Search results for: Heuristic algorithms.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1649

Search results for: Heuristic algorithms.

839 A Robust Audio Fingerprinting Algorithm in MP3 Compressed Domain

Authors: Ruili Zhou, Yuesheng Zhu

Abstract:

In this paper, a new robust audio fingerprinting algorithm in MP3 compressed domain is proposed with high robustness to time scale modification (TSM). Instead of simply employing short-term information of the MP3 stream, the new algorithm extracts the long-term features in MP3 compressed domain by using the modulation frequency analysis. Our experiment has demonstrated that the proposed method can achieve a hit rate of above 95% in audio retrieval and resist the attack of 20% TSM. It has lower bit error rate (BER) performance compared to the other algorithms. The proposed algorithm can also be used in other compressed domains, such as AAC.

Keywords: Audio Fingerprinting, MP3, Modulation Frequency, TSM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196
838 Enhanced Traveling Salesman Problem Solving by Genetic Algorithm Technique (TSPGA)

Authors: Buthainah Fahran Al-Dulaimi, Hamza A. Ali

Abstract:

The well known NP-complete problem of the Traveling Salesman Problem (TSP) is coded in genetic form. A software system is proposed to determine the optimum route for a Traveling Salesman Problem using Genetic Algorithm technique. The system starts from a matrix of the calculated Euclidean distances between the cities to be visited by the traveling salesman and a randomly chosen city order as the initial population. Then new generations are then created repeatedly until the proper path is reached upon reaching a stopping criterion. This search is guided by a solution evaluation function.

Keywords: Genetic algorithms, traveling salesman problem solving, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559
837 New DES based on Elliptic Curves

Authors: Ghada Abdelmouez M., Fathy S. Helail, Abdellatif A. Elkouny

Abstract:

It is known that symmetric encryption algorithms are fast and easy to implement in hardware. Also elliptic curves have proved to be a good choice for building encryption system. Although most of the symmetric systems have been broken, we can create a hybrid system that has the same properties of the symmetric encryption systems and in the same time, it has the strength of elliptic curves in encryption. As DES algorithm is considered the core of all successive symmetric encryption systems, we modified DES using elliptic curves and built a new DES algorithm that is hard to be broken and will be the core for all other symmetric systems.

Keywords: DES, Elliptic Curves, hybrid system, symmetricencryption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
836 Application of HSA and GA in Optimal Placement of FACTS Devices Considering Voltage Stability and Losses

Authors: A. Parizad, A. Khazali, M. Kalantar

Abstract:

Voltage collapse is instability of heavily loaded electric power systems that cause to declining voltages and blackout. Power systems are predicated to become more heavily loaded in the future decade as the demand for electric power rises while economic and environmental concerns limit the construction of new transmission and generation capacity. Heavily loaded power systems are closer to their stability limits and voltage collapse blackouts will occur if suitable monitoring and control measures are not taken. To control transmission lines, it can be used from FACTS devices. In this paper Harmony search algorithm (HSA) and Genetic Algorithm (GA) have applied to determine optimal location of FACTS devices in a power system to improve power system stability. Three types of FACTS devices (TCPAT, UPFS, and SVC) have been introduced. Bus under voltage has been solved by controlling reactive power of shunt compensator. Also a combined series-shunt compensators has been also used to control transmission power flow and bus voltage simultaneously. Different scenarios have been considered. First TCPAT, UPFS, and SVC are placed solely in transmission lines and indices have been calculated. Then two types of above controller try to improve parameters randomly. The last scenario tries to make better voltage stability index and losses by implementation of three types controller simultaneously. These scenarios are executed on typical 34-bus test system and yields efficiency in improvement of voltage profile and reduction of power losses; it also may permit an increase in power transfer capacity, maximum loading, and voltage stability margin.

Keywords: FACTS Devices, Voltage Stability Index, optimal location, Heuristic methods, Harmony search, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
835 Neuro-Fuzzy Algorithm for a Biped Robotic System

Authors: Hataitep Wongsuwarn, Djitt Laowattana

Abstract:

This paper summaries basic principles and concepts of intelligent controls, implemented in humanoid robotics as well as recent algorithms being devised for advanced control of humanoid robots. Secondly, this paper presents a new approach neuro-fuzzy system. We have included some simulating results from our computational intelligence technique that will be applied to our humanoid robot. Subsequently, we determine a relationship between joint trajectories and located forces on robot-s foot through a proposed neuro-fuzzy technique.

Keywords: Biped Robot, Computational Intelligence, Static and Dynamic Walking, Gait Synthesis, Neuro-Fuzzy System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2556
834 Customer Churn Prediction: A Cognitive Approach

Authors: Damith Senanayake, Lakmal Muthugama, Laksheen Mendis, Tiroshan Madushanka

Abstract:

Customer churn prediction is one of the most useful areas of study in customer analytics. Due to the enormous amount of data available for such predictions, machine learning and data mining have been heavily used in this domain. There exist many machine learning algorithms directly applicable for the problem of customer churn prediction, and here, we attempt to experiment on a novel approach by using a cognitive learning based technique in an attempt to improve the results obtained by using a combination of supervised learning methods, with cognitive unsupervised learning methods.

Keywords: Growing Self Organizing Maps, Kernel Methods, Churn Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559
833 Performance Evaluation of Music and Minimum Norm Eigenvector Algorithms in Resolving Noisy Multiexponential Signals

Authors: Abdussamad U. Jibia, Momoh-Jimoh E. Salami

Abstract:

Eigenvector methods are gaining increasing acceptance in the area of spectrum estimation. This paper presents a successful attempt at testing and evaluating the performance of two of the most popular types of subspace techniques in determining the parameters of multiexponential signals with real decay constants buried in noise. In particular, MUSIC (Multiple Signal Classification) and minimum-norm techniques are examined. It is shown that these methods perform almost equally well on multiexponential signals with MUSIC displaying better defined peaks.

Keywords: Eigenvector, minimum norm, multiexponential, subspace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
832 Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery

Authors: Dale Dzemydiene, Aurelija Burinskiene, Arunas Miliauskas, Kristina Ciziuniene

Abstract:

Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.

Keywords: Multi-objective decision support, analysis, data validation, freight delivery, multi-modal transportation, genetic programming methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 484
831 Building Gabor Filters from Retinal Responses

Authors: Johannes Partzsch, Christian Mayr, Rene Schuffny

Abstract:

Starting from a biologically inspired framework, Gabor filters were built up from retinal filters via LMSE algorithms. Asubset of retinal filter kernels was chosen to form a particular Gabor filter by using a weighted sum. One-dimensional optimization approaches were shown to be inappropriate for the problem. All model parameters were fixed with biological or image processing constraints. Detailed analysis of the optimization procedure led to the introduction of a minimization constraint. Finally, quantization of weighting factors was investigated. This resulted in an optimized cascaded structure of a Gabor filter bank implementation with lower computational cost.

Keywords: Gabor filter, image processing, optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2398
830 Integrated Subset Split for Balancing Network Utilization and Quality of Routing

Authors: S. V. Kasmir Raja, P. Herbert Raj

Abstract:

The overlay approach has been widely used by many service providers for Traffic Engineering (TE) in large Internet backbones. In the overlay approach, logical connections are set up between edge nodes to form a full mesh virtual network on top of the physical topology. IP routing is then run over the virtual network. Traffic engineering objectives are achieved through carefully routing logical connections over the physical links. Although the overlay approach has been implemented in many operational networks, it has a number of well-known scaling issues. This paper proposes a new approach to achieve traffic engineering without full-mesh overlaying with the help of integrated approach and equal subset split method. Traffic engineering needs to determine the optimal routing of traffic over the existing network infrastructure by efficiently allocating resource in order to optimize traffic performance on an IP network. Even though constraint-based routing [1] of Multi-Protocol Label Switching (MPLS) is developed to address this need, since it is not widely tested or debugged, Internet Service Providers (ISPs) resort to TE methods under Open Shortest Path First (OSPF), which is the most commonly used intra-domain routing protocol. Determining OSPF link weights for optimal network performance is an NP-hard problem. As it is not possible to solve this problem, we present a subset split method to improve the efficiency and performance by minimizing the maximum link utilization in the network via a small number of link weight modifications. The results of this method are compared against results of MPLS architecture [9] and other heuristic methods.

Keywords: Constraint based routing, Link Utilization, Subsetsplit method and Traffic Engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396
829 Issues in Travel Demand Forecasting

Authors: Huey-Kuo Chen

Abstract:

Travel demand forecasting including four travel choices, i.e., trip generation, trip distribution, modal split and traffic assignment constructs the core of transportation planning. In its current application, travel demand forecasting has associated with three important issues, i.e., interface inconsistencies among four travel choices, inefficiency of commonly used solution algorithms, and undesirable multiple path solutions. In this paper, each of the three issues is extensively elaborated. An ideal unified framework for the combined model consisting of the four travel choices and variable demand functions is also suggested. Then, a few remarks are provided in the end of the paper

Keywords: Travel choices, B algorithm, entropy maximization, dynamic traffic assignment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2357
828 PI Control for Second Order Delay System with Tuning Parameter Optimization

Authors: R. Farkh, K. Laabidi, M. Ksouri

Abstract:

In this paper, we consider the control of time delay system by Proportional-Integral (PI) controller. By Using the Hermite- Biehler theorem, which is applicable to quasi-polynomials, we seek a stability region of the controller for first order delay systems. The essence of this work resides in the extension of this approach to second order delay system, in the determination of its stability region and the computation of the PI optimum parameters. We have used the genetic algorithms to lead the complexity of the optimization problem.

Keywords: Genetic algorithm, Hermit-Biehler theorem, optimization, PI controller, second order delay system, stability region.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775
827 Loading and Unloading Scheduling Problem in a Multiple-Multiple Logistics Network: Modeling and Solving

Authors: Yasin Tadayonrad, Alassane Ballé Ndiaye

Abstract:

Most of the supply chain networks have many nodes starting from the suppliers’ side up to the customers’ side that each node sends/receives the raw materials/products from/to the other nodes. One of the major concerns in this kind of supply chain network is finding the best schedule for loading/unloading the shipments through the whole network by which all the constraints in the source and destination nodes are met and all the shipments are delivered on time. One of the main constraints in this problem is the loading/unloading capacity in each source/destination node at each time slot (e.g., per week/day/hour). Because of the different characteristics of different products/groups of products, the capacity of each node might differ based on each group of products. In most supply chain networks (especially in the Fast-moving consumer goods (FMCG) industry), there are different planners/planning teams working separately in different nodes to determine the loading/unloading timeslots in source/destination nodes to send/receive the shipments. In this paper, a mathematical problem has been proposed to find the best timeslots for loading/unloading the shipments minimizing the overall delays subject to respecting the capacity of loading/unloading of each node, the required delivery date of each shipment (considering the lead-times), and working-days of each node. This model was implemented on Python and solved using Python-MIP on a sample data set. Finally, the idea of a heuristic algorithm has been proposed as a way of improving the solution method that helps to implement the model on larger data sets in real business cases, including more nodes and shipments.

Keywords: Supply chain management, transportation, multiple-multiple network, timeslots management, mathematical modeling, mixed integer programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 524
826 On Constructing Approximate Convex Hull

Authors: M. Zahid Hossain, M. Ashraful Amin

Abstract:

The algorithms of convex hull have been extensively studied in literature, principally because of their wide range of applications in different areas. This article presents an efficient algorithm to construct approximate convex hull from a set of n points in the plane in O(n + k) time, where k is the approximation error control parameter. The proposed algorithm is suitable for applications preferred to reduce the computation time in exchange of accuracy level such as animation and interaction in computer graphics where rapid and real-time graphics rendering is indispensable.

Keywords: Convex hull, Approximation algorithm, Computational geometry, Linear time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2300
825 Genetic Algorithm Application in a Dynamic PCB Assembly with Carryover Sequence- Dependent Setups

Authors: M. T. Yazdani Sabouni, Rasaratnam Logendran

Abstract:

We consider a typical problem in the assembly of printed circuit boards (PCBs) in a two-machine flow shop system to simultaneously minimize the weighted sum of weighted tardiness and weighted flow time. The investigated problem is a group scheduling problem in which PCBs are assembled in groups and the interest is to find the best sequence of groups as well as the boards within each group to minimize the objective function value. The type of setup operation between any two board groups is characterized as carryover sequence-dependent setup time, which exactly matches with the real application of this problem. As a technical constraint, all of the boards must be kitted before the assembly operation starts (kitting operation) and by kitting staff. The main idea developed in this paper is to completely eliminate the role of kitting staff by assigning the task of kitting to the machine operator during the time he is idle which is referred to as integration of internal (machine) and external (kitting) setup times. Performing the kitting operation, which is a preparation process of the next set of boards while the other boards are currently being assembled, results in the boards to continuously enter the system or have dynamic arrival times. Consequently, a dynamic PCB assembly system is introduced for the first time in the assembly of PCBs, which also has characteristics similar to that of just-in-time manufacturing. The problem investigated is computationally very complex, meaning that finding the optimal solutions especially when the problem size gets larger is impossible. Thus, a heuristic based on Genetic Algorithm (GA) is employed. An example problem on the application of the GA developed is demonstrated and also numerical results of applying the GA on solving several instances are provided.

Keywords: Genetic algorithm, Dynamic PCB assembly, Carryover sequence-dependent setup times, Multi-objective.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
824 Induction of Expressive Rules using the Binary Coding Method

Authors: Seyed R Mousavi

Abstract:

In most rule-induction algorithms, the only operator used against nominal attributes is the equality operator =. In this paper, we first propose the use of the inequality operator, , in addition to the equality operator, to increase the expressiveness of induced rules. Then, we present a new method, Binary Coding, which can be used along with an arbitrary rule-induction algorithm to make use of the inequality operator without any need to change the algorithm. Experimental results suggest that the Binary Coding method is promising enough for further investigation, especially in cases where the minimum number of rules is desirable.

Keywords: Data mining, Inequality operator, Number of rules, Rule-induction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1256
823 Enhanced Bidirectional Selection Sort

Authors: Jyoti Dua

Abstract:

An algorithm is a well-defined procedure that takes some input in the form of some values, processes them and gives the desired output. It forms the basis of many other algorithms such as searching, pattern matching, digital filters etc., and other applications have been found in database systems, data statistics and processing, data communications and pattern matching. This paper introduces algorithmic “Enhanced Bidirectional Selection” sort which is bidirectional, stable. It is said to be bidirectional as it selects two values smallest from the front and largest from the rear and assigns them to their appropriate locations thus reducing the number of passes by half the total number of elements as compared to selection sort.

Keywords: Bubble sort, cocktail sort, selection sort, heap sort.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2373
822 Design of an Artificial Intelligence Based Automatic Task Planner or a Robotic System

Authors: T. C. Manjunath, C. Ardil

Abstract:

This paper deals with the design and the implementation of an automatic task planner for a robot, irrespective of whether it is a stationary robot or a mobile robot. The aim of the task planner nothing but, they are planning systems which are used to plan a particular task and do the robotic manipulation. This planning system is embedded into the system software in the computer, which is interfaced to the computer. When the instructions are given using the computer, this is transformed into real time application using the robot. All the AI based algorithms are written and saved in the control software, which acts as the intelligent task planning system.

Keywords: AI, Robot, Task Planner, RT, Algorithm, Specs, Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 620
821 Comparison of Evolutionary Algorithms and their Hybrids Applied to MarioAI

Authors: Hidehiko Okada, Yuki Fujii

Abstract:

Researchers have been applying artificial/ computational intelligence (AI/CI) methods to computer games. In this research field, further researchesare required to compare AI/CI methods with respect to each game application. In thispaper, we report our experimental result on the comparison of evolution strategy, genetic algorithm and their hybrids, applied to evolving controller agents for MarioAI. GA revealed its advantage in our experiment, whereas the expected ability of ES in exploiting (fine-tuning) solutions was not clearly observed. The blend crossover operator and the mutation operator of GA might contribute well to explore the vast search space.

Keywords: Evolutionary algorithm, autonomous game controller agent, neuroevolutions, MarioAI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
820 New Design Constraints of FIR Filter on Magnitude and Phase of Error Function

Authors: Raghvendra Kumar, Lillie Dewan

Abstract:

Exchange algorithm with constraints on magnitude and phase error separately in new way is presented in this paper. An important feature of the algorithms presented in this paper is that they allow for design constraints which often arise in practical filter design problems. Meeting required minimum stopband attenuation or a maximum deviation from the desired magnitude and phase responses in the passbands are common design constraints that can be handled by the methods proposed here. This new algorithm may have important advantages over existing technique, with respect to the speed and stability of convergence, memory requirement and low ripples.

Keywords: Least square estimation, Constraints, Exchange algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
819 Higher Order Statistics for Identification of Minimum Phase Channels

Authors: Mohammed Zidane, Said Safi, Mohamed Sabri, Ahmed Boumezzough

Abstract:

This paper describes a blind algorithm, which is compared with two another algorithms proposed in the literature, for estimating of the minimum phase channel parameters. In order to identify blindly the impulse response of these channels, we have used Higher Order Statistics (HOS) to build our algorithm. The simulation results in noisy environment, demonstrate that the proposed method could estimate the phase and magnitude with high accuracy of these channels blindly and without any information about the input, except that the input excitation is identically and independent distribute (i.i.d) and non-Gaussian.

Keywords: System Identification, Higher Order Statistics, Communication Channels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
818 The Synthetic T2 Quality Control Chart and its Multi-Objective Optimization

Authors: Francisco Aparisi, Marco A. de Luna

Abstract:

In some real applications of Statistical Process Control it is necessary to design a control chart to not detect small process shifts, but keeping a good performance to detect moderate and large shifts in the quality. In this work we develop a new quality control chart, the synthetic T2 control chart, that can be designed to cope with this objective. A multi-objective optimization is carried out employing Genetic Algorithms, finding the Pareto-optimal front of non-dominated solutions for this optimization problem.

Keywords: Multi-objective optimization, Quality Control, SPC, Synthetic T2 control chart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
817 Extended Least Squares LS–SVM

Authors: József Valyon, Gábor Horváth

Abstract:

Among neural models the Support Vector Machine (SVM) solutions are attracting increasing attention, mostly because they eliminate certain crucial questions involved by neural network construction. The main drawback of standard SVM is its high computational complexity, therefore recently a new technique, the Least Squares SVM (LS–SVM) has been introduced. In this paper we present an extended view of the Least Squares Support Vector Regression (LS–SVR), which enables us to develop new formulations and algorithms to this regression technique. Based on manipulating the linear equation set -which embodies all information about the regression in the learning process- some new methods are introduced to simplify the formulations, speed up the calculations and/or provide better results.

Keywords: Function estimation, Least–Squares Support VectorMachines, Regression, System Modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
816 Architecture Based on Dynamic Graphs for the Dynamic Reconfiguration of Farms of Computers

Authors: Carmen Navarrete, Eloy Anguiano

Abstract:

In the last years, the computers have increased their capacity of calculus and networks, for the interconnection of these machines. The networks have been improved until obtaining the actual high rates of data transferring. The programs that nowadays try to take advantage of these new technologies cannot be written using the traditional techniques of programming, since most of the algorithms were designed for being executed in an only processor,in a nonconcurrent form instead of being executed concurrently ina set of processors working and communicating through a network.This paper aims to present the ongoing development of a new system for the reconfiguration of grouping of computers, taking into account these new technologies.

Keywords: Dynamic network topology, resource and task allocation, parallel computing, heterogeneous computing, dynamic reconfiguration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1363
815 An Adaptive Model for Blind Image Restoration using Bayesian Approach

Authors: S.K. Satpathy, S.K. Nayak, K. K. Nagwanshi, S. Panda, C. Ardil

Abstract:

Image restoration involves elimination of noise. Filtering techniques were adopted so far to restore images since last five decades. In this paper, we consider the problem of image restoration degraded by a blur function and corrupted by random noise. A method for reducing additive noise in images by explicit analysis of local image statistics is introduced and compared to other noise reduction methods. The proposed method, which makes use of an a priori noise model, has been evaluated on various types of images. Bayesian based algorithms and technique of image processing have been described and substantiated with experimentation using MATLAB.

Keywords: Image Restoration, Probability DensityFunction (PDF), Neural Networks, Bayesian Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
814 Improving Digital Image Edge Detection by Fuzzy Systems

Authors: Begol, Moslem, Maghooli, Keivan

Abstract:

Image Edge Detection is one of the most important parts of image processing. In this paper, by fuzzy technique, a new method is used to improve digital image edge detection. In this method, a 3x3 mask is employed to process each pixel by means of vicinity. Each pixel is considered a fuzzy input and by examining fuzzy rules in its vicinity, the edge pixel is specified and by utilizing calculation algorithms in image processing, edges are displayed more clearly. This method shows significant improvement compared to different edge detection methods (e.g. Sobel, Canny).

Keywords: Fuzzy Systems, Edge Detection, Fuzzy edgedetection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
813 A New Self-stabilizing Algorithm for Maximal 2-packing

Authors: Zhengnan Shi

Abstract:

In the self-stabilizing algorithmic paradigm, each node has a local view of the system, in a finite amount of time the system converges to a global state with desired property. In a graph G = (V, E), a subset S C V is a 2-packing if Vi c V: IN[i] n SI <1. In this paper, an ID-based, constant space, self-stabilizing algorithm that stabilizes to a maximal 2-packing in an arbitrary graph is proposed. It is shown that the algorithm stabilizes in 0(n3) moves under any scheduler (daemon). Specifically, it is shown that the algorithm stabilizes in linear time-steps under a synchronous daemon where every privileged node moves at each time-step.

Keywords: self-stabilization, 2-packing, distributed computing, fault tolerance, graph algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
812 Leader-following Consensus Criterion for Multi-agent Systems with Probabilistic Self-delay

Authors: M.J. Park, K.H. Kim, O.M. Kwon

Abstract:

This paper proposes a delay-dependent leader-following consensus condition of multi-agent systems with both communication delay and probabilistic self-delay. The proposed methods employ a suitable piecewise Lyapunov-Krasovskii functional and the average dwell time approach. New consensus criterion for the systems are established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Numerical example showed that the proposed method is effective.

Keywords: Multi-agent systems, probabilistic self-delay, consensus, Lyapunov method, LMI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
811 Association Rule and Decision Tree based Methodsfor Fuzzy Rule Base Generation

Authors: Ferenc Peter Pach, Janos Abonyi

Abstract:

This paper focuses on the data-driven generation of fuzzy IF...THEN rules. The resulted fuzzy rule base can be applied to build a classifier, a model used for prediction, or it can be applied to form a decision support system. Among the wide range of possible approaches, the decision tree and the association rule based algorithms are overviewed, and two new approaches are presented based on the a priori fuzzy clustering based partitioning of the continuous input variables. An application study is also presented, where the developed methods are tested on the well known Wisconsin Breast Cancer classification problem.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303
810 Fuzzy Controller Design for Ball and Beam System with an Improved Ant Colony Optimization

Authors: Yeong-Hwa Chang, Chia-Wen Chang, Hung-Wei Lin, C.W. Tao

Abstract:

In this paper, an improved ant colony optimization (ACO) algorithm is proposed to enhance the performance of global optimum search. The strategy of the proposed algorithm has the capability of fuzzy pheromone updating, adaptive parameter tuning, and mechanism resetting. The proposed method is utilized to tune the parameters of the fuzzy controller for a real beam and ball system. Simulation and experimental results indicate that better performance can be achieved compared to the conventional ACO algorithms in the aspect of convergence speed and accuracy.

Keywords: Ant colony algorithm, Fuzzy control, ball and beamsystem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196