Search results for: Additive white Gaussian noise
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1444

Search results for: Additive white Gaussian noise

1384 Applying a Noise Reduction Method to Reveal Chaos in the River Flow Time Series

Authors: Mohammad H. Fattahi

Abstract:

Chaotic analysis has been performed on the river flow time series before and after applying the wavelet based de-noising techniques in order to investigate the noise content effects on chaotic nature of flow series. In this study, 38 years of monthly runoff data of three gauging stations were used. Gauging stations were located in Ghar-e-Aghaj river basin, Fars province, Iran. Noise level of time series was estimated with the aid of Gaussian kernel algorithm. This step was found to be crucial in preventing removal of the vital data such as memory, correlation and trend from the time series in addition to the noise during de-noising process.

Keywords: Chaotic behavior, wavelet, noise reduction, river flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095
1383 Impact of Modeling Different Fading Channels on Wireless MAN Fixed IEEE802.16d OFDM System with Diversity Transmission Technique

Authors: Shanar Askar, Shahzad Memon, LachhmanDas, MSKalhoro

Abstract:

Wimax (Worldwide Interoperability for Microwave Access) is a promising technology which can offer high speed data, voice and video service to the customer end, which is presently, dominated by the cable and digital subscriber line (DSL) technologies. The performance assessment of Wimax systems is dealt with. The biggest advantage of Broadband wireless application (BWA) over its wired competitors is its increased capacity and ease of deployment. The aims of this paper are to model and simulate the fixed OFDM IEEE 802.16d physical layer under variant combinations of digital modulation (BPSK, QPSK, and 16-QAM) over diverse combination of fading channels (AWGN, SUIs). Stanford University Interim (SUI) Channel serial was proposed to simulate the fixed broadband wireless access channel environments where IEEE 802.16d is to be deployed. It has six channel models that are grouped into three categories according to three typical different outdoor Terrains, in order to give a comprehensive effect of fading channels on the overall performance of the system.

Keywords: WIMAX, OFDM, Additive White Gaussian Noise, Fading Channel, SUI, Doppler Effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138
1382 A Nano-Scaled SRAM Guard Band Design with Gaussian Mixtures Model of Complex Long Tail RTN Distributions

Authors: Worawit Somha, Hiroyuki Yamauchi

Abstract:

This paper proposes, for the first time, how the challenges facing the guard-band designs including the margin assist-circuits scheme for the screening-test in the coming process generations should be addressed. The increased screening error impacts are discussed based on the proposed statistical analysis models. It has been shown that the yield-loss caused by the misjudgment on the screening test would become 5-orders of magnitude larger than that for the conventional one when the amplitude of random telegraph noise (RTN) caused variations approaches to that of random dopant fluctuation. Three fitting methods to approximate the RTN caused complex Gamma mixtures distributions by the simple Gaussian mixtures model (GMM) are proposed and compared. It has been verified that the proposed methods can reduce the error of the fail-bit predictions by 4-orders of magnitude.

Keywords: Mixtures of Gaussian, Random telegraph noise, EM algorithm, Long-tail distribution, Fail-bit analysis, Static random access memory, Guard band design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
1381 Electromagnetic Imaging of Inhomogeneous Dielectric Cylinders Buried in a Slab Mediumby TE Wave Illumination

Authors: Chung-Hsin Huang, Chien-Ching Chiu, Chun Jen Lin

Abstract:

The electromagnetic imaging of inhomogeneous dielectric cylinders buried in a slab medium by transverse electric (TE) wave illumination is investigated. Dielectric cylinders of unknown permittivities are buried in second space and scattered a group of unrelated waves incident from first space where the scattered field is recorded. By proper arrangement of the various unrelated incident fields, the difficulties of ill-posedness and nonlinearity are circumvented, and the permittivity distribution can be reconstructed through simple matrix operations. The algorithm is based on the moment method and the unrelated illumination method. Numerical results are given to demonstrate the capability of the inverse algorithm. Good reconstruction is obtained even in the presence of additive Gaussian random noise in measured data. In addition, the effect of noise on the reconstruction result is also investigated.

Keywords: Slab Medium, Unrelated Illumination Method, TEWave Illumination, Inhomogeneous Cylinders.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204
1380 Elimination Noise by Adaptive Wavelet Threshold

Authors: Iman Elyasi, Sadegh Zarmehi

Abstract:

Due to some reasons, observed images are degraded which are mainly caused by noise. Recently image denoising using the wavelet transform has been attracting much attention. Waveletbased approach provides a particularly useful method for image denoising when the preservation of edges in the scene is of importance because the local adaptivity is based explicitly on the values of the wavelet detail coefficients. In this paper, we propose several methods of noise removal from degraded images with Gaussian noise by using adaptive wavelet threshold (Bayes Shrink, Modified Bayes Shrink and Normal Shrink). The proposed thresholds are simple and adaptive to each subband because the parameters required for estimating the threshold depend on subband data. Experimental results show that the proposed thresholds remove noise significantly and preserve the edges in the scene.

Keywords: Image denoising, Bayes Shrink, Modified Bayes Shrink, Normal Shrink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473
1379 Base Change for Fisher Metrics: Case of the q−Gaussian Inverse Distribution

Authors: Gabriel I. Loaiza O., Carlos A. Cadavid M., Juan C. Arango P.

Abstract:

It is known that the Riemannian manifold determined by the family of inverse Gaussian distributions endowed with the Fisher metric has negative constant curvature κ = −1/2 , as does the family of usual Gaussian distributions. In the present paper, firstly we arrive at this result by following a different path, much simpler than the previous ones. We first put the family in exponential form, thus endowing the family with a new set of parameters, or coordinates, θ1, θ2; then we determine the matrix of the Fisher metric in terms of these parameters; and finally we compute this matrix in the original parameters. Secondly, we define the Inverse q−Gaussian distribution family (q < 3), as the family obtained by replacing the usual exponential function by the Tsallis q−exponential function in the expression for the Inverse Gaussian distribution, and observe that it supports two possible geometries, the Fisher and the q−Fisher geometry. And finally, we apply our strategy to obtain results about the Fisher and q−Fisher geometry of the Inverse q−Gaussian distribution family, similar to the ones obtained in the case of the Inverse Gaussian distribution family.

Keywords: Base of Changes, Information Geometry, Inverse Gaussian distribution, Inverse q-Gaussian distribution, Statistical Manifolds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 387
1378 Effect Comparison of Speckle Noise Reduction Filters on 2D-Echocardigraphic Images

Authors: Faten A. Dawood, Rahmita W. Rahmat, Suhaini B. Kadiman, Lili N. Abdullah, Mohd D. Zamrin

Abstract:

Echocardiography imaging is one of the most common diagnostic tests that are widely used for assessing the abnormalities of the regional heart ventricle function. The main goal of the image enhancement task in 2D-echocardiography (2DE) is to solve two major anatomical structure problems; speckle noise and low quality. Therefore, speckle noise reduction is one of the important steps that used as a pre-processing to reduce the distortion effects in 2DE image segmentation. In this paper, we present the common filters that based on some form of low-pass spatial smoothing filters such as Mean, Gaussian, and Median. The Laplacian filter was used as a high-pass sharpening filter. A comparative analysis was presented to test the effectiveness of these filters after being applied to original 2DE images of 4-chamber and 2-chamber views. Three statistical quantity measures: root mean square error (RMSE), peak signal-to-ratio (PSNR) and signal-tonoise ratio (SNR) are used to evaluate the filter performance quantitatively on the output enhanced image.

Keywords: Gaussian operator, median filter, speckle texture, peak signal-to-ratio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995
1377 Unequal Error Protection of Facial Features for Personal ID Images Coding

Authors: T. Hirner, J. Polec

Abstract:

This paper presents an approach for an unequal error protection of facial features of personal ID images coding. We consider unequal error protection (UEP) strategies for the efficient progressive transmission of embedded image codes over noisy channels. This new method is based on the progressive image compression embedded zerotree wavelet (EZW) algorithm and UEP technique with defined region of interest (ROI). In this case is ROI equal facial features within personal ID image. ROI technique is important in applications with different parts of importance. In ROI coding, a chosen ROI is encoded with higher quality than the background (BG). Unequal error protection of image is provided by different coding techniques and encoding LL band separately. In our proposed method, image is divided into two parts (ROI, BG) that consist of more important bytes (MIB) and less important bytes (LIB). The proposed unequal error protection of image transmission has shown to be more appropriate to low bit rate applications, producing better quality output for ROI of the compresses image. The experimental results verify effectiveness of the design. The results of our method demonstrate the comparison of the UEP of image transmission with defined ROI with facial features and the equal error protection (EEP) over additive white gaussian noise (AWGN) channel.

Keywords: Embedded zerotree wavelet (EZW), equal error protection (EEP), facial features, personal ID images, region of interest (ROI), unequal error protection (UEP)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
1376 A Paradigm for Characterization and Checking of a Human Noise Behavior

Authors: Himanshu Dehra

Abstract:

This paper presents a paradigm for characterization and checking of human noise behavior. The definitions of ‘Noise’ and ‘Noise Behavior’ are devised. The concept of characterization and examining of Noise Behavior is obtained from the proposed paradigm of Psychoacoustics. The measurement of human noise behavior is discussed through definitions of noise sources and noise measurements. The noise sources, noise measurement equations and noise filters are further illustrated through examples. The theory and significance of solar energy acoustics is presented for life and its activities. Human comfort and health are correlated with human brain through physiological responses and noise protection. Examples of heat stress, intense heat, sweating and evaporation are also enumerated.

Keywords: Human brain, noise behavior, noise characterization, noise filters, physiological responses, psychoacoustics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1097
1375 An Alternative Method for Generating Almost Infinite Sequence of Gaussian Variables

Authors: Nyah C. Temaneh, F. A. Phiri, E. Ruhunga

Abstract:

Most of the well known methods for generating Gaussian variables require at least one standard uniform distributed value, for each Gaussian variable generated. The length of the random number generator therefore, limits the number of independent Gaussian distributed variables that can be generated meanwhile the statistical solution of complex systems requires a large number of random numbers for their statistical analysis. We propose an alternative simple method of generating almost infinite number of Gaussian distributed variables using a limited number of standard uniform distributed random numbers.

Keywords: Gaussian variable, statistical analysis, simulation ofCommunication Network, Random numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
1374 Propagation of Cos-Gaussian Beam in Photorefractive Crystal

Authors: A. Keshavarz

Abstract:

A physical model for guiding the wave in photorefractive media is studied. Propagation of cos-Gaussian beam as the special cases of sinusoidal-Gaussian beams in photorefractive crystal is simulated numerically by the Crank-Nicolson method in one dimension. Results show that the beam profile deforms as the energy transfers from the center to the tails under propagation. This simulation approach is of significant interest for application in optical telecommunication. The results are presented graphically and discussed.

Keywords: Beam propagation, cos-Gaussian beam, Numerical simulation, Photorefractive crystal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
1373 An Efficient Adaptive Thresholding Technique for Wavelet Based Image Denoising

Authors: D.Gnanadurai, V.Sadasivam

Abstract:

This frame work describes a computationally more efficient and adaptive threshold estimation method for image denoising in the wavelet domain based on Generalized Gaussian Distribution (GGD) modeling of subband coefficients. In this proposed method, the choice of the threshold estimation is carried out by analysing the statistical parameters of the wavelet subband coefficients like standard deviation, arithmetic mean and geometrical mean. The noisy image is first decomposed into many levels to obtain different frequency bands. Then soft thresholding method is used to remove the noisy coefficients, by fixing the optimum thresholding value by the proposed method. Experimental results on several test images by using this method show that this method yields significantly superior image quality and better Peak Signal to Noise Ratio (PSNR). Here, to prove the efficiency of this method in image denoising, we have compared this with various denoising methods like wiener filter, Average filter, VisuShrink and BayesShrink.

Keywords: Wavelet Transform, Gaussian Noise, ImageDenoising, Filter Banks and Thresholding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2907
1372 A Comparison of Some Thresholding Selection Methods for Wavelet Regression

Authors: Alsaidi M. Altaher, Mohd T. Ismail

Abstract:

In wavelet regression, choosing threshold value is a crucial issue. A too large value cuts too many coefficients resulting in over smoothing. Conversely, a too small threshold value allows many coefficients to be included in reconstruction, giving a wiggly estimate which result in under smoothing. However, the proper choice of threshold can be considered as a careful balance of these principles. This paper gives a very brief introduction to some thresholding selection methods. These methods include: Universal, Sure, Ebays, Two fold cross validation and level dependent cross validation. A simulation study on a variety of sample sizes, test functions, signal-to-noise ratios is conducted to compare their numerical performances using three different noise structures. For Gaussian noise, EBayes outperforms in all cases for all used functions while Two fold cross validation provides the best results in the case of long tail noise. For large values of signal-to-noise ratios, level dependent cross validation works well under correlated noises case. As expected, increasing both sample size and level of signal to noise ratio, increases estimation efficiency.

Keywords: wavelet regression, simulation, Threshold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
1371 Short-Term Electric Load Forecasting Using Multiple Gaussian Process Models

Authors: Tomohiro Hachino, Hitoshi Takata, Seiji Fukushima, Yasutaka Igarashi

Abstract:

This paper presents a Gaussian process model-based short-term electric load forecasting. The Gaussian process model is a nonparametric model and the output of the model has Gaussian distribution with mean and variance. The multiple Gaussian process models as every hour ahead predictors are used to forecast future electric load demands up to 24 hours ahead in accordance with the direct forecasting approach. The separable least-squares approach that combines the linear least-squares method and genetic algorithm is applied to train these Gaussian process models. Simulation results are shown to demonstrate the effectiveness of the proposed electric load forecasting.

Keywords: Direct method, electric load forecasting, Gaussian process model, genetic algorithm, separable least-squares method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
1370 Robust Parameter and Scale Factor Estimation in Nonstationary and Impulsive Noise Environment

Authors: Zoran D. Banjac, Branko D. Kovacevic

Abstract:

The problem of FIR system parameter estimation has been considered in the paper. A new robust recursive algorithm for simultaneously estimation of parameters and scale factor of prediction residuals in non-stationary environment corrupted by impulsive noise has been proposed. The performance of derived algorithm has been tested by simulations.

Keywords: Adaptive filtering, Non-Gaussian filtering, Robustestimation, Scale factor estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
1369 Analysis and Performance Evaluation of Noise-Reduction Transformer

Authors: Toshiaki Yanada, Kazumi Ishikawa

Abstract:

The present paper deals with the analysis and development of noise-reduction transformer that has a filter function for conductive noise transmission. Two types of prototype noise-reduction transformers with two different output voltages are proposed. To determine an optimum design for the noise-reduction transformer, noise attenuation characteristics are discussed based on the experiments and the equivalent circuit analysis. The analysis gives a relation between the circuit parameters and the noise attenuation. High performance step-down noise-reduction transformer for direct power supply to electronics equipment is developed. The input voltage of the transformer is 100 V and the output voltage is 5 V. Frequency characteristics of noise attenuation are discussed, and prevention of pulse noise transmission is demonstrated. Normal mode noise attenuation of this transformer is –80 dB, and common mode exceeds –90 dB. The step-down noise-reduction transformer eliminates pulse noise efficiently.

Keywords: conductive noise, EMC, EMI, noise attenuation, transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
1368 Learning an Overcomplete Dictionary using a Cauchy Mixture Model for Sparse Decay

Authors: E. S. Gower, M. O. J. Hawksford

Abstract:

An algorithm for learning an overcomplete dictionary using a Cauchy mixture model for sparse decomposition of an underdetermined mixing system is introduced. The mixture density function is derived from a ratio sample of the observed mixture signals where 1) there are at least two but not necessarily more mixture signals observed, 2) the source signals are statistically independent and 3) the sources are sparse. The basis vectors of the dictionary are learned via the optimization of the location parameters of the Cauchy mixture components, which is shown to be more accurate and robust than the conventional data mining methods usually employed for this task. Using a well known sparse decomposition algorithm, we extract three speech signals from two mixtures based on the estimated dictionary. Further tests with additive Gaussian noise are used to demonstrate the proposed algorithm-s robustness to outliers.

Keywords: expectation-maximization, Pitman estimator, sparsedecomposition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
1367 New Nonlinear Filtering Strategies for Eliminating Short and Long Tailed Noise in Images with Edge Preservation Properties

Authors: E. Srinivasan, D. Ebenezer

Abstract:

Midpoint filter is quite effective in recovering the images confounded by the short-tailed (uniform) noise. It, however, performs poorly in the presence of additive long-tailed (impulse) noise and it does not preserve the edge structures of the image signals. Median smoother discards outliers (impulses) effectively, but it fails to provide adequate smoothing for images corrupted with nonimpulse noise. In this paper, two nonlinear techniques for image filtering, namely, New Filter I and New Filter II are proposed based on a nonlinear high-pass filter algorithm. New Filter I is constructed using a midpoint filter, a highpass filter and a combiner. It suppresses uniform noise quite well. New Filter II is configured using an alpha trimmed midpoint filter, a median smoother of window size 3x3, the high pass filter and the combiner. It is robust against impulse noise and attenuates uniform noise satisfactorily. Both the filters are shown to exhibit good response at the image boundaries (edges). The proposed filters are evaluated for their performance on a test image and the results obtained are included.

Keywords: Image filters, Midpoint filter, Nonlinear filters, Nonlinear highpass filter, Order-statistic filters, Rank-order filters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
1366 Denoising based on Wavelets and Deblurring via Self-Organizing Map for Synthetic Aperture Radar Images

Authors: Mario Mastriani

Abstract:

This work deals with unsupervised image deblurring. We present a new deblurring procedure on images provided by lowresolution synthetic aperture radar (SAR) or simply by multimedia in presence of multiplicative (speckle) or additive noise, respectively. The method we propose is defined as a two-step process. First, we use an original technique for noise reduction in wavelet domain. Then, the learning of a Kohonen self-organizing map (SOM) is performed directly on the denoised image to take out it the blur. This technique has been successfully applied to real SAR images, and the simulation results are presented to demonstrate the effectiveness of the proposed algorithms.

Keywords: Blur, Kohonen self-organizing map, noise, speckle, synthetic aperture radar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
1365 Power Transformer Noise, Noise Tests, and Example Test Results

Authors: E. Doğan, B. Kekezoğlu

Abstract:

Voltage level must be raised in order to deliver the produced energy to the consumption zones with less loss and less cost. Power transformers used to raise or lower voltage are important parts of the energy transmission system. Power transformers used in switchgear and power generation plants stay in human's intensive habitat zones as a result of expanding cities. Accordingly, noise levels produced by power transformers have begun more and more important and they have established itself as one of the research field. In this research, the noise cause on transformers has been investigated, it's causes has been examined and noise measurement techniques have been introduced. Examples of transformer noise test results are submitted and precautions to be taken were discussed for the purpose of decreasing of the noise which will occurred by transformers.

Keywords: Power transformer, noise measurement, core noise, load noise, fan-pump noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5690
1364 Environmental Interference Cancellation of Speech with the Radial Basis Function Networks: An Experimental Comparison

Authors: Nima Hatami

Abstract:

In this paper, we use Radial Basis Function Networks (RBFN) for solving the problem of environmental interference cancellation of speech signal. We show that the Second Order Thin- Plate Spline (SOTPS) kernel cancels the interferences effectively. For make comparison, we test our experiments on two conventional most used RBFN kernels: the Gaussian and First order TPS (FOTPS) basis functions. The speech signals used here were taken from the OGI Multi-Language Telephone Speech Corpus database and were corrupted with six type of environmental noise from NOISEX-92 database. Experimental results show that the SOTPS kernel can considerably outperform the Gaussian and FOTPS functions on speech interference cancellation problem.

Keywords: Environmental interference, interference cancellation of speech, Radial Basis Function networks, Gaussian and TPS kernels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563
1363 Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.

Keywords: Time-frequency plane, atomic decomposition, envelope sampling, Gabor atoms, matching pursuit, sparse dictionary learning, sparse autoencoder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
1362 Speech Enhancement Using Kalman Filter in Communication

Authors: Eng. Alaa K. Satti Salih

Abstract:

Revolutions Applications such as telecommunications, hands-free communications, recording, etc. which need at least one microphone, the signal is usually infected by noise and echo. The important application is the speech enhancement, which is done to remove suppressed noises and echoes taken by a microphone, beside preferred speech. Accordingly, the microphone signal has to be cleaned using digital signal processing DSP tools before it is played out, transmitted, or stored. Engineers have so far tried different approaches to improving the speech by get back the desired speech signal from the noisy observations. Especially Mobile communication, so in this paper will do reconstruction of the speech signal, observed in additive background noise, using the Kalman filter technique to estimate the parameters of the Autoregressive Process (AR) in the state space model and the output speech signal obtained by the MATLAB. The accurate estimation by Kalman filter on speech would enhance and reduce the noise then compare and discuss the results between actual values and estimated values which produce the reconstructed signals.

Keywords: Autoregressive Process, Kalman filter, Matlab and Noise speech.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4025
1361 Simulation of Propagation of Cos-Gaussian Beam in Strongly Nonlocal Nonlinear Media Using Paraxial Group Transformation

Authors: A. Keshavarz, Z. Roosta

Abstract:

In this paper, propagation of cos-Gaussian beam in strongly nonlocal nonlinear media has been stimulated by using paraxial group transformation. At first, cos-Gaussian beam, nonlocal nonlinear media, critical power, transfer matrix, and paraxial group transformation are introduced. Then, the propagation of the cos-Gaussian beam in strongly nonlocal nonlinear media is simulated. Results show that beam propagation has periodic structure during self-focusing effect in this case. However, this simple method can be used for investigation of propagation of kinds of beams in ABCD optical media.

Keywords: Paraxial group transformation, nonlocal nonlinear media, Cos-Gaussian beam, ABCD law.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 861
1360 RRNS-Convolutional Concatenated Code for OFDM based Wireless Communication with Direct Analog-to-Residue Converter

Authors: Shahana T. K., Babita R. Jose, K. Poulose Jacob, Sreela Sasi

Abstract:

The modern telecommunication industry demands higher capacity networks with high data rate. Orthogonal frequency division multiplexing (OFDM) is a promising technique for high data rate wireless communications at reasonable complexity in wireless channels. OFDM has been adopted for many types of wireless systems like wireless local area networks such as IEEE 802.11a, and digital audio/video broadcasting (DAB/DVB). The proposed research focuses on a concatenated coding scheme that improve the performance of OFDM based wireless communications. It uses a Redundant Residue Number System (RRNS) code as the outer code and a convolutional code as the inner code. Here, a direct conversion of analog signal to residue domain is done to reduce the conversion complexity using sigma-delta based parallel analog-to-residue converter. The bit error rate (BER) performances of the proposed system under different channel conditions are investigated. These include the effect of additive white Gaussian noise (AWGN), multipath delay spread, peak power clipping and frame start synchronization error. The simulation results show that the proposed RRNS-Convolutional concatenated coding (RCCC) scheme provides significant improvement in the system performance by exploiting the inherent properties of RRNS.

Keywords: Analog-to-residue converter, Concatenated codes, OFDM, Redundant Residue Number System, Sigma-delta modulator, Wireless communication

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
1359 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis

Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel

Abstract:

Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.

Keywords: Artificial Immune System, Breast Cancer Diagnosis, Euclidean Function, Gaussian Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
1358 Noise Optimization Techniques for 1V 1GHz CMOS Low-Noise Amplifiers Design

Authors: M. Zamin Khan, Yanjie Wang, R. Raut

Abstract:

A 1V, 1GHz low noise amplifier (LNA) has been designed and simulated using Spectre simulator in a standard TSMC 0.18um CMOS technology.With low power and noise optimization techniques, the amplifier provides a gain of 24 dB, a noise figure of only 1.2 dB, power dissipation of 14 mW from a 1 V power supply.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456
1357 Frame and Burst Acquisition in TDMA Satellite Communication Networks with Transponder Hopping

Authors: Vitalice K. Oduol, C. Ardil

Abstract:

The paper presents frame and burst acquisition in a satellite communication network based on time division multiple access (TDMA) in which the transmissions may be carried on different transponders. A unique word pattern is used for the acquisition process. The search for the frame is aided by soft-decision of QPSK modulated signals in an additive white Gaussian channel. Results show that when the false alarm rate is low the probability of detection is also low, and the acquisition time is long. Conversely when the false alarm rate is high, the probability of detection is also high and the acquisition time is short. Thus the system operators can trade high false alarm rates for high detection probabilities and shorter acquisition times.

Keywords: burst acquisition, burst time plan, frame acquisition, satellite access, satellite TDMA, unique word detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9157
1356 The Improvement of Environmental Protection through Motor Vehicle Noise Abatement

Authors: Z. Jovanovic, Z. Masonicic, S. Dragutinovic, Z. Sakota

Abstract:

In this paper, a methodology for noise reduction of motor vehicles in use is presented. The methodology relies on synergic model of noise generation as a function of time. The arbitrary number of motor vehicle noise sources act in concert yielding the generation of the overall noise level of motor vehicle thereafter. The number of noise sources participating in the overall noise level of motor vehicle is subjected to the constraint of the calculation of the acoustic potential of each noise source under consideration. It is the prerequisite condition for the calculation of the acoustic potential of the whole vehicle. The recast form of pertinent set of equations describing the synergic model is laid down and solved by dint of Gauss method. The bunch of results emerged and some of them i.e. those ensuing from model application to MDD FAP Priboj motor vehicle in use are particularly elucidated.

Keywords: Noise abatement, MV noise sources, noise source identification, muffler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292
1355 Teager-Huang Analysis Applied to Sonar Target Recognition

Authors: J.-C. Cexus, A.O. Boudraa

Abstract:

In this paper, a new approach for target recognition based on the Empirical mode decomposition (EMD) algorithm of Huang etal. [11] and the energy tracking operator of Teager [13]-[14] is introduced. The conjunction of these two methods is called Teager-Huang analysis. This approach is well suited for nonstationary signals analysis. The impulse response (IR) of target is first band pass filtered into subsignals (components) called Intrinsic mode functions (IMFs) with well defined Instantaneous frequency (IF) and Instantaneous amplitude (IA). Each IMF is a zero-mean AM-FM component. In second step, the energy of each IMF is tracked using the Teager energy operator (TEO). IF and IA, useful to describe the time-varying characteristics of the signal, are estimated using the Energy separation algorithm (ESA) algorithm of Maragos et al .[16]-[17]. In third step, a set of features such as skewness and kurtosis are extracted from the IF, IA and IMF energy functions. The Teager-Huang analysis is tested on set of synthetic IRs of Sonar targets with different physical characteristics (density, velocity, shape,? ). PCA is first applied to features to discriminate between manufactured and natural targets. The manufactured patterns are classified into spheres and cylinders. One hundred percent of correct recognition is achieved with twenty three echoes where sixteen IRs, used for training, are free noise and seven IRs, used for testing phase, are corrupted with white Gaussian noise.

Keywords: Target recognition, Empirical mode decomposition, Teager-Kaiser energy operator, Features extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2283