stability and Dissipativity Analysis of Static Neural Networks with Time Delay
Authors: Lijiang Xiang, Shouming Zhong, Yucai Ding
Abstract:
The problems of globally exponential stability and dissipativity analysis for static neural networks (NNs) with time delay is investigated in this paper. Some delay-dependent stability criteria are established for static NNs with time delay using the delay partitioning technique. In terms of this criteria, the delay-dependent sufficient condition is given to guarantee the dissipativity of static NNs with time delay. All the given results in this paper are not only dependent upon the time delay but also upon the number of delay partitions. Two numerical examples are used to show the effectiveness of the proposed methods.
Keywords: Globally exponential stability, Dissipativity, Static neural networks, Time delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15382080 Stability Analysis of Mutualism Population Model with Time Delay
Authors: Rusliza Ahmad, Harun Budin
Abstract:
This paper studies the effect of time delay on stability of mutualism population model with limited resources for both species. First, the stability of the model without time delay is analyzed. The model is then improved by considering a time delay in the mechanism of the growth rate of the population. We analyze the effect of time delay on the stability of the stable equilibrium point. Result showed that the time delay can induce instability of the stable equilibrium point, bifurcation and stability switches.Keywords: Bifurcation, Delay margin, Mutualism population model, Time delay
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19842079 Some Characterizations of Isotropic Curves In the Euclidean Space
Authors: Süha Yılmaz, Melih Turgut
Abstract:
The curves, of which the square of the distance between the two points equal to zero, are called minimal or isotropic curves [4]. In this work, first, necessary and sufficient conditions to be a Pseudo Helix, which is a special case of such curves, are presented. Thereafter, it is proven that an isotropic curve-s position vector and pseudo curvature satisfy a vector differential equation of fourth order. Additionally, In view of solution of mentioned equation, position vector of pseudo helices is obtained.Keywords: Classical Differential Geometry, Euclidean space, Minimal Curves, Isotropic Curves, Pseudo Helix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19812078 Exact Pfaffian and N-Soliton Solutions to a (3+1)-Dimensional Generalized Integrable Nonlinear Partial Differential Equations
Authors: Magdy G. Asaad
Abstract:
The objective of this paper is to use the Pfaffian technique to construct different classes of exact Pfaffian solutions and N-soliton solutions to some of the generalized integrable nonlinear partial differential equations in (3+1) dimensions. In this paper, I will show that the Pfaffian solutions to the nonlinear PDEs are nothing but Pfaffian identities. Solitons are among the most beneficial solutions for science and technology, from ocean waves to transmission of information through optical fibers or energy transport along protein molecules. The existence of multi-solitons, especially three-soliton solutions, is essential for information technology: it makes possible undisturbed simultaneous propagation of many pulses in both directions.Keywords: Bilinear operator, G-BKP equation, Integrable nonlinear PDEs, Jimbo-Miwa equation, Ma-Fan equation, N-soliton solutions, Pfaffian solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20942077 Analysis and Application of in Indirect MinimumJerk Method for Higher order Differential Equation in Dynamics Optimization Systems
Authors: V. Tawiwat, T. Amornthep, P. Pnop
Abstract:
Both the minimum energy consumption and smoothness, which is quantified as a function of jerk, are generally needed in many dynamic systems such as the automobile and the pick-and-place robot manipulator that handles fragile equipments. Nevertheless, many researchers come up with either solely concerning on the minimum energy consumption or minimum jerk trajectory. This research paper considers the indirect minimum Jerk method for higher order differential equation in dynamics optimization proposes a simple yet very interesting indirect jerks approaches in designing the time-dependent system yielding an alternative optimal solution. Extremal solutions for the cost functions of indirect jerks are found using the dynamic optimization methods together with the numerical approximation. This case considers the linear equation of a simple system, for instance, mass, spring and damping. The simple system uses two mass connected together by springs. The boundary initial is defined the fix end time and end point. The higher differential order is solved by Galerkin-s methods weight residual. As the result, the 6th higher differential order shows the faster solving time.Keywords: Optimization, Dynamic, Linear Systems, Jerks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13342076 A New Method to Solve a Non Linear Differential System
Authors: Seifedine Kadry
Abstract:
In this article, our objective is the analysis of the resolution of non-linear differential systems by combining Newton and Continuation (N-C) method. The iterative numerical methods converge where the initial condition is chosen close to the exact solution. The question of choosing the initial condition is answered by N-C method.
Keywords: Continuation Method, Newton Method, Finite Difference Method, Numerical Analysis and Non-Linear partial Differential Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13912075 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (III)
Authors: Li Ge
Abstract:
In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using Leray-Schauder theory:Keywords: impulsive differential equations, impulsive integraldifferential equation, boundary value problems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11692074 Tracking Control of a Linear Parabolic PDE with In-domain Point Actuators
Authors: Amir Badkoubeh, Guchuan Zhu
Abstract:
This paper addresses the problem of asymptotic tracking control of a linear parabolic partial differential equation with indomain point actuation. As the considered model is a non-standard partial differential equation, we firstly developed a map that allows transforming this problem into a standard boundary control problem to which existing infinite-dimensional system control methods can be applied. Then, a combination of energy multiplier and differential flatness methods is used to design an asymptotic tracking controller. This control scheme consists of stabilizing state-feedback derived from the energy multiplier method and feed-forward control based on the flatness property of the system. This approach represents a systematic procedure to design tracking control laws for a class of partial differential equations with in-domain point actuation. The applicability and system performance are assessed by simulation studies.Keywords: Tracking Control, In-domain point actuation, PartialDifferential Equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20592073 Positive Almost Periodic Solutions for Neural Multi-Delay Logarithmic Population Model
Authors: Zhouhong Li
Abstract:
In this paper, by applying Mawhin-s continuation theorem of coincidence degree theory, we study the existence of almost periodic solutions for neural multi-delay logarithmic population model and obtain one sufficient condition for the existence of positive almost periodic solution for the above equation. An example is employed to illustrate our result.
Keywords: Almost periodic solution, Multi-delay, Logarithmic population model, Coincidence degree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14352072 Advanced Gronwall-Bellman-Type Integral Inequalities and Their Applications
Authors: Zixin Liu, Shu Lü, Shouming Zhong, Mao Ye
Abstract:
In this paper, some new nonlinear generalized Gronwall-Bellman-Type integral inequalities with mixed time delays are established. These inequalities can be used as handy tools to research stability problems of delayed differential and integral dynamic systems. As applications, based on these new established inequalities, some p-stable results of a integro-differential equation are also given. Two numerical examples are presented to illustrate the validity of the main results.Keywords: Gronwall-Bellman-Type integral inequalities, integrodifferential equation, p-exponentially stable, mixed delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20862071 Explicit Delay and Power Estimation Method for CMOS Inverter Driving on-Chip RLC Interconnect Load
Authors: Susmita Sahoo, Madhumanti Datta, Rajib Kar
Abstract:
The resistive-inductive-capacitive behavior of long interconnects which are driven by CMOS gates are presented in this paper. The analysis is based on the ¤Ç-model of a RLC load and is developed for submicron devices. Accurate and analytical expressions for the output load voltage, the propagation delay and the short circuit power dissipation have been proposed after solving a system of differential equations which accurately describe the behavior of the circuit. The effect of coupling capacitance between input and output and the short circuit current on these performance parameters are also incorporated in the proposed model. The estimated proposed delay and short circuit power dissipation are in very good agreement with the SPICE simulation with average relative error less than 6%.Keywords: Delay, Inverter, Short Circuit Power, ¤Ç-Model, RLCInterconnect, VLSI
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16922070 The Symmetric Solutions for Boundary Value Problems of Second-Order Singular Differential Equation
Authors: Li Xiguang
Abstract:
In this paper, by constructing a special operator and using fixed point index theorem of cone, we get the sufficient conditions for symmetric positive solution of a class of nonlinear singular boundary value problems with p-Laplace operator, which improved and generalized the result of related paper.
Keywords: Banach space, cone, fixed point index, singular differential equation, p-Laplace operator, symmetric solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13032069 Ignition Time Delay in Swirling Supersonic Flow Combustion
Authors: A. M. Tahsini
Abstract:
Supersonic hydrogen-air cylindrical mixing layer is numerically analyzed to investigate the effect of inlet swirl on ignition time delay in scramjets. Combustion is treated using detail chemical kinetics. One-equation turbulence model of Spalart and Allmaras is chosen to study the problem and advection upstream splitting method is used as computational scheme. The results show that swirling both fuel and oxidizer streams may drastically decrease the ignition distance in supersonic combustion, unlike using the swirl just in fuel stream which has no helpful effect.Keywords: Ignition delay, Supersonic combustion, Swirl, Numerical simulation, Turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21932068 The Strict Stability of Impulsive Stochastic Functional Differential Equations with Markovian Switching
Authors: Dezhi Liu Guiyuan Yang Wei Zhang
Abstract:
Strict stability can present the rate of decay of the solution, so more and more investigators are beginning to study the topic and some results have been obtained. However, there are few results about strict stability of stochastic differential equations. In this paper, using Lyapunov functions and Razumikhin technique, we have gotten some criteria for the strict stability of impulsive stochastic functional differential equations with markovian switching.Keywords: Impulsive; Stochastic functional differential equation; Strict stability; Razumikhin technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12872067 Solving Stochastic Eigenvalue Problem of Wick Type
Authors: Hassan Manouzi, Taous-Meriem Laleg-Kirati
Abstract:
In this paper we study mathematically the eigenvalue problem for stochastic elliptic partial differential equation of Wick type. Using the Wick-product and the Wiener-Itô chaos expansion, the stochastic eigenvalue problem is reformulated as a system of an eigenvalue problem for a deterministic partial differential equation and elliptic partial differential equations by using the Fredholm alternative. To reduce the computational complexity of this system, we shall use a decomposition method using the Wiener-Itô chaos expansion. Once the approximation of the solution is performed using the finite element method for example, the statistics of the numerical solution can be easily evaluated.
Keywords: Eigenvalue problem, Wick product, SPDEs, finite element, Wiener-Itô chaos expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20162066 Using Hermite Function for Solving Thomas-Fermi Equation
Authors: F. Bayatbabolghani, K. Parand
Abstract:
In this paper, we propose Hermite collocation method for solving Thomas-Fermi equation that is nonlinear ordinary differential equation on semi-infinite interval. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also present the comparison of this work with solution of other methods that shows the present solution is more accurate and faster convergence in this problem.
Keywords: Collocation method, Hermite function, Semi-infinite, Thomas-Fermi equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21502065 The Symmetric Solutions for Three-Point Singular Boundary Value Problems of Differential Equation
Authors: Li Xiguang
Abstract:
In this paper, by constructing a special operator and using fixed point index theorem of cone, we get the sufficient conditions for symmetric positive solution of a class of nonlinear singular boundary value problems with p-Laplace operator, which improved and generalized the result of related paper.
Keywords: Banach space, cone, fixed point index, singular differential equation, p-Laplace operator, symmetric solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14142064 Study and Enhancement of Flash Evaporation Desalination Utilizing the Ocean Thermocline and Discharged heat
Authors: Sami Mutair, Yasuyuki Ikegami
Abstract:
This paper reports on the results of experimental investigations of flash evaporation from superheated jet issues vertically upward from a round straight nozzle of 81.3 mm diameter. For the investigated range of jet superheat degree and velocity, it was shown that flash evaporation enhances with initial temperature increase. Due to the increase of jet inertia and subsequently the delay of jet shattering, increase of jet velocity was found to result in increase of evaporation "delay period". An empirical equation predicts the jet evaporation completion height was developed, this equation is thought to be useful in designing the flash evaporation chamber. In attempts for enhancement of flash evaporation, use of steel wire mesh located at short distance downstream was found effective with no consequent pressure drop.Keywords: Enhancement; Flash Evaporation; OTEC; superheated jet
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30432063 The Homotopy Analysis Method for Solving Discontinued Problems Arising in Nanotechnology
Authors: Hassan Saberi-Nik, Mahin Golchaman
Abstract:
This paper applies the homotopy analysis method method to a nonlinear differential-difference equation arising in nanotechnology. Continuum hypothesis on nanoscales is invalid, and a differential-difference model is considered as an alternative approach to describing discontinued problems. Comparison of the approximate solution with the exact one reveals that the method is very effective.
Keywords: Homotopy analysis method, differential-difference, nanotechnology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19782062 Periodic Oscillations in a Delay Population Model
Authors: Changjin Xu, Peiluan Li
Abstract:
In this paper, a nonlinear delay population model is investigated. Choosing the delay as a bifurcation parameter, we demonstrate that Hopf bifurcation will occur when the delay exceeds a critical value. Global existence of bifurcating periodic solutions is established. Numerical simulations supporting the theoretical findings are included.
Keywords: Population model, Stability, Hopf bifurcation, Delay, Global Hopf bifurcation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17522061 Numerical Solution of Linear Ordinary Differential Equations in Quantum Chemistry by Clenshaw Method
Authors: M. Saravi, F. Ashrafi, S.R. Mirrajei
Abstract:
As we know, most differential equations concerning physical phenomenon could not be solved by analytical method. Even if we use Series Method, some times we need an appropriate change of variable, and even when we can, their closed form solution may be so complicated that using it to obtain an image or to examine the structure of the system is impossible. For example, if we consider Schrodinger equation, i.e., We come to a three-term recursion relations, which work with it takes, at least, a little bit time to get a series solution[6]. For this reason we use a change of variable such as or when we consider the orbital angular momentum[1], it will be necessary to solve. As we can observe, working with this equation is tedious. In this paper, after introducing Clenshaw method, which is a kind of Spectral method, we try to solve some of such equations.Keywords: Chebyshev polynomials, Clenshaw method, ODEs, Spectral methods
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420