Search results for: time based DNA codes
14640 A Qualitative Study into the Success and Challenges in Embedding Evidence-Based Research Methods in Operational Policing Interventions
Authors: Ahmed Kadry, Gwyn Dodd
Abstract:
There has been a growing call globally for police forces to embed evidence-based policing research methods into police interventions in order to better understand and evaluate their impact. This research study highlights the success and challenges that police forces may encounter when trying to embed evidence-based research methods within their organisation. Ten in-depth qualitative interviews were conducted with police officers and staff at Greater Manchester Police (GMP) who were tasked with integrating evidence-based research methods into their operational interventions. The findings of the study indicate that with adequate resources and individual expertise, evidence-based research methods can be applied to operational work, including the testing of initiatives with strict controls in order to fully evaluate the impact of an intervention. However, the findings also indicate that this may only be possible where an operational intervention is heavily resourced with police officers and staff who have a strong understanding of evidence-based policing research methods, attained for example through their own graduate studies. In addition, the findings reveal that ample planning time was needed to trial operational interventions that would require strict parameters for what would be tested and how it would be evaluated. In contrast, interviewees underscored that operational interventions with the need for a speedy implementation were less likely to have evidence-based research methods applied. The study contributes to the wider literature on evidence-based policing by providing considerations for police forces globally wishing to apply evidence-based research methods to more of their operational work in order to understand their impact. The study also provides considerations for academics who work closely with police forces in assisting them to embed evidence-based policing. This includes how academics can provide their expertise to police decision makers wanting to underpin their work through evidence-based research methods, such as providing guidance on how to evaluate the impact of their work with varying research methods that they may otherwise be unaware of.
Keywords: evidence based policing, evidence-based practice, operational policing, organisational change
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30714639 Time/Temperature-Dependent Finite Element Model of Laminated Glass Beams
Authors: Alena Zemanová, Jan Zeman, Michal Šejnoha
Abstract:
The polymer foil used for manufacturing of laminated glass members behaves in a viscoelastic manner with temperature dependance. This contribution aims at incorporating the time/temperature-dependent behavior of interlayer to our earlier elastic finite element model for laminated glass beams. The model is based on a refined beam theory: each layer behaves according to the finite-strain shear deformable formulation by Reissner and the adjacent layers are connected via the Lagrange multipliers ensuring the inter-layer compatibility of a laminated unit. The time/temperature-dependent behavior of the interlayer is accounted for by the generalized Maxwell model and by the time-temperature superposition principle due to the Williams, Landel, and Ferry. The resulting system is solved by the Newton method with consistent linearization and the viscoelastic response is determined incrementally by the exponential algorithm. By comparing the model predictions against available experimental data, we demonstrate that the proposed formulation is reliable and accurately reproduces the behavior of the laminated glass units.Keywords: Laminated glass, finite element method, finite-strain Reissner model, Lagrange multipliers, generalized Maxwell model, Williams-Landel-Ferry equation, Newton method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168514638 Factors Affecting Employee Decision Making in an AI Environment
Authors: Yogesh C. Sharma, A. Seetharaman
Abstract:
The decision-making process in humans is a complicated system influenced by a variety of intrinsic and extrinsic factors. Human decisions have a ripple effect on subsequent decisions. In this study, the scope of human decision making is limited to employees. In an organisation, a person makes a variety of decisions from the time they are hired to the time they retire. The goal of this research is to identify various elements that influence decision making. In addition, the environment in which a decision is made is a significant aspect of the decision-making process. Employees in today's workplace use artificial intelligence (AI) systems for automation and decision augmentation. The impact of AI systems on the decision-making process is examined in this study. This research is designed based on a systematic literature review. Based on gaps in the literature, limitations and the scope of future research have been identified. Based on these findings, a research framework has been designed to identify various factors affecting employee decision making. Employee decision making is influenced by technological advancement, data-driven culture, human trust, decision automation-augmentation and workplace motivation. Hybrid human-AI systems require development of new skill sets and organisational design. Employee psychological safety and supportive leadership influences overall job satisfaction.
Keywords: Employee decision making, artificial intelligence, environment, human trust, technology innovation, psychological safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158314637 Adaptive MPC Using a Recursive Learning Technique
Authors: Ahmed Abbas Helmy, M. R. M. Rizk, Mohamed El-Sayed
Abstract:
A model predictive controller based on recursive learning is proposed. In this SISO adaptive controller, a model is automatically updated using simple recursive equations. The identified models are then stored in the memory to be re-used in the future. The decision for model update is taken based on a new control performance index. The new controller allows the use of simple linear model predictive controllers in the control of nonlinear time varying processes.
Keywords: Adaptive control, model predictive control, dynamic matrix control, online model identification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177614636 Graphene Oxide Fiber with Different Exfoliation Time and Activated Carbon Particle
Authors: Nuray Uçar, Mervin Ölmez, Özge Alptoğa, Nilgün K. Yavuz, Ayşen Önen
Abstract:
In recent years, research on continuous graphene oxide fibers has been intensified. Therefore, many factors of production stages are being studied. In this study, the effect of exfoliation time and presence of activated carbon particle (ACP) on graphene oxide fiber’s properties has been analyzed. It has been seen that cross-sectional appearance of sample with ACP is harsh and porous because of ACP. The addition of ACP did not change the electrical conductivity. However, ACP results in an enormous decrease of mechanical properties. Longer exfoliation time results to higher crystallinity degree, C/O ratio and less d space between layers. The breaking strength and electrical conductivity of sample with less exfoliation time is some higher than sample with high exfoliation time.
Keywords: Activated carbon, coagulation by wet spinning, exfoliation, graphene oxide fiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163514635 Capturing an Unknown Moving Target in Unknown Territory using Vision and Coordination
Authors: Kiran Ijaz, Umar Manzoor, Arshad Ali Shahid
Abstract:
In this paper we present an extension to Vision Based LRTA* (VLRTA*) known as Vision Based Moving Target Search (VMTS) for capturing unknown moving target in unknown territory with randomly generated obstacles. Target position is unknown to the agents and they cannot predict its position using any probability method. Agents have omni directional vision but can see in one direction at some point in time. Agent-s vision will be blocked by the obstacles in the search space so agent can not see through the obstacles. Proposed algorithm is evaluated on large number of scenarios. Scenarios include grids of sizes from 10x10 to 100x100. Grids had obstacles randomly placed, occupying 0% to 50%, in increments of 10%, of the search space. Experiments used 2 to 9 agents for each randomly generated maze with same obstacle ratio. Observed results suggests that VMTS is effective in locate target time, solution quality and virtual target. In addition, VMTS becomes more efficient if the number of agents is increased with proportion to obstacle ratio.Keywords: Vision, MTS, Unknown Target, Coordination, VMTS, Multi-Agent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146414634 Computational Intelligence Hybrid Learning Approach to Time Series Forecasting
Authors: Chunshien Li, Jhao-Wun Hu, Tai-Wei Chiang, Tsunghan Wu
Abstract:
Time series forecasting is an important and widely popular topic in the research of system modeling. This paper describes how to use the hybrid PSO-RLSE neuro-fuzzy learning approach to the problem of time series forecasting. The PSO algorithm is used to update the premise parameters of the proposed prediction system, and the RLSE is used to update the consequence parameters. Thanks to the hybrid learning (HL) approach for the neuro-fuzzy system, the prediction performance is excellent and the speed of learning convergence is much faster than other compared approaches. In the experiments, we use the well-known Mackey-Glass chaos time series. According to the experimental results, the prediction performance and accuracy in time series forecasting by the proposed approach is much better than other compared approaches, as shown in Table IV. Excellent prediction performance by the proposed approach has been observed.Keywords: forecasting, hybrid learning (HL), Neuro-FuzzySystem (NFS), particle swarm optimization (PSO), recursiveleast-squares estimator (RLSE), time series
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155914633 Laser Ultrasonic Imaging Based on Synthetic Aperture Focusing Technique Algorithm
Authors: Sundara Subramanian Karuppasamy, Che Hua Yang
Abstract:
In this work, the laser ultrasound technique has been used for analyzing and imaging the inner defects in metal blocks. To detect the defects in blocks, traditionally the researchers used piezoelectric transducers for the generation and reception of ultrasonic signals. These transducers can be configured into the sparse and phased array. But these two configurations have their drawbacks including the requirement of many transducers, time-consuming calculations, limited bandwidth, and provide confined image resolution. Here, we focus on the non-contact method for generating and receiving the ultrasound to examine the inner defects in aluminum blocks. A Q-switched pulsed laser has been used for the generation and the reception is done by using Laser Doppler Vibrometer (LDV). Based on the Doppler effect, LDV provides a rapid and high spatial resolution way for sensing ultrasonic waves. From the LDV, a series of scanning points are selected which serves as the phased array elements. The side-drilled hole of 10 mm diameter with a depth of 25 mm has been introduced and the defect is interrogated by the linear array of scanning points obtained from the LDV. With the aid of the Synthetic Aperture Focusing Technique (SAFT) algorithm, based on the time-shifting principle the inspected images are generated from the A-scan data acquired from the 1-D linear phased array elements. Thus the defect can be precisely detected with good resolution.
Keywords: Laser ultrasonics, linear phased array, nondestructive testing, synthetic aperture focusing technique, ultrasonic imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95014632 Column Size for R.C. Frames with High Drift
Authors: Sunil S. Mayengbam, S. Choudhury
Abstract:
A method to predict the column size for displacement based design of reinforced concrete frame buildings with higher target inter storey drift is reported here. The column depth derived from empirical relation as a function of given beam section, target inter-story drift, building plan features and common displacement based design parameters is used. Regarding the high drift requirement, a minimum column-beam moment capacity ratio is maintained during capacity design. The method is used in designing four, eight and twelve story frame buildings with displacement based design for three percent target inter storey drift. Non linear time history analysis of the designed buildings are performed under five artificial ground motions to show that the columns are found elastic enough to avoid column sway mechanism assuring that for the design the column size can be used with or without minor changes.
Keywords: Column size, point of contra flexure, displacement based design, capacity design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2731614631 Research on Weakly Hard Real-Time Constraints and Their Boolean Combination to Support Adaptive QoS
Authors: Xiangbin Zhu
Abstract:
Advances in computing applications in recent years have prompted the demand for more flexible scheduling models for QoS demand. Moreover, in practical applications, partly violated temporal constraints can be tolerated if the violation meets certain distribution. So we need extend the traditional Liu and Lanland model to adapt to these circumstances. There are two extensions, which are the (m, k)-firm model and Window-Constrained model. This paper researches on weakly hard real-time constraints and their combination to support QoS. The fact that a practical application can tolerate some violations of temporal constraint under certain distribution is employed to support adaptive QoS on the open real-time system. The experiment results show these approaches are effective compared to traditional scheduling algorithms.Keywords: Weakly Hard Real-Time, Real-Time, Scheduling, Quality of Service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157914630 A New Approach to Design Low Power Continues-Time Sigma-Delta Modulators
Authors: E. Farshidi
Abstract:
This paper presents the design of a low power second-order continuous-time sigma-delta modulator for low power applications. The loop filter of this modulator has been implemented based on the nonlinear transconductance-capacitor (Gm-C) by employing current-mode technique. The nonlinear transconductance uses floating gate MOS (FG-MOS) transistors that operate in weak inversion region. The proposed modulator features low power consumption (<80uW), low supply voltage (1V) and 62dB dynamic range. Simulation results by HSPICE confirm that it is very suitable for low power biomedical instrumentation designs.
Keywords: Sigma-delta, modulator, Current-mode, Nonlinear Transconductance, FG-MOS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 151914629 Distributed Cost-Based Scheduling in Cloud Computing Environment
Authors: Rupali, Anil Kumar Jaiswal
Abstract:
Cloud computing can be defined as one of the prominent technologies that lets a user change, configure and access the services online. it can be said that this is a prototype of computing that helps in saving cost and time of a user practically the use of cloud computing can be found in various fields like education, health, banking etc. Cloud computing is an internet dependent technology thus it is the major responsibility of Cloud Service Providers(CSPs) to care of data stored by user at data centers. Scheduling in cloud computing environment plays a vital role as to achieve maximum utilization and user satisfaction cloud providers need to schedule resources effectively. Job scheduling for cloud computing is analyzed in the following work. To complete, recreate the task calculation, and conveyed scheduling methods CloudSim3.0.3 is utilized. This research work discusses the job scheduling for circulated processing condition also by exploring on this issue we find it works with minimum time and less cost. In this work two load balancing techniques have been employed: ‘Throttled stack adjustment policy’ and ‘Active VM load balancing policy’ with two brokerage services ‘Advanced Response Time’ and ‘Reconfigure Dynamically’ to evaluate the VM_Cost, DC_Cost, Response Time, and Data Processing Time. The proposed techniques are compared with Round Robin scheduling policy.
Keywords: Physical machines, virtual machines, support for repetition, self-healing, highly scalable programming model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 85014628 Genetic Programming Based Data Projections for Classification Tasks
Authors: César Estébanez, Ricardo Aler, José M. Valls
Abstract:
In this paper we present a GP-based method for automatically evolve projections, so that data can be more easily classified in the projected spaces. At the same time, our approach can reduce dimensionality by constructing more relevant attributes. Fitness of each projection measures how easy is to classify the dataset after applying the projection. This is quickly computed by a Simple Linear Perceptron. We have tested our approach in three domains. The experiments show that it obtains good results, compared to other Machine Learning approaches, while reducing dimensionality in many cases.
Keywords: Classification, genetic programming, projections.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139814627 Calculus-based Runtime Verification
Authors: Xuan Qi, Changzhi Zhao
Abstract:
In this paper, a uniform calculus-based approach for synthesizing monitors checking correctness properties specified by a large variety of logics at runtime is provided, including future and past time logics, interval logics, state machine and parameterized temporal logics. We present a calculus mechanism to synthesize monitors from the logical specification for the incremental analysis of execution traces during test and real run. The monitor detects both good and bad prefix of a particular kind, namely those that are informative for the property under investigation. We elaborate the procedure of calculus as monitors.Keywords: calculus, eagle logic, monitor synthesis, runtime verification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 125814626 Seismic Control of Tall Building Using a New Optimum Controller Based on GA
Authors: A. Shayeghi, H. Eimani Kalasar, H. Shayeghi
Abstract:
This paper emphasizes on the application of genetic algorithm (GA) to optimize the parameters of the TMD for achieving the best results in the reduction of the building response under earthquake excitations. The Integral of the Time multiplied Absolute value of the Error (ITAE) based on relative displacement of all floors in the building is taken as a performance index of the optimization criterion. The problem of robustly TMD controller design is formatted as an optimization problem based on the ITAE performance index to be solved using GA that has a story ability to find the most optimistic results. An 11–story realistic building, located in the city of Rasht, Iran is considered as a test system to demonstrate effectiveness of the proposed GA based TMD (GATMD) controller without specifying which mode should be controlled. The results of the proposed GATMD controller are compared with the uncontrolled structure through timedomain simulation and some performance indices. The results analysis reveals that the designed GA based TMD controller has an excellent capability in reduction of the seismically excited example building and the ITAE performance, that is so for remains as unknown, can be introduced a new criteria - method for structural dynamic design.
Keywords: Tuned Mass Damper, Genetic Algorithm, TallBuildings, Structural Dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179814625 The Influence of Beta Shape Parameters in Project Planning
Authors: Αlexios Kotsakis, Stefanos Katsavounis, Dimitra Alexiou
Abstract:
Networks can be utilized to represent project planning problems, using nodes for activities and arcs to indicate precedence relationship between them. For fixed activity duration, a simple algorithm calculates the amount of time required to complete a project, followed by the activities that comprise the critical path. Program Evaluation and Review Technique (PERT) generalizes the above model by incorporating uncertainty, allowing activity durations to be random variables, producing nevertheless a relatively crude solution in planning problems. In this paper, based on the findings of the relevant literature, which strongly suggests that a Beta distribution can be employed to model earthmoving activities, we utilize Monte Carlo simulation, to estimate the project completion time distribution and measure the influence of skewness, an element inherent in activities of modern technical projects. We also extract the activity criticality index, with an ultimate goal to produce more accurate planning estimations.
Keywords: Beta distribution, PERT, Monte Carlo Simulation, skewness, project completion time distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77014624 Revealing Nonlinear Couplings between Oscillators from Time Series
Authors: B.P. Bezruchko, D.A. Smirnov
Abstract:
Quantitative characterization of nonlinear directional couplings between stochastic oscillators from data is considered. We suggest coupling characteristics readily interpreted from a physical viewpoint and their estimators. An expression for a statistical significance level is derived analytically that allows reliable coupling detection from a relatively short time series. Performance of the technique is demonstrated in numerical experiments.Keywords: Nonlinear time series analysis, directional couplings, coupled oscillators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 126514623 A Microcontroller Implementation of Model Predictive Control
Authors: Amira Abbes Kheriji, Faouzi Bouani, Mekki Ksouri, Mohamed Ben Ahmed
Abstract:
Model Predictive Control (MPC) is increasingly being proposed for real time applications and embedded systems. However comparing to PID controller, the implementation of the MPC in miniaturized devices like Field Programmable Gate Arrays (FPGA) and microcontrollers has historically been very small scale due to its complexity in implementation and its computation time requirement. At the same time, such embedded technologies have become an enabler for future manufacturing enterprises as well as a transformer of organizations and markets. Recently, advances in microelectronics and software allow such technique to be implemented in embedded systems. In this work, we take advantage of these recent advances in this area in the deployment of one of the most studied and applied control technique in the industrial engineering. In fact in this paper, we propose an efficient framework for implementation of Generalized Predictive Control (GPC) in the performed STM32 microcontroller. The STM32 keil starter kit based on a JTAG interface and the STM32 board was used to implement the proposed GPC firmware. Besides the GPC, the PID anti windup algorithm was also implemented using Keil development tools designed for ARM processor-based microcontroller devices and working with C/Cµ langage. A performances comparison study was done between both firmwares. This performances study show good execution speed and low computational burden. These results encourage to develop simple predictive algorithms to be programmed in industrial standard hardware. The main features of the proposed framework are illustrated through two examples and compared with the anti windup PID controller.Keywords: Embedded systems, Model Predictive Control, microcontroller, Keil tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 549714622 Existence and Stability Analysis of Discrete-time Fuzzy BAM Neural Networks with Delays and Impulses
Authors: Chao Wang, Yongkun Li
Abstract:
In this paper, the discrete-time fuzzy BAM neural network with delays and impulses is studied. Sufficient conditions are obtained for the existence and global stability of a unique equilibrium of this class of fuzzy BAM neural networks with Lipschitzian activation functions without assuming their boundedness, monotonicity or differentiability and subjected to impulsive state displacements at fixed instants of time. Some numerical examples are given to demonstrate the effectiveness of the obtained results.
Keywords: Discrete-time fuzzy BAM neural networks, ımpulses, global exponential stability, global asymptotical stability, equilibrium point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150814621 Developing the Color Temperature Histogram Method for Improving the Content-Based Image Retrieval
Authors: P. Phokharatkul, S. Chaisriya, S. Somkuarnpanit, S. Phaiboon, C. Kimpan
Abstract:
This paper proposes a new method for image searches and image indexing in databases with a color temperature histogram. The color temperature histogram can be used for performance improvement of content–based image retrieval by using a combination of color temperature and histogram. The color temperature histogram can be represented by a range of 46 colors. That is more than the color histogram and the dominant color temperature. Moreover, with our method the colors that have the same color temperature can be separated while the dominant color temperature can not. The results showed that the color temperature histogram retrieved an accurate image more often than the dominant color temperature method or color histogram method. This also took less time so the color temperature can be used for indexing and searching for images.
Keywords: Color temperature histogram, color temperature, animage retrieval and content-based image retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 245314620 Improving 99mTc-tetrofosmin Myocardial Perfusion Images by Time Subtraction Technique
Authors: Yasuyuki Takahashi, Hayato Ishimura, Masao Miyagawa, Teruhito Mochizuki
Abstract:
Quantitative measurement of myocardium perfusion is possible with single photon emission computed tomography (SPECT) using a semiconductor detector. However, accumulation of 99mTc-tetrofosmin in the liver may make it difficult to assess that accurately in the inferior myocardium. Our idea is to reduce the high accumulation in the liver by using dynamic SPECT imaging and a technique called time subtraction. We evaluated the performance of a new SPECT system with a cadmium-zinc-telluride solid-state semi- conductor detector (Discovery NM 530c; GE Healthcare). Our system acquired list-mode raw data over 10 minutes for a typical patient. From the data, ten SPECT images were reconstructed, one for every minute of acquired data. Reconstruction with the semiconductor detector was based on an implementation of a 3-D iterative Bayesian reconstruction algorithm. We studied 20 patients with coronary artery disease (mean age 75.4 ± 12.1 years; range 42-86; 16 males and 4 females). In each subject, 259 MBq of 99mTc-tetrofosmin was injected intravenously. We performed both a phantom and a clinical study using dynamic SPECT. An approximation to a liver-only image is obtained by reconstructing an image from the early projections during which time the liver accumulation dominates (0.5~2.5 minutes SPECT image-5~10 minutes SPECT image). The extracted liver-only image is then subtracted from a later SPECT image that shows both the liver and the myocardial uptake (5~10 minutes SPECT image-liver-only image). The time subtraction of liver was possible in both a phantom and the clinical study. The visualization of the inferior myocardium was improved. In past reports, higher accumulation in the myocardium due to the overlap of the liver is un-diagnosable. Using our time subtraction method, the image quality of the 99mTc-tetorofosmin myocardial SPECT image is considerably improved.
Keywords: 99mTc-tetrofosmin, dynamic SPECT, time subtraction, semiconductor detector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 103314619 Bayesian Networks for Earthquake Magnitude Classification in a Early Warning System
Authors: G. Zazzaro, F.M. Pisano, G. Romano
Abstract:
During last decades, worldwide researchers dedicated efforts to develop machine-based seismic Early Warning systems, aiming at reducing the huge human losses and economic damages. The elaboration time of seismic waveforms is to be reduced in order to increase the time interval available for the activation of safety measures. This paper suggests a Data Mining model able to correctly and quickly estimate dangerousness of the running seismic event. Several thousand seismic recordings of Japanese and Italian earthquakes were analyzed and a model was obtained by means of a Bayesian Network (BN), which was tested just over the first recordings of seismic events in order to reduce the decision time and the test results were very satisfactory. The model was integrated within an Early Warning System prototype able to collect and elaborate data from a seismic sensor network, estimate the dangerousness of the running earthquake and take the decision of activating the warning promptly.Keywords: Bayesian Networks, Decision Support System, Magnitude Classification, Seismic Early Warning System
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 359814618 Dynamic Analysis of Nonlinear Models with Infinite Extension by Boundary Elements
Authors: Delfim Soares Jr., Webe J. Mansur
Abstract:
The Time-Domain Boundary Element Method (TDBEM) is a well known numerical technique that handles quite properly dynamic analyses considering infinite dimension media. However, when these analyses are also related to nonlinear behavior, very complex numerical procedures arise considering the TD-BEM, which may turn its application prohibitive. In order to avoid this drawback and model nonlinear infinite media, the present work couples two BEM formulations, aiming to achieve the best of two worlds. In this context, the regions expected to behave nonlinearly are discretized by the Domain Boundary Element Method (D-BEM), which has a simpler mathematical formulation but is unable to deal with infinite domain analyses; the TD-BEM is employed as in the sense of an effective non-reflexive boundary. An iterative procedure is considered for the coupling of the TD-BEM and D-BEM, which is based on a relaxed renew of the variables at the common interfaces. Elastoplastic models are focused and different time-steps are allowed to be considered by each BEM formulation in the coupled analysis.Keywords: Boundary Element Method, Dynamic Elastoplastic Analysis, Iterative Coupling, Multiple Time-Steps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153814617 Existence and Global Exponential Stability of Periodic Solutions of Cellular Neural Networks with Distributed Delays and Impulses on Time Scales
Authors: Daiming Wang
Abstract:
In this paper, by using Mawhin-s continuation theorem of coincidence degree and a method based on delay differential inequality, some sufficient conditions are obtained for the existence and global exponential stability of periodic solutions of cellular neural networks with distributed delays and impulses on time scales. The results of this paper generalized previously known results.
Keywords: Periodic solutions, global exponential stability, coincidence degree, M-matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146414616 Verification and Proposal of Information Processing Model Using EEG-Based Brain Activity Monitoring
Authors: Toshitaka Higashino, Naoki Wakamiya
Abstract:
Human beings perform a task by perceiving information from outside, recognizing them, and responding them. There have been various attempts to analyze and understand internal processes behind the reaction to a given stimulus by conducting psychological experiments and analysis from multiple perspectives. Among these, we focused on Model Human Processor (MHP). However, it was built based on psychological experiments and thus the relation with brain activity was unclear so far. To verify the validity of the MHP and propose our model from a viewpoint of neuroscience, EEG (Electroencephalography) measurements are performed during experiments in this study. More specifically, first, experiments were conducted where Latin alphabet characters were used as visual stimuli. In addition to response time, ERPs (event-related potentials) such as N100 and P300 were measured by using EEG. By comparing cycle time predicted by the MHP and latency of ERPs, it was found that N100, related to perception of stimuli, appeared at the end of the perceptual processor. Furthermore, by conducting an additional experiment, it was revealed that P300, related to decision making, appeared during the response decision process, not at the end. Second, by experiments using Japanese Hiragana characters, i.e. Japan's own phonetic symbols, those findings were confirmed. Finally, Japanese Kanji characters were used as more complicated visual stimuli. A Kanji character usually has several readings and several meanings. Despite the difference, a reading-related task and a meaning-related task exhibited similar results, meaning that they involved similar information processing processes of the brain. Based on those results, our model was proposed which reflects response time and ERP latency. It consists of three processors: the perception processor from an input of a stimulus to appearance of N100, the cognitive processor from N100 to P300, and the decision-action processor from P300 to response. Using our model, an application system which reflects brain activity can be established.
Keywords: Brain activity, EEG, information processing model, model human processor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69114615 A Semi- One Time Pad Using Blind Source Separation for Speech Encryption
Authors: Long Jye Sheu, Horng-Shing Chiou, Wei Ching Chen
Abstract:
We propose a new perspective on speech communication using blind source separation. The original speech is mixed with key signals which consist of the mixing matrix, chaotic signals and a random noise. However, parts of the keys (the mixing matrix and the random noise) are not necessary in decryption. In practice implement, one can encrypt the speech by changing the noise signal every time. Hence, the present scheme obtains the advantages of a One Time Pad encryption while avoiding its drawbacks in key exchange. It is demonstrated that the proposed scheme is immune against traditional attacks.Keywords: one time pad, blind source separation, independentcomponent analysis, speech encryption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157214614 A Variable Structure MRAC for a Class of MIMO Systems
Authors: Ardeshir Karami Mohammadi
Abstract:
A Variable Structure Model Reference Adaptive Controller using state variables is proposed for a class of multi input-multi output systems. Adaptation law is of variable structure type and switching functions is designed based on stability requirements. Global exponential stability is proved based on Lyapunov criterion. Transient behavior is analyzed using sliding mode control and shows perfect model following at a finite time.Keywords: Adaptive control, Model reference, Variablestructure, MIMO system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158014613 Influence of Flexural Reinforcement on the Shear Strength of RC Beams without Stirrups
Authors: Guray Arslan, Riza S. O. Keskin
Abstract:
Numerical investigations were conducted to study the influence of flexural reinforcement ratio on the diagonal cracking strength and ultimate shear strength of reinforced concrete (RC) beams without stirrups. Three-dimensional nonlinear finite element analyses (FEAs) of the beams with flexural reinforcement ratios ranging from 0.58% to 2.20% subjected to a mid-span concentrated load were carried out. It is observed that the load-deflection and loadstrain curves obtained from the numerical analyses agree with those obtained from the experiments. It is concluded that flexural reinforcement ratio has a significant effect on the shear strength and deflection capacity of RC beams without stirrups. The predictions of diagonal cracking strength and ultimate shear strength of beams obtained by using the equations defined by a number of codes and researchers are compared with each other and with the experimental values.Keywords: Finite element, flexural reinforcement, reinforced concrete beam, shear strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 269514612 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network
Authors: Jia Xin Low, Keng Wah Choo
Abstract:
This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.Keywords: Convolutional neural network, discrete wavelet transform, deep learning, heart sound classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 114614611 Real-time Detection of Space Manipulator Self-collision
Authors: Zhang Xiaodong, Tang Zixin, Liu Xin
Abstract:
In order to avoid self-collision of space manipulators during operation process, a real-time detection method is proposed in this paper. The manipulator is fitted into a cylinder-enveloping surface, and then, a kind of detection algorithm of collision between cylinders is analyzed. The collision model of space manipulator self-links can be detected by using this algorithm in real-time detection during the operation process. To ensure security of the operation, a safety threshold is designed. The simulation and experiment results verify the effectiveness of the proposed algorithm for a 7-DOF space manipulator.Keywords: Space manipulator, Collision detection, Self-collision, the real-time collision detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034