Search results for: early fire detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2175

Search results for: early fire detection

1395 Development of Position Changing System for Obstructive Sleep Apnea Patient using HRV

Authors: Soo- Young Ye, Dong-Hyun Kim

Abstract:

Obstructive sleep apnea in patients, between 70 and 80 percent, can be cured with just a posture correcting. The most import thing to do this is detection of obstructive sleep apnea. Detection of obstructive sleep apnea can be performed through heart rate variability analysis using power spectrum density analysis. After HRV analysis we needed to know the current position information for correcting the position. The pressure sensors of the array type were used to obtain position information. These sensors can obtain information from the experimenter about position. In addition, air cylinder corrected the position of the experimenter by lifting the bed. The experimenter can be changed position without breaking during sleep by the system. Polysomnograph recording were obtained from 10 patients. The results of HRV analysis were that NLF and LF/HF ratio increased, while NHF decreased during OSA. Position change had to be done the periods.

Keywords: Obstructive sleep apnea, Heart rate variability, Air cylinder, PSD, RR interval, ANS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
1394 Studying Mistaken Theory of Calendar Function of Iran-s Cross-Vaults

Authors: Ali Salehipour

Abstract:

After presenting the theory of calendar function of Iran-s cross-vaults especially “Niasar" cross-vault in recent years, there has been lots of doubts and uncertainty about this theory by astrologists and archaeologists. According to this theory “Niasar cross-vault and other cross-vaults of Iran has calendar function and are constructed in a way that sunrise and sunset can be seen from one of its openings in the beginning and middle of each season of year". But, mentioning historical documentaries we conclude here that the theory of calendar function of Iran-s cross-vaults does not have any strong basis and individual cross-vaults had only religious function in Iran.

Keywords: cross-vault, fire temple, Calendar function, Sassanid period

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
1393 The Impact of Financial System on Mixed Use Development – Unrest in UK and Sense of Safety in Mixed Use Development

Authors: Tamara Kelly

Abstract:

The past decade has witnessed a good opportunities for city development schemes in UK. The government encouraged restoration of city centers to comprise mixed use developments with high density residential apartments. Investments in regeneration areas were doing well according to the analyses of Property Databank (IPD). However, more recent analysis by IPD has shown that since 2007, property in regeneration areas has been more vulnerable to the market downturn than other types of investment property. The early stages of a property market downturn may be felt most in regeneration where funding, investor confidence and occupier demand would dissipate because the sector was considered more marginal or risky when development costs rise. Moreover, the Bank of England survey shows that lenders have sequentially tightened the availability of credit for commercial real estate since mid-2007. A sharp reduction in the willingness of banks to lend on commercial property was recorded. The credit crunch has already affected commercial property but its impact has been particularly severe in certain kinds of properties where residential developments are extremely difficult, in particular city centre apartments and buy-to-let markets. Commercial property – retail, industrial leisure and mixed use were also pressed, in Birmingham; tens of mixed use plots were built to replace old factories in the heart of the city. The purpose of these developments was to enable young professionals to work and live in same place. Thousands of people lost their jobs during the recession, moreover lending was more difficult and the future of many developments is unknown. The recession casts its shadow upon the society due to cuts in public spending by government, Inflation, rising tuition fees and high rise in unemployment generated anger and hatred was spreading among youth causing vandalism and riots in many cities. Recent riots targeted many mixed used development in the UK where banks, shops, restaurants and big stores were robbed and set into fire leaving residents with horror and shock. This paper examines the impact of the recession and riots on mixed use development in UK.

Keywords: Diversity, mixed use development, outdoor comfort, public realm, safe places, safety by design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
1392 Faults Forecasting System

Authors: Hanaa E.Sayed, Hossam A. Gabbar, Shigeji Miyazaki

Abstract:

This paper presents Faults Forecasting System (FFS) that utilizes statistical forecasting techniques in analyzing process variables data in order to forecast faults occurrences. FFS is proposing new idea in detecting faults. Current techniques used in faults detection are based on analyzing the current status of the system variables in order to check if the current status is fault or not. FFS is using forecasting techniques to predict future timing for faults before it happens. Proposed model is applying subset modeling strategy and Bayesian approach in order to decrease dimensionality of the process variables and improve faults forecasting accuracy. A practical experiment, designed and implemented in Okayama University, Japan, is implemented, and the comparison shows that our proposed model is showing high forecasting accuracy and BEFORE-TIME.

Keywords: Bayesian Techniques, Faults Detection, Forecasting techniques, Multivariate Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
1391 Fault Detection and Identification of COSMED K4b2 Based On PCA and Neural Network

Authors: Jing Zhou, Steven Su, Aihuang Guo

Abstract:

COSMED K4b2 is a portable electrical device designed to test pulmonary functions. It is ideal for many applications that need the measurement of the cardio-respiratory response either in the field or in the lab is capable with the capability to delivery real time data to a sink node or a PC base station with storing data in the memory at the same time. But the actual sensor outputs and data received may contain some errors, such as impulsive noise which can be related to sensors, low batteries, environment or disturbance in data acquisition process. These abnormal outputs might cause misinterpretations of exercise or living activities to persons being monitored. In our paper we propose an effective and feasible method to detect and identify errors in applications by principal component analysis (PCA) and a back propagation (BP) neural network.

Keywords: BP Neural Network, Exercising Testing, Fault Detection and Identification, Principal Component Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3077
1390 Java Based Automatic Curriculum Generator for Children with Trisomy 21

Authors: E. Supriyanto, S. C. Seow

Abstract:

Early Intervention Program (EIP) is required to improve the overall development of children with Trisomy 21 (Down syndrome). In order to help trainer and parent in the implementation of EIP, a support system has been developed. The support system is able to screen data automatically, store and analyze data, generate individual EIP (curriculum) with optimal training duration and to generate training automatically. The system consists of hardware and software where the software has been implemented using Java language and Linux Fedora. The software has been tested to ensure the functionality and reliability. The prototype has been also tested in Down syndrome centers. Test result shows that the system is reliable to be used for generation of an individual curriculum which includes the training program to improve the motor, cognitive, and combination abilities of Down syndrome children under 6 years.

Keywords: Early intervention program (curriculum), Trisomy21, support system, Java.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
1389 The Comparison Study of Current Control Techniques for Active Power Filters

Authors: T. Narongrit, K-L. Areerak, K-N. Areerak

Abstract:

This paper presents the comparison study of current control techniques for shunt active power filter. The hysteresis current control, the delta modulation control and the carrier-based PWM control are considered in the paper. The synchronous detection method is used to calculate the reference currents for shunt active power filter. The simulation results show that the carrier-based PWM control technique provides the minimum %THD value of the source currents compared with other comparable techniques after compensation. However, the %THD values of all three techniques can follow the IEEE std.519-1992.

Keywords: hysteresis current control, delta modulation current control, pulse width modulation control, shunt active power filter, synchronous detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2490
1388 Indian License Plate Detection and Recognition Using Morphological Operation and Template Matching

Authors: W. Devapriya, C. Nelson Kennedy Babu, T. Srihari

Abstract:

Automatic License plate recognition (ALPR) is a technology which recognizes the registration plate or number plate or License plate of a vehicle. In this paper, an Indian vehicle number plate is mined and the characters are predicted in efficient manner. ALPR involves four major technique i) Pre-processing ii) License Plate Location Identification iii) Individual Character Segmentation iv) Character Recognition. The opening phase, named pre-processing helps to remove noises and enhances the quality of the image using the conception of Morphological Operation and Image subtraction. The second phase, the most puzzling stage ascertain the location of license plate using the protocol Canny Edge detection, dilation and erosion. In the third phase, each characters characterized by Connected Component Approach (CCA) and in the ending phase, each segmented characters are conceptualized using cross correlation template matching- a scheme specifically appropriate for fixed format. Major application of ALPR is Tolling collection, Border Control, Parking, Stolen cars, Enforcement, Access Control, Traffic control. The database consists of 500 car images taken under dissimilar lighting condition is used. The efficiency of the system is 97%. Our future focus is Indian Vehicle License Plate Validation (Whether License plate of a vehicle is as per Road transport and highway standard).

Keywords: Automatic License plate recognition, Character recognition, Number plate Recognition, Template matching, morphological operation, canny edge detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2405
1387 Designing Early Warning System: Prediction Accuracy of Currency Crisis by Using k-Nearest Neighbour Method

Authors: Nor Azuana Ramli, Mohd Tahir Ismail, Hooy Chee Wooi

Abstract:

Developing a stable early warning system (EWS) model that is capable to give an accurate prediction is a challenging task. This paper introduces k-nearest neighbour (k-NN) method which never been applied in predicting currency crisis before with the aim of increasing the prediction accuracy. The proposed k-NN performance depends on the choice of a distance that is used where in our analysis; we take the Euclidean distance and the Manhattan as a consideration. For the comparison, we employ three other methods which are logistic regression analysis (logit), back-propagation neural network (NN) and sequential minimal optimization (SMO). The analysis using datasets from 8 countries and 13 macro-economic indicators for each country shows that the proposed k-NN method with k = 4 and Manhattan distance performs better than the other methods.

Keywords: Currency crisis, k-nearest neighbour method, logit, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2297
1386 Analysis of Acoustic Emission Signal for the Detection of Defective Manufactures in Press Process

Authors: Dong Hun Kim, Won Kyu Lee, Sok Won Kim

Abstract:

Small cracks or chips of a product appear very frequently in the course of continuous production of an automatic press process system. These phenomena become the cause of not only defective product but also damage of a press mold. In order to solve this problem AE system was introduced. AE system was expected to be very effective to real time detection of the defective product and to prevention of the damage of the press molds. In this study, for pick and analysis of AE signals generated from the press process, AE sensors/pre-amplifier/analysis and processing board were used as frequently found in the other similar cases. For analysis and processing the AE signals picked in real time from the good or bad products, specialized software called cdm8 was used. As a result of this work it was conformed that intensity and shape of the various AE signals differ depending on the weight and thickness of metal sheet and process type.

Keywords: press, acoustic emission, signal processing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
1385 Transcriptomics Analysis on Comparing Non-Small Cell Lung Cancer versus Normal Lung, and Early Stage Compared versus Late-Stages of Non-Small Cell Lung Cancer

Authors: Achitphol Chookaew, Paramee Thongsukhsai, Patamarerk Engsontia, Narongwit Nakwan, Pritsana Raugrut

Abstract:

Lung cancer is one of the most common malignancies and primary cause of death due to cancer worldwide. Non-small cell lung cancer (NSCLC) is the main subtype in which majority of patients present with advanced-stage disease. Herein, we analyzed differentially expressed genes to find potential biomarkers for lung cancer diagnosis as well as prognostic markers. We used transcriptome data from our 2 NSCLC patients and public data (GSE81089) composing of 8 NSCLC and 10 normal lung tissues. Differentially expressed genes (DEGs) between NSCLC and normal tissue and between early-stage and late-stage NSCLC were analyzed by the DESeq2. Pairwise correlation was used to find the DEGs with false discovery rate (FDR) adjusted p-value £ 0.05 and |log2 fold change| ³ 4 for NSCLC versus normal and FDR adjusted p-value £ 0.05 with |log2 fold change| ³ 2 for early versus late-stage NSCLC. Bioinformatic tools were used for functional and pathway analysis. Moreover, the top ten genes in each comparison group were verified the expression and survival analysis via GEPIA. We found 150 up-regulated and 45 down-regulated genes in NSCLC compared to normal tissues. Many immnunoglobulin-related genes e.g., IGHV4-4, IGHV5-10-1, IGHV4-31, IGHV4-61, and IGHV1-69D were significantly up-regulated. 22 genes were up-regulated, and five genes were down-regulated in late-stage compared to early-stage NSCLC. The top five DEGs genes were KRT6B, SPRR1A, KRT13, KRT6A and KRT5. Keratin 6B (KRT6B) was the most significantly increased gene in the late-stage NSCLC. From GEPIA analysis, we concluded that IGHV4-31 and IGKV1-9 might be used as diagnostic biomarkers, while KRT6B and KRT6A might be used as prognostic biomarkers. However, further clinical validation is needed.

Keywords: Bioinformatics, differentially expressed genes, non-small cell lung cancer, transcriptomics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895
1384 Evaluation of Two Earliness Cotton Genotypes in Three Ecological Regions

Authors: Gholamhossein Hosseini

Abstract:

Two earliness cotton genotypes I and II, which had been developed by hybridization and backcross methods between sindise-80 as an early maturing gene parent and two other lines i.e. Red leaf and Bulgare-557 as a second parent, are subjected to different environmental conditions. The early maturing genotypes with coded names of I and II were compared with four native cotton cultivars in randomized complete block design (RCBD) with four replications in three ecological regions of Iran from 2016-2017. Two early maturing genotypes along with four native cultivars viz. Varamin, Oltan, Sahel and Arya were planted in Agricultural Research Station of Varamin, Moghan and Kashmar for evaluation. Earliness data were collected for six treatments during two years in the three regions except missing data for the second year of Kashmar. Therefore, missed data were estimated and imputed. For testing the homogeneity of error variances, each experiment at a given location or year is analyzed separately using Hartley and Bartlett’s Chi-square tests and both tests confirmed homogeneity of variance. Combined analysis of variance showed that genotypes I and II were superior in Varamin, Moghan and Kashmar regions. Earliness means and their interaction effects were compared with Duncan’s multiple range tests. Finally combined analysis of variance showed that genotypes I and II were superior in Varamin, Moghan and Kashmar regions. Earliness means and their interaction effects are compared with Duncan’s multiple range tests.

Keywords: Cotton, combined, analysis, earliness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 571
1383 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks

Authors: Yong Zhao, Jian He, Cheng Zhang

Abstract:

Cardiovascular disease resulting from hypertension poses a significant threat to human health, and early detection of hypertension can potentially save numerous lives. Traditional methods for detecting hypertension require specialized equipment and are often incapable of capturing continuous blood pressure fluctuations. To address this issue, this study starts by analyzing the principle of heart rate variability (HRV) and introduces the utilization of sliding window and power spectral density (PSD) techniques to analyze both temporal and frequency domain features of HRV. Subsequently, a hypertension prediction network that relies on HRV is proposed, combining Resnet, attention mechanisms, and a multi-layer perceptron. The network leverages a modified ResNet18 to extract frequency domain features, while employing an attention mechanism to integrate temporal domain features, thus enabling auxiliary hypertension prediction through the multi-layer perceptron. The proposed network is trained and tested using the publicly available SHAREE dataset from PhysioNet. The results demonstrate that the network achieves a high prediction accuracy of 92.06% for hypertension, surpassing traditional models such as K Near Neighbor (KNN), Bayes, Logistic regression, and traditional Convolutional Neural Network (CNN).

Keywords: Feature extraction, heart rate variability, hypertension, residual networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195
1382 Study of Anti-Symmetric Flexural Mode Propagation along Wedge Tip with a Crack

Authors: Manikanta Prasad Banda, Che Hua Yang

Abstract:

Anti-symmetric wave propagation along the particle motion of the wedge waves is known as anti-symmetric flexural (ASF) modes which travel along the wedge tips of the mid-plane apex with a small truncation. This paper investigates the characteristics of the ASF modes propagation with the wedge tip crack. The simulation and experimental results obtained by a three-dimensional (3-D) finite element model explained the contact acoustic non-linear (CAN) behavior in explicit dynamics in ABAQUS and the ultrasonic non-destructive testing (NDT) method is used for defect detection. The effect of various parameters on its high and low-level conversion modes are known for complex reflections and transmissions involved with direct reflections and transmissions. The results are used to predict the location of crack through complex transmission and reflection coefficients.

Keywords: ASF mode, crack detection, finite elements method, laser ultrasound technique, wedge waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 529
1381 Current Status and Future Trends of Mechanized Fruit Thinning Devices and Sensor Technology

Authors: Marco Lopes, Pedro D. Gaspar, Maria P. Simões

Abstract:

This paper reviews the different concepts that have been investigated concerning the mechanization of fruit thinning as well as multiple working principles and solutions that have been developed for feature extraction of horticultural products, both in the field and industrial environments. The research should be committed towards selective methods, which inevitably need to incorporate some kinds of sensor technology. Computer vision often comes out as an obvious solution for unstructured detection problems, although leaves despite the chosen point of view frequently occlude fruits. Further research on non-traditional sensors that are capable of object differentiation is needed. Ultrasonic and Near Infrared (NIR) technologies have been investigated for applications related to horticultural produce and show a potential to satisfy this need while simultaneously providing spatial information as time of flight sensors. Light Detection and Ranging (LIDAR) technology also shows a huge potential but it implies much greater costs and the related equipment is usually much larger, making it less suitable for portable devices, which may serve a purpose on smaller unstructured orchards. Portable devices may serve a purpose on these types of orchards. In what concerns sensor methods, on-tree fruit detection, major challenge is to overcome the problem of fruits’ occlusion by leaves and branches. Hence, nontraditional sensors capable of providing some type of differentiation should be investigated.

Keywords: Fruit thinning, horticultural field, portable devices, sensor technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 983
1380 Guided Wave Sensitivity for De-Bond Defects in Aluminum Skin-Honeycomb Core

Authors: A. Satour, F. Boubenider, R. Halimi, A. Badidibouda

Abstract:

Sandwich plates are finding an increasing range of application in the aircraft industry. The inspection of honeycomb composite structure by conventional ultrasonic technique is complex and very time consuming. The present study demonstrates a technique using guided Lamb waves at low frequencies to predict de-bond defects in aluminum skin-honeycomb core sandwich structure used in aeronautics. The numerical method was investigated for drawing the dispersion and displacement curves of ultrasonic Lamb wave propagated in Aluminum plate. An experimental study was carried out to check the theoretical prediction. The detection of unsticking between the skin and the core was tested by the two first modes for a low frequency. It was found that A0 mode is more sensitive to delamination defect compared to S0 mode.

Keywords: Damage detection, delamination, guided waves, Sandwich structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2324
1379 Decoder Design for a New Single Error Correcting/Double Error Detecting Code

Authors: M. T. Anwar, P. K. Lala, P. Thenappan

Abstract:

This paper presents the decoder design for the single error correcting and double error detecting code proposed by the authors in an earlier paper. The speed of error detection and correction of a code is largely dependent upon the associated encoder and decoder circuits. The complexity and the speed of such circuits are determined by the number of 1?s in the parity check matrix (PCM). The number of 1?s in the parity check matrix for the code proposed by the authors are fewer than in any currently known single error correcting/double error detecting code. This results in simplified encoding and decoding circuitry for error detection and correction.

Keywords: Decoder, Hsiao code, Parity Check Matrix, Syndrome Pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080
1378 A Fast Sign Localization System Using Discriminative Color Invariant Segmentation

Authors: G.P. Nguyen, H.J. Andersen

Abstract:

Building intelligent traffic guide systems has been an interesting subject recently. A good system should be able to observe all important visual information to be able to analyze the context of the scene. To do so, signs in general, and traffic signs in particular, are usually taken into account as they contain rich information to these systems. Therefore, many researchers have put an effort on sign recognition field. Sign localization or sign detection is the most important step in the sign recognition process. This step filters out non informative area in the scene, and locates candidates in later steps. In this paper, we apply a new approach in detecting sign locations using a new color invariant model. Experiments are carried out with different datasets introduced in other works where authors claimed the difficulty in detecting signs under unfavorable imaging conditions. Our method is simple, fast and most importantly it gives a high detection rate in locating signs.

Keywords: Sign localization, color-based segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
1377 Autonomously Determining the Parameters for SVDD with RBF Kernel from a One-Class Training Set

Authors: Andreas Theissler, Ian Dear

Abstract:

The one-class support vector machine “support vector data description” (SVDD) is an ideal approach for anomaly or outlier detection. However, for the applicability of SVDD in real-world applications, the ease of use is crucial. The results of SVDD are massively determined by the choice of the regularisation parameter C and the kernel parameter  of the widely used RBF kernel. While for two-class SVMs the parameters can be tuned using cross-validation based on the confusion matrix, for a one-class SVM this is not possible, because only true positives and false negatives can occur during training. This paper proposes an approach to find the optimal set of parameters for SVDD solely based on a training set from one class and without any user parameterisation. Results on artificial and real data sets are presented, underpinning the usefulness of the approach.

Keywords: Support vector data description, anomaly detection, one-class classification, parameter tuning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2935
1376 Global Security Using Human Face Understanding under Vision Ubiquitous Architecture System

Authors: A. Jalal, S. Kim

Abstract:

Different methods containing biometric algorithms are presented for the representation of eigenfaces detection including face recognition, are identification and verification. Our theme of this research is to manage the critical processing stages (accuracy, speed, security and monitoring) of face activities with the flexibility of searching and edit the secure authorized database. In this paper we implement different techniques such as eigenfaces vector reduction by using texture and shape vector phenomenon for complexity removal, while density matching score with Face Boundary Fixation (FBF) extracted the most likelihood characteristics in this media processing contents. We examine the development and performance efficiency of the database by applying our creative algorithms in both recognition and detection phenomenon. Our results show the performance accuracy and security gain with better achievement than a number of previous approaches in all the above processes in an encouraging mode.

Keywords: Ubiquitous architecture, verification, Identification, recognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336
1375 Effects of Drought on Yield and Some Yield Components of Chickpea

Authors: E. Ceyhan, M. Önder, A. Kahraman, R. Topak, M.K. Ateş, S. Karadas, M.A. Avcı

Abstract:

This research was conducted to determine responses of chickpeas to drought in different periods (early period, late period, no-irrigation, two times irrigation as control). The trial was made in “Randomized Complete Block Design" with three replications on 2010 and 2011 years in Konya-Turkey. Genotypes were consisted from 7 lines of ICARDA, 2 certified lines and 1 local population. The results showed that; as means of years and genotypes, early period stress showed highest (207.47 kg da-1) seed yield and it was followed by control (202.33 kg da-1), late period (144.64 kg da-1) and normal (106.93 kg da-1) stress applications. The genotypes were affected too much by drought and, the lowest seed was taken from non-irrigated plots. As the means of years and stress applications, the highest (196.01 kg da-1) yield was taken from genotype 22255. The reason of yield variation could be derived from different responses of genotypes to drought.

Keywords: Chickpea, drought, seed yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
1374 Wavelet Entropy Based Algorithm for Fault Detection and Classification in FACTS Compensated Transmission Line

Authors: Amany M. El-Zonkoly, Hussein Desouki

Abstract:

Distance protection of transmission lines including advanced flexible AC transmission system (FACTS) devices has been a very challenging task. FACTS devices of interest in this paper are static synchronous series compensators (SSSC) and unified power flow controller (UPFC). In this paper, a new algorithm is proposed to detect and classify the fault and identify the fault position in a transmission line with respect to a FACTS device placed in the midpoint of the transmission line. Discrete wavelet transformation and wavelet entropy calculations are used to analyze during fault current and voltage signals of the compensated transmission line. The proposed algorithm is very simple and accurate in fault detection and classification. A variety of fault cases and simulation results are introduced to show the effectiveness of such algorithm.

Keywords: Entropy calculation, FACTS, SSSC, UPFC, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
1373 An Advanced Stereo Vision Based Obstacle Detection with a Robust Shadow Removal Technique

Authors: Saeid Fazli, Hajar Mohammadi D., Payman Moallem

Abstract:

This paper presents a robust method to detect obstacles in stereo images using shadow removal technique and color information. Stereo vision based obstacle detection is an algorithm that aims to detect and compute obstacle depth using stereo matching and disparity map. The proposed advanced method is divided into three phases, the first phase is detecting obstacles and removing shadows, the second one is matching and the last phase is depth computing. We propose a robust method for detecting obstacles in stereo images using a shadow removal technique based on color information in HIS space, at the first phase. In this paper we use Normalized Cross Correlation (NCC) function matching with a 5 × 5 window and prepare an empty matching table τ and start growing disparity components by drawing a seed s from S which is computed using canny edge detector, and adding it to τ. In this way we achieve higher performance than the previous works [2,17]. A fast stereo matching algorithm is proposed that visits only a small fraction of disparity space in order to find a semi-dense disparity map. It works by growing from a small set of correspondence seeds. The obstacle identified in phase one which appears in the disparity map of phase two enters to the third phase of depth computing. Finally, experimental results are presented to show the effectiveness of the proposed method.

Keywords: obstacle detection, stereo vision, shadowremoval, color, stereo matching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
1372 High Performance Liquid Chromatography Determination of Urinary Hippuric Acid and Benzoic Acid as Indices for Glue Sniffer Urine

Authors: Abdul Rahim Yacob, Mohamad Raizul Zinalibdin

Abstract:

A simple method for the simultaneous determination of hippuric acid and benzoic acid in urine using reversed-phase high performance liquid chromatography was described. Chromatography was performed on a Nova-Pak C18 (3.9 x 150 mm) column with a mobile phase of mixed solution methanol: water: acetic acid (20:80:0.2) and UV detection at 254 nm. The calibration curve was linear within concentration range at 0.125 to 6.0 mg/ml of hippuric acid and benzoic acid. The recovery, accuracy and coefficient variance of hippuric acid were 104.54%, 0.2% and 0.2% respectively and for benzoic acid were 98.48%, 1.25% and 0.60% respectively. The detection limit of this method was 0.01ng/l for hippuric acid and 0.06ng/l for benzoic acid. This method has been applied to the analysis of urine samples from the suspected of toluene abuser or glue sniffer among secondary school students at Johor Bahru.

Keywords: Glue sniffer, High Performance LiquidChromatography, Hippuric Acid, Toluene, Urine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3370
1371 Real Time Detection, Tracking and Recognition of Medication Intake

Authors: H. H. Huynh, J. Meunier, J.Sequeira, M.Daniel

Abstract:

In this paper, the detection and tracking of face, mouth, hands and medication bottles in the context of medication intake monitoring with a camera is presented. This is aimed at recognizing medication intake for elderly in their home setting to avoid an inappropriate use. Background subtraction is used to isolate moving objects, and then, skin and bottle segmentations are done in the RGB normalized color space. We use a minimum displacement distance criterion to track skin color regions and the R/G ratio to detect the mouth. The color-labeled medication bottles are simply tracked based on the color space distance to their mean color vector. For the recognition of medication intake, we propose a three-level hierarchal approach, which uses activity-patterns to recognize the normal medication intake activity. The proposed method was tested with three persons, with different medication intake scenarios, and gave an overall precision of over 98%.

Keywords: Activity recognition, background subtraction, tracking, medication intake, video surveillance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
1370 From Micro to Nanosystems: An Exploratory Study of Influences on Innovation Teams

Authors: Norbert Burger, Thorsten Staake

Abstract:

What influences microsystems (MEMS) and nanosystems (NEMS) innovation teams apart from technology complexity? Based on in-depth interviews with innovators, this research explores the key influences on innovation teams in the early phases of MEMS/NEMS. Projects are rare and may last from 5 to 10 years or more from idea to concept. As fundamental technology development in MEMS/NEMS is highly complex and interdisciplinary by involving expertise from different basic and engineering disciplines, R&D is rather a 'testing of ideas' with many uncertainties than a clearly structured process. The purpose of this study is to explore the innovation teams- environment and give specific insights for future management practices. The findings are grouped into three major areas: people, know-how and experience, and market. The results highlight the importance and differences of innovation teams- composition, transdisciplinary knowledge, project evaluation and management compared to the counterparts from new product development teams.

Keywords: Innovation teams, early phases, Microsystems, Nanosystems, technology developments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
1369 Fault Detection of Broken Rotor Bars Using Stator Current Spectrum for the Direct Torque Control Induction Motor

Authors: Ridha Kechida, Arezki Menacer, Abdelhamid Benakcha

Abstract:

The numerous qualities of squirrel cage induction machines enhance their use in industry. However, various faults can occur, such as stator short-circuits and rotor failures. In this paper, we use a technique based on the spectral analysis of stator current in order to detect the fault in the machine: broken rotor bars. Thus, the number effect of the breaks has been highlighted. The effect is highlighted by considering the machine controlled by the Direct Torque Control (DTC). The key to fault detection is the development of a simplified dynamic model of a squirrel cage induction motor taking account the broken bars fault and the stator current spectrum analysis (FFT).

Keywords: Rotor faults, diagnosis, induction motor, DTC, statorcurrent spectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3122
1368 Segmental and Subsegmental Lung Vessel Segmentation in CTA Images

Authors: H. Özkan

Abstract:

In this paper, a novel and fast algorithm for segmental and subsegmental lung vessel segmentation is introduced using Computed Tomography Angiography images. This process is quite important especially at the detection of pulmonary embolism, lung nodule, and interstitial lung disease. The applied method has been realized at five steps. At the first step, lung segmentation is achieved. At the second one, images are threshold and differences between the images are detected. At the third one, left and right lungs are gathered with the differences which are attained in the second step and Exact Lung Image (ELI) is achieved. At the fourth one, image, which is threshold for vessel, is gathered with the ELI. Lastly, identifying and segmentation of segmental and subsegmental lung vessel have been carried out thanks to image which is obtained in the fourth step. The performance of the applied method is found quite well for radiologists and it gives enough results to the surgeries medically.

Keywords: Computed tomography angiography (CTA), Computer aided detection (CAD), Lung segmentation, Lung vessel segmentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179
1367 Delay and Packet Loss Analysis for Handovers between MANETs and NEMO Networks

Authors: Jirawat Thaenthong, Steven Gordon

Abstract:

MANEMO is the integration of Network Mobility (NEMO) and Mobile Ad Hoc Network (MANET). A MANEMO node has an interface to both a MANET and NEMO network, and therefore should choose the optimal interface for packet delivery, however such a handover between interfaces will introduce packet loss. We define the steps necessary for a MANEMO handover, using Mobile IP and NEMO to signal the new binding to the relevant Home Agent(s). The handover steps aim to minimize the packet loss by avoiding waiting for Duplicate Address Detection and Neighbour Unreachability Detection. We present expressions for handover delay and packet loss, and then use numerical examples to evaluate a MANEMO handover. The analysis shows how the packet loss depends on level of nesting within NEMO, the delay between Home Agents and the load on the MANET, and hence can be used to developing optimal MANEMO handover algorithms.

Keywords: IP mobility, handover, MANET, network mobility

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083
1366 Image Ranking to Assist Object Labeling for Training Detection Models

Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman

Abstract:

Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.

Keywords: Computer vision, deep learning, object detection, semiconductor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827