Search results for: characterization techniques.
2258 Structural Sustainability Techniques for RC High Rise Buildings
Authors: Mohamed A. Azab
Abstract:
Over the early years of the 21st century, cities throughout the Middle East, particularly in the Gulf region have expanded more rapidly than ever before. Given the presence of a large volume of high-rise buildings allover the region, the local authority aims to set a new standard for sustainable development; with an integrated approach to maintain a balance between economy, quality, environmental protection and safety of life. In the very near future, as mandatory requirements, sustainability will be the criteria that should be included in all building projects. It is well known in the building sustainability topics that structural design engineers do not have a key role in this matter. In addition, the LEED (Leadership in Energy and Environmental Design) has looked almost exclusively on the environmental components and materials specifications. The objective of this paper is to focus and establish groundwork for sustainability techniques and applications related to the RC high-rise buildings design, from the structural point of view. A set of recommendations related to local conditions, structural modeling and analysis is given, and some helpful suggestions for structural design team work are addressed. This paper attempts to help structural engineers in identifying the building sustainability design, in order to meet local needs and achieve alternative solutions at an early stage of project design.Keywords: Building, Design, High-rise, Middle East, Structural, Sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34702257 Preparation and Physical Characterization of Nanocomposites of PLA / Layered Silicates
Authors: I. Restrepo, S. Solorzano
Abstract:
This work was focused in to study the compatibility, dispersion and exfoliation of modified nanoclays in biodegradable polymers and evaluate its effect on the physical, mechanical and thermal properties on the biodegradable matrix used. The formulations have been developed with polylactic acid (PLA) and organically modified montmorillonite-type commercial nanoclays (Cloisite 15, Cloisite 20, and Cloisite 30B) in the presence of a plasticizer agent, specifically Polyethylene Glycol of low molecular weight. Different compositions were evaluated, in order to identify the influence of each nanoclayin the polymeric matrix. The mixtures were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (DRX), transmission electron microscopy (TEM) and Tensile Test. These tests have allowed understanding the behavior of each of the mixtures developed.
Keywords: Biopolymers, Nanoclays, polylacticacid (PLA), polymer blends.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26892256 Characterization of Silica Nanoparticles in Interaction with Escherichia coli Bacteria
Authors: Ibtissem Gammoudi, Ndeye Rokhaya Faye, Fabien Moroté, Daniel Moynet, Christine Grauby-Heywang, Touria Cohen-Bouhacina
Abstract:
The objective of the present investigation was to evaluate the morphology of Escherchia coli bacteria in interaction with SiO2 nanoparticles. This study was made by atomic force microscopy and quartz crystal microbalance using SiO2 nanoparticles with 10nm, 50nm and 100nm diameter and bacteria immobilized on polyelectrolyte multilayer films obtained by spin coating or by “layer by layer” (LbL) method.
Keywords: Atomic Force Microscopy, Escherichia coli, Quartz Crystal Microbalance, polyelectrolyte, silica nanoparticle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26822255 Comparison Study on Characterization of Various Fly Ashes for Heavy Metal Adsorption
Authors: E. Moroydor Derun, N. Tugrul, N. Baran Acarali, A. S. Kipcak, S. Piskin
Abstract:
Fly ash is a waste material of coal firing thermal plants that is released from thermal power plants. It was defined as very fine particles that are drifted upward which are taken up by the flue gases. The emerging amount of fly ash in the world is approximately 600 million tons per year. In our country, it is expected that will be occurred 50 million tons of waste ash per year until 2020. The fly ashes can be evaluated by using as adsorbent material. The purpose of this study is to investigate the possibility of use of various fly ashes (Tuncbilek, Catalagzi, Orhaneli) like lowcost adsorbents for heavy metal adsorption. First of all, fly ashes were characterized. For this purpose; analyses such as XRD, XRF, SEM and FT-IR were performed.
Keywords: Adsorbent, fly ash, heavy metal, waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18532254 Building Information Modeling-Based Approach for Automatic Quantity Take-off and Cost Estimation
Authors: Lo Kar Yin, Law Ka Mei
Abstract:
Architectural, engineering, construction and operations (AECO) industry practitioners have been well adapting to the dynamic construction market from the fundamental training of its disciplines. As further triggered by the pandemic since 2019, great steps are taken in virtual environment and the best collaboration is strived with project teams without boundaries. With adoption of Building Information Modeling-based approach and qualitative analysis, this paper is to review quantity take-off (QTO) and cost estimation process through modeling techniques in liaison with suppliers, fabricators, subcontractors, contractors, designers, consultants and services providers in the construction industry value chain for automatic project cost budgeting, project cost control and cost evaluation on design options of in-situ reinforced-concrete construction and Modular Integrated Construction (MiC) at design stage, variation of works and cash flow/spending analysis at construction stage as far as practicable, with a view to sharing the findings for enhancing mutual trust and co-operation among AECO industry practitioners. It is to foster development through a common prototype of design and build project delivery method in NEC4 Engineering and Construction Contract (ECC) Options A and C.
Keywords: Building Information Modeling, cost estimation, quantity take-off, modeling techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7132253 Comparison of Machine Learning Techniques for Single Imputation on Audiograms
Authors: Sarah Beaver, Renee Bryce
Abstract:
Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125 Hz to 8000 Hz. The data contain patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R2 values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R2 values for the best models for KNN ranges from .89 to .95. The best imputation models received R2 between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our imputation models versus constant imputations by a two percent increase.
Keywords: Machine Learning, audiograms, data imputations, single imputations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612252 Design of SiC Capacitive Pressure Sensor with LC-Based Oscillator Readout Circuit
Authors: Azza M. Anis, M. M. Abutaleb, Hani F. Ragai, M. I. Eladawy
Abstract:
This paper presents the characterization and design of a capacitive pressure sensor with LC-based 0.35 µm CMOS readout circuit. SPICE is employed to evaluate the characteristics of the readout circuit and COMSOL multiphysics structural analysis is used to simulate the behavior of the pressure sensor. The readout circuit converts the capacitance variation of the pressure sensor into the frequency output. Simulation results show that the proposed pressure sensor has output frequency from 2.50 to 2.28 GHz in a pressure range from 0.1 to 2 MPa almost linearly. The sensitivity of the frequency shift with respect to the applied pressure load is 0.11 GHz/MPa.
Keywords: CMOS LC-based oscillator, micro pressure sensor, silicon carbide
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16702251 A Metallography Study of Secondary A226 Aluminium Alloy Used in Automotive Industries
Authors: Lenka Hurtalová, Eva Tillová, Mária Chalupová, Juraj Belan, Milan Uhríčik
Abstract:
The secondary alloy A226 is used for many automotive casting produced by mould casting and high pressure die casting. This alloy has excellent castability, good mechanical properties and cost-effectiveness. Production of primary aluminium alloys belong to heavy source fouling of life environs. The European Union calls for the emission reduction and reduction in energy consumption therefore increase production of recycled (secondary) aluminium cast alloys. The contribution is deal with influence of recycling on the quality of the casting made from A226 in automotive industry. The properties of the casting made from secondary aluminium alloys were compared with the required properties of primary aluminium alloys. The effect of recycling on microstructure was observed using combination different analytical techniques (light microscopy upon black-white etching, scanning electron microscopy - SEM upon deep etching and energy dispersive X-ray analysis - EDX). These techniques were used for the identification of the various structure parameters, which was used to compare secondary alloy microstructure with primary alloy microstructure.Keywords: A226 secondary aluminium alloy, deep etching, mechanical properties, recycling foundry aluminium alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33092250 Modelling and Simulation of Cascaded H-Bridge Multilevel Single Source Inverter Using PSIM
Authors: Gaddafi S. Shehu, T. Yalcinoz, Abdullahi B. Kunya
Abstract:
Multilevel inverters such as flying capacitor, diodeclamped, and cascaded H-bridge inverters are very popular particularly in medium and high power applications. This paper focuses on a cascaded H-bridge module using a single direct current (DC) source in order to generate an 11-level output voltage. The noble approach reduces the number of switches and gate drivers, in comparison with a conventional method. The anticipated topology produces more accurate result with an isolation transformer at high switching frequency. Different modulation techniques can be used for the multilevel inverter, but this work features modulation techniques known as selective harmonic elimination (SHE).This modulation approach reduces the number of carriers with reduction in Switching Losses, Total Harmonic Distortion (THD), and thereby increasing Power Quality (PQ). Based on the simulation result obtained, it appears SHE has the ability to eliminate selected harmonics by chopping off the fundamental output component. The performance evaluation of the proposed cascaded multilevel inverter is performed using PSIM simulation package and THD of 0.94% is obtained.
Keywords: Cascaded H-bridge Multilevel Inverter, Power Quality, Selective Harmonic Elimination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50962249 A Medical Images Based Retrieval System using Soft Computing Techniques
Authors: Pardeep Singh, Sanjay Sharma
Abstract:
Content-Based Image Retrieval (CBIR) has been one on the most vivid research areas in the field of computer vision over the last 10 years. Many programs and tools have been developed to formulate and execute queries based on the visual or audio content and to help browsing large multimedia repositories. Still, no general breakthrough has been achieved with respect to large varied databases with documents of difering sorts and with varying characteristics. Answers to many questions with respect to speed, semantic descriptors or objective image interpretations are still unanswered. In the medical field, images, and especially digital images, are produced in ever increasing quantities and used for diagnostics and therapy. In several articles, content based access to medical images for supporting clinical decision making has been proposed that would ease the management of clinical data and scenarios for the integration of content-based access methods into Picture Archiving and Communication Systems (PACS) have been created. This paper gives an overview of soft computing techniques. New research directions are being defined that can prove to be useful. Still, there are very few systems that seem to be used in clinical practice. It needs to be stated as well that the goal is not, in general, to replace text based retrieval methods as they exist at the moment.Keywords: CBIR, GA, Rough sets, CBMIR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26072248 Synthesis, Physicochemical Characterization and Study of the Antimicrobial Activity of Chlorobutanol
Authors: N. Hadhoum, B. Guerfi, T. M. Sider, Z. Yassa, T. Djerboua, M. Boursouti, M. Mamou, F. Z. Hadjadj Aoul, L. R. Mekacher
Abstract:
Introduction and objectives: Chlorobutanol is a raw material, mainly used as an antiseptic and antimicrobial preservative in injectable and ophthalmic preparations. The main objective of our study was the synthesis and evaluation of the antimicrobial activity of chlorobutanol hemihydrates. Material and methods: Chlorobutanol was synthesized according to the nucleophilic addition reaction of chloroform to acetone, identified by an infrared absorption using Spectrum One FTIR spectrometer, melting point, Scanning electron microscopy and colorimetric reactions. The dosage of carvedilol active substance was carried out by assaying the degradation products of chlorobutanol in a basic solution. The chlorobutanol obtained was subjected to bacteriological tests in order to study its antimicrobial activity. The antibacterial activity was evaluated against strains such as Escherichia coli (ATCC 25 922), Staphylococcus aureus (ATCC 25 923) and Pseudomonas aeroginosa (ATCC = American type culture collection). The antifungal activity was evaluated against human pathogenic fungal strains, such as Candida albicans and Aspergillus niger provided by the parasitology laboratory of the Hospital of Tizi-Ouzou, Algeria. Results and discussion: Chlorobutanol was obtained in an acceptable yield. The characterization tests of the product obtained showed a white and crystalline appearance (confirmed by scanning electron microscopy), solubilities (in water, ethanol and glycerol), and a melting temperature in accordance with the requirements of the European pharmacopoeia. The colorimetric reactions were directed towards the presence of a trihalogenated carbon and an alcohol function. The spectral identification (IR) showed the presence of characteristic chlorobutanol peaks and confirmed the structure of the latter. The microbiological study revealed an antimicrobial effect on all strains tested (Sataphylococcus aureus (MIC = 1250 µg/ml), E. coli (MIC = 1250 µg/ml), Pseudomonas aeroginosa (MIC = 1250 µg/ml), Candida albicans (MIC =2500 µg/ml), Aspergillus niger (MIC =2500 µg/ml)) with MIC values close to literature data. Conclusion: Thus, on the whole, the synthesized chlorobutanol satisfied the requirements of the European Pharmacopoeia, and possesses antibacterial and antifungal activity; nevertheless, it is necessary to insist on the purification step of the product in order to eliminate the maximum impurities.
Keywords: Antimicrobial agent, bacterial and fungal strains, chlorobutanol, MIC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9452247 Multi Switched Split Vector Quantizer
Authors: M. Satya Sai Ram, P. Siddaiah, M. Madhavi Latha
Abstract:
Vector quantization is a powerful tool for speech coding applications. This paper deals with LPC Coding of speech signals which uses a new technique called Multi Switched Split Vector Quantization, This is a hybrid of two product code vector quantization techniques namely the Multi stage vector quantization technique, and Switched split vector quantization technique,. Multi Switched Split Vector Quantization technique quantizes the linear predictive coefficients in terms of line spectral frequencies. From results it is proved that Multi Switched Split Vector Quantization provides better trade off between bitrate and spectral distortion performance, computational complexity and memory requirements when compared to Switched Split Vector Quantization, Multi stage vector quantization, and Split Vector Quantization techniques. By employing the switching technique at each stage of the vector quantizer the spectral distortion, computational complexity and memory requirements were greatly reduced. Spectral distortion was measured in dB, Computational complexity was measured in floating point operations (flops), and memory requirements was measured in (floats).Keywords: Unconstrained vector quantization, Linear predictiveCoding, Split vector quantization, Multi stage vector quantization, Switched Split vector quantization, Line Spectral Frequencies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17422246 Corporate Credit Rating using Multiclass Classification Models with order Information
Authors: Hyunchul Ahn, Kyoung-Jae Kim
Abstract:
Corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has been one of the attractive research topics in the literature. In recent years, multiclass classification models such as artificial neural network (ANN) or multiclass support vector machine (MSVM) have become a very appealing machine learning approaches due to their good performance. However, most of them have only focused on classifying samples into nominal categories, thus the unique characteristic of the credit rating - ordinality - has been seldom considered in their approaches. This study proposes new types of ANN and MSVM classifiers, which are named OMANN and OMSVM respectively. OMANN and OMSVM are designed to extend binary ANN or SVM classifiers by applying ordinal pairwise partitioning (OPP) strategy. These models can handle ordinal multiple classes efficiently and effectively. To validate the usefulness of these two models, we applied them to the real-world bond rating case. We compared the results of our models to those of conventional approaches. The experimental results showed that our proposed models improve classification accuracy in comparison to typical multiclass classification techniques with the reduced computation resource.Keywords: Artificial neural network, Corporate credit rating, Support vector machines, Ordinal pairwise partitioning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34402245 Fabrication of Carbon Doped TiO2 Nanotubes via In-situ Anodization of Ti-foil in Acidic Medium
Authors: Asma M. Milad, Mohammad B. Kassim, Wan R. Daud
Abstract:
Highly ordered TiO2 nanotube (TNT) arrays were fabricated onto a pre-treated titanium foil by anodic oxidation with a voltage of 20V in phosphoric acid/sodium fluoride electrolyte. A pretreatment of titanium foil involved washing with acetone, isopropanol, ethanol and deionized water. Carbon doped TiO2 nanotubes (C-TNT) was fabricated 'in-situ' with the same method in the presence of polyvinyl alcohol and urea as carbon sources. The affects of polyvinyl alcohol concentration and oxidation time on the composition, morphology and structure of the C-TN were studied by FE-SEM, EDX and XRD techniques. FESEM images of the nanotubes showed uniform arrays of C-TNTs. The density and microstructures of the nanotubes were greatly affected by the content of PVA. The introduction of the polyvinyl alcohol into the electrolyte increases the amount of C content inside TiO2 nanotube arrays uniformly. The influence of carbon content on the photo-current of C-TNT was investigated and the I-V profiles of the nanotubes were established. The preliminary results indicated that the 'in-situ' doping technique produced a superior quality nanotubes compared to post doping techniques.Keywords: Anodization, photoelectrochemical cell, 'in-situ', post doping, thin film, and titania nanotube arrays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26142244 Automated Optic Disc Detection in Retinal Images of Patients with Diabetic Retinopathy and Risk of Macular Edema
Authors: Arturo Aquino, Manuel Emilio Gegundez, Diego Marin
Abstract:
In this paper, a new automated methodology to detect the optic disc (OD) automatically in retinal images from patients with risk of being affected by Diabetic Retinopathy (DR) and Macular Edema (ME) is presented. The detection procedure comprises two independent methodologies. On one hand, a location methodology obtains a pixel that belongs to the OD using image contrast analysis and structure filtering techniques and, on the other hand, a boundary segmentation methodology estimates a circular approximation of the OD boundary by applying mathematical morphology, edge detection techniques and the Circular Hough Transform. The methodologies were tested on a set of 1200 images composed of 229 retinographies from patients affected by DR with risk of ME, 431 with DR and no risk of ME and 540 images of healthy retinas. The location methodology obtained 98.83% success rate, whereas the OD boundary segmentation methodology obtained good circular OD boundary approximation in 94.58% of cases. The average computational time measured over the total set was 1.67 seconds for OD location and 5.78 seconds for OD boundary segmentation.
Keywords: Diabetic retinopathy, macular edema, optic disc, automated detection, automated segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27902243 Modeling Oxygen-transfer by Multiple Plunging Jets using Support Vector Machines and Gaussian Process Regression Techniques
Authors: Surinder Deswal
Abstract:
The paper investigates the potential of support vector machines and Gaussian process based regression approaches to model the oxygen–transfer capacity from experimental data of multiple plunging jets oxygenation systems. The results suggest the utility of both the modeling techniques in the prediction of the overall volumetric oxygen transfer coefficient (KLa) from operational parameters of multiple plunging jets oxygenation system. The correlation coefficient root mean square error and coefficient of determination values of 0.971, 0.002 and 0.945 respectively were achieved by support vector machine in comparison to values of 0.960, 0.002 and 0.920 respectively achieved by Gaussian process regression. Further, the performances of both these regression approaches in predicting the overall volumetric oxygen transfer coefficient was compared with the empirical relationship for multiple plunging jets. A comparison of results suggests that support vector machines approach works well in comparison to both empirical relationship and Gaussian process approaches, and could successfully be employed in modeling oxygen-transfer.Keywords: Oxygen-transfer, multiple plunging jets, support vector machines, Gaussian process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16412242 Normal and Peaberry Coffee Beans Classification from Green Coffee Bean Images Using Convolutional Neural Networks and Support Vector Machine
Authors: Hira Lal Gope, Hidekazu Fukai
Abstract:
The aim of this study is to develop a system which can identify and sort peaberries automatically at low cost for coffee producers in developing countries. In this paper, the focus is on the classification of peaberries and normal coffee beans using image processing and machine learning techniques. The peaberry is not bad and not a normal bean. The peaberry is born in an only single seed, relatively round seed from a coffee cherry instead of the usual flat-sided pair of beans. It has another value and flavor. To make the taste of the coffee better, it is necessary to separate the peaberry and normal bean before green coffee beans roasting. Otherwise, the taste of total beans will be mixed, and it will be bad. In roaster procedure time, all the beans shape, size, and weight must be unique; otherwise, the larger bean will take more time for roasting inside. The peaberry has a different size and different shape even though they have the same weight as normal beans. The peaberry roasts slower than other normal beans. Therefore, neither technique provides a good option to select the peaberries. Defect beans, e.g., sour, broken, black, and fade bean, are easy to check and pick up manually by hand. On the other hand, the peaberry pick up is very difficult even for trained specialists because the shape and color of the peaberry are similar to normal beans. In this study, we use image processing and machine learning techniques to discriminate the normal and peaberry bean as a part of the sorting system. As the first step, we applied Deep Convolutional Neural Networks (CNN) and Support Vector Machine (SVM) as machine learning techniques to discriminate the peaberry and normal bean. As a result, better performance was obtained with CNN than with SVM for the discrimination of the peaberry. The trained artificial neural network with high performance CPU and GPU in this work will be simply installed into the inexpensive and low in calculation Raspberry Pi system. We assume that this system will be used in under developed countries. The study evaluates and compares the feasibility of the methods in terms of accuracy of classification and processing speed.
Keywords: Convolutional neural networks, coffee bean, peaberry, sorting, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15542241 Harnessing the Power of AI: Transforming DevSecOps for Enhanced Cloud Security
Authors: Ashly Joseph, Jithu Paulose
Abstract:
The increased usage of cloud computing has revolutionized the IT landscape, but it has also raised new security concerns. DevSecOps emerged as a way for tackling these difficulties by integrating security into the software development process. However, the rising complexity and sophistication of cyber threats need more advanced solutions. This paper looks into the usage of artificial intelligence (AI) techniques in the DevSecOps framework to increase cloud security. This study uses quantitative and qualitative techniques to assess the usefulness of AI approaches such as machine learning, natural language processing, and deep learning in reducing security issues. This paper thoroughly examines the symbiotic relationship between AI and DevSecOps, concentrating on how AI may be seamlessly integrated into the continuous integration and continuous delivery (CI/CD) pipeline, automated security testing, and real-time monitoring methods. The findings emphasize AI's huge potential to improve threat detection, risk assessment, and incident response skills. Furthermore, the paper examines the implications and challenges of using AI in DevSecOps workflows, considering factors like as scalability, interpretability, and adaptability. This paper adds to a better understanding of AI's revolutionary role in cloud security and provides valuable insights for practitioners and scholars in the field.
Keywords: Cloud Security, DevSecOps, Artificial Intelligence, AI, Machine Learning, Natural Language Processing, NLP, cybersecurity, AI-driven Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382240 Synthesis, Physicochemical Characterization and Study of the Antimicrobial Activity of Chlorobutanol
Authors: H. Nadia, G. Bahdja, S. Thili Malha, Y. Zahoua, D. Taoufik, B. Mourad, M. Marzouk, F. Z. Hadjadj Aoul, L. R. Mekacher
Abstract:
Introduction and objectives: Chlorobutanol is a raw material, mainly used as an antiseptic and antimicrobial preservative in injectable and ophthalmic preparations. The main objective of our study was the synthesis and evaluation of the antimicrobial activity of chlorobutanol hemihydrates. Material and methods: Chlorobutanol was synthesized according to the nucleophilic addition reaction of chloroform to acetone, identified by an infrared absorption using Spectrum One FTIR spectrometer, melting point, Scanning electron microscopy and colorimetric reactions. The dosage of Carvedilol active substance was carried out by assaying the degradation products of chlorobutanol in a basic solution. The chlorobutanol obtained was subjected to bacteriological tests in order to study its antimicrobial activity. The antibacterial activity was evaluated against strains such as Escherichia coli (ATCC 25 922), Staphylococcus aureus (ATCC 25 923) and Pseudomonas aeroginosa (ATCC = American type culture collection). The antifungal activity was evaluated against human pathogenic fungal strains, such as Candida albicans and Aspergillus niger provided by the parasitology laboratory of the Hospital of Tizi-Ouzou, Algeria. Results and discussion: Chlorobutanol was obtained in an acceptable yield. The characterization tests of the product obtained showed a white and crystalline appearance (confirmed by scanning electron microscopy), solubilities (in water, ethanol and glycerol), and a melting temperature in accordance with the requirements of the European pharmacopoeia. The colorimetric reactions were directed towards the presence of a trihalogenated carbon and an alcohol function. The spectral identification (IR) showed the presence of characteristic chlorobutanol peaks and confirmed the structure of the latter. The microbiological study revealed an antimicrobial effect on all strains tested (Sataphylococcus aureus (MIC = 1250 µg/ml), E. coli (MIC = 1250 µg/ml), Pseudomonas aeroginosa (MIC = 1250 µg/ml), Candida albicans (MIC =2500 µg/ml), Aspergillus niger (MIC =2500 µg/ml)) with MIC values close to literature data. Conclusion: Thus, on the whole, the synthesized chlorobutanol satisfied the requirements of the European Pharmacopoeia, and possesses antibacterial and antifungal activity; nevertheless it is necessary to insist on the purification step of the product in order to eliminate the maximum impurities.
Keywords: Antimicrobial agent, bacterial and fungal strains, chlorobutanol, MIC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19062239 Robust Digital Cinema Watermarking
Authors: Sadi Vural, Hiromi Tomii, Hironori Yamauchi
Abstract:
With the advent of digital cinema and digital broadcasting, copyright protection of video data has been one of the most important issues. We present a novel method of watermarking for video image data based on the hardware and digital wavelet transform techniques and name it as “traceable watermarking" because the watermarked data is constructed before the transmission process and traced after it has been received by an authorized user. In our method, we embed the watermark to the lowest part of each image frame in decoded video by using a hardware LSI. Digital Cinema is an important application for traceable watermarking since digital cinema system makes use of watermarking technology during content encoding, encryption, transmission, decoding and all the intermediate process to be done in digital cinema systems. The watermark is embedded into the randomly selected movie frames using hash functions. Embedded watermark information can be extracted from the decoded video data. For that, there is no need to access original movie data. Our experimental results show that proposed traceable watermarking method for digital cinema system is much better than the convenient watermarking techniques in terms of robustness, image quality, speed, simplicity and robust structure.Keywords: Decoder, Digital content, JPEG2000 Frame, System-On-Chip, traceable watermark, Hash Function, CRC-32.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16492238 A New Failure Analysis for Maintenance Management in Complex Hospitals
Authors: R. Miniati, F. Dori, E. Iadanza, M. Fregonara Medici
Abstract:
management of medical devices in hospitals includes the planning of medical equipment acquisition and maintenance. The presence of critical and non-critical areas together with technological proliferation render the management of medical devices very complex. This study creates an easy and objective methodology for the analysis of medical equipment maintenance, that makes the management of medical devices more feasible. The study has been carried out at Florence Hospital Careggi and it aims to help the clinical engineering department to manage medical equipment by clarifying the hospital situation through a characterization of the different areas, technologies and fault typologies.Keywords: Clinical Engineering, Maintenance, Medical DevicesManagement, Key Performance Indicators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18002237 Comparison of Machine Learning and Deep Learning Algorithms for Automatic Classification of 80 Different Pollen Species
Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinié
Abstract:
Palynology is a field of interest in many disciplines due to its multiple applications: chronological dating, climatology, allergy treatment, and honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time consuming task that requires the intervention of experts in the field, which are becoming increasingly rare due to economic and social conditions. In this context, the automation of this task is urgent. In this work, we compare classical feature extraction methods (Shape, GLCM, LBP, and others) and Deep Learning (CNN and Transfer Learning) to perform a recognition task over 80 regional pollen species. It has been found that the use of Transfer Learning seems to be more precise than the other approaches.
Keywords: Image segmentation, stuck particles separation, Sobel operator, thresholding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022236 Study of Polyphenol Profile and Antioxidant Capacity in Italian Ancient Apple Varieties by Liquid Chromatography
Authors: A. M. Tarola, R. Preti, A. M. Girelli, P. Campana
Abstract:
Safeguarding, studying and enhancing biodiversity play an important and indispensable role in re-launching agriculture. The ancient local varieties are therefore a precious resource for genetic and health improvement. In order to protect biodiversity through the recovery and valorization of autochthonous varieties, in this study we analyzed 12 samples of four ancient apple cultivars representative of Friuli Venezia Giulia, selected by local farmers who work on a project for the recovery of ancient apple cultivars. The aim of this study is to evaluate the polyphenolic profile and the antioxidant capacity that characterize the organoleptic and functional qualities of this fruit species, besides having beneficial properties for health. In particular, for each variety, the following compounds were analyzed, both in the skins and in the pulp: gallic acid, catechin, chlorogenic acid, epicatechin, caffeic acid, coumaric acid, ferulic acid, rutin, phlorizin, phloretin and quercetin to highlight any differences in the edible parts of the apple. The analysis of individual phenolic compounds was performed by High Performance Liquid Chromatography (HPLC) coupled with a diode array UV detector (DAD), the antioxidant capacity was estimated using an in vitro essay based on a Free Radical Scavenging Method and the total phenolic compounds was determined using the Folin-Ciocalteau method. From the results, it is evident that the catechins are the most present polyphenols, reaching a value of 140-200 μg/g in the pulp and of 400-500 μg/g in the skin, with the prevalence of epicatechin. Catechins and phlorizin, a dihydrohalcone typical of apples, are always contained in larger quantities in the peel. Total phenolic compounds content was positively correlated with antioxidant activity in apple pulp (r2 = 0,850) and peel (r2 = 0,820). Comparing the results, differences between the varieties analyzed and between the edible parts (pulp and peel) of the apple were highlighted. In particular, apple peel is richer in polyphenolic compounds than pulp and flavonols are exclusively present in the peel. In conclusion, polyphenols, being antioxidant substances, have confirmed the benefits of fruit in the diet, especially as a prevention and treatment for degenerative diseases. They demonstrated to be also a good marker for the characterization of different apple cultivars. The importance of protecting biodiversity in agriculture was also highlighted through the exploitation of native products and ancient varieties of apples now forgotten.
Keywords: Apple, biodiversity, polyphenols, antioxidant activity, HPLC-DAD, characterization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8322235 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study
Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple
Abstract:
There is a dramatic surge in the adoption of Machine Learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. Artificial Intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and two defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt ML techniques without rigorous testing, since they may be vulnerable to adversarial attacks, especially in security-critical areas such as the nuclear industry. We observed that while the adopted defence methods can effectively defend against different attacks, none of them could protect against all five adversarial attacks entirely.
Keywords: Resilient Machine Learning, attacks, defences, nuclear industry, crack detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5022234 A Comprehensive Survey on Machine Learning Techniques and User Authentication Approaches for Credit Card Fraud Detection
Authors: Niloofar Yousefi, Marie Alaghband, Ivan Garibay
Abstract:
With the increase of credit card usage, the volume of credit card misuse also has significantly increased, which may cause appreciable financial losses for both credit card holders and financial organizations issuing credit cards. As a result, financial organizations are working hard on developing and deploying credit card fraud detection methods, in order to adapt to ever-evolving, increasingly sophisticated defrauding strategies and identifying illicit transactions as quickly as possible to protect themselves and their customers. Compounding on the complex nature of such adverse strategies, credit card fraudulent activities are rare events compared to the number of legitimate transactions. Hence, the challenge to develop fraud detection that are accurate and efficient is substantially intensified and, as a consequence, credit card fraud detection has lately become a very active area of research. In this work, we provide a survey of current techniques most relevant to the problem of credit card fraud detection. We carry out our survey in two main parts. In the first part, we focus on studies utilizing classical machine learning models, which mostly employ traditional transnational features to make fraud predictions. These models typically rely on some static physical characteristics, such as what the user knows (knowledge-based method), or what he/she has access to (object-based method). In the second part of our survey, we review more advanced techniques of user authentication, which use behavioral biometrics to identify an individual based on his/her unique behavior while he/she is interacting with his/her electronic devices. These approaches rely on how people behave (instead of what they do), which cannot be easily forged. By providing an overview of current approaches and the results reported in the literature, this survey aims to drive the future research agenda for the community in order to develop more accurate, reliable and scalable models of credit card fraud detection.
Keywords: credit card fraud detection, user authentication, behavioral biometrics, machine learning, literature survey
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5462233 Application of Computational Intelligence Techniques for Economic Load Dispatch
Authors: S.C. Swain, S. Panda, A.K. Mohanty, C. Ardil
Abstract:
This paper presents the applications of computational intelligence techniques to economic load dispatch problems. The fuel cost equation of a thermal plant is generally expressed as continuous quadratic equation. In real situations the fuel cost equations can be discontinuous. In view of the above, both continuous and discontinuous fuel cost equations are considered in the present paper. First, genetic algorithm optimization technique is applied to a 6- generator 26-bus test system having continuous fuel cost equations. Results are compared to conventional quadratic programming method to show the superiority of the proposed computational intelligence technique. Further, a 10-generator system each with three fuel options distributed in three areas is considered and particle swarm optimization algorithm is employed to minimize the cost of generation. To show the superiority of the proposed approach, the results are compared with other published methods.
Keywords: Economic Load Dispatch, Continuous Fuel Cost, Quadratic Programming, Real-Coded Genetic Algorithm, Discontinuous Fuel Cost, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22742232 Artificial Neural Networks for Classifying Magnetic Measurements in Tokamak Reactors
Authors: A. Greco, N. Mammone, F.C. Morabito, M.Versaci
Abstract:
This paper is mainly concerned with the application of a novel technique of data interpretation to the characterization and classification of measurements of plasma columns in Tokamak reactors for nuclear fusion applications. The proposed method exploits several concepts derived from soft computing theory. In particular, Artifical Neural Networks have been exploited to classify magnetic variables useful to determine shape and position of the plasma with a reduced computational complexity. The proposed technique is used to analyze simulated databases of plasma equilibria based on ITER geometry configuration. As well as demonstrating the successful recovery of scalar equilibrium parameters, we show that the technique can yield practical advantages compares with earlier methods.
Keywords: Tokamak, sensors, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18232231 Equivalent Circuit Modelling of Active Reflectarray Antenna
Authors: M. Y. Ismail, M. Inam
Abstract:
This paper presents equivalent circuit modeling of active planar reflectors which can be used for the detailed analysis and characterization of reflector performance in terms of lumped components. Equivalent circuit representation has been proposed for PIN diodes and liquid crystal based active planar reflectors designed within X-band frequency range. A very close agreement has been demonstrated between equivalent circuit results, 3D EM simulated results as well as measured scattering parameter results. In the case of measured results, a maximum discrepancy of 1.05dB was observed in the reflection loss performance, which can be attributed to the losses occurred during measurement process.
Keywords: Equivalent circuit modelling, planar reflectors, reflectarray antenna, PIN diode, liquid crystal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10692230 Ozone Decomposition over Silver-Loaded Perlite
Authors: Krassimir Genov, Vladimir Georgiev, Todor Batakliev, Dipak K. Sarker
Abstract:
The Bulgarian natural expanded mineral obtained from Bentonite AD perlite (A deposit of "The Broken Mountain" for perlite mining, near by the village of Vodenicharsko, in the municipality of Djebel), was loaded with silver (as ion form - Ag+ 2 and 5 wt% by the incipient wetness impregnation method), and as atomic silver - Ag0 using Tollen-s reagent (silver mirror reaction). Some physicochemical characterization of the samples are provided via: DC arc-AES, XRD, DR-IR and UV-VIS. The aim of this work was to obtain and test the silver-loaded catalyst for ozone decomposition. So the samples loaded with atomic silver show ca. 80% conversion of ozone 20 minutes after the reaction start. Then conversion decreases to ca. 20 % but stay stable during the prolongation of time.
Keywords: aluminum-silicates, Ag/perlite expanded glass, ozone decomposition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22682229 Dependence of Densification, Hardness and Wear Behaviors of Ti6Al4V Powders on Sintering Temperature
Authors: Adewale O. Adegbenjo, Elsie Nsiah-Baafi, Mxolisi B. Shongwe, Mercy Ramakokovhu, Peter A. Olubambi
Abstract:
The sintering step in powder metallurgy (P/M) processes is very sensitive as it determines to a large extent the properties of the final component produced. Spark plasma sintering over the past decade has been extensively used in consolidating a wide range of materials including metallic alloy powders. This novel, non-conventional sintering method has proven to be advantageous offering full densification of materials, high heating rates, low sintering temperatures, and short sintering cycles over conventional sintering methods. Ti6Al4V has been adjudged the most widely used α+β alloy due to its impressive mechanical performance in service environments, especially in the aerospace and automobile industries being a light metal alloy with the capacity for fuel efficiency needed in these industries. The P/M route has been a promising method for the fabrication of parts made from Ti6Al4V alloy due to its cost and material loss reductions and the ability to produce near net and intricate shapes. However, the use of this alloy has been largely limited owing to its relatively poor hardness and wear properties. The effect of sintering temperature on the densification, hardness, and wear behaviors of spark plasma sintered Ti6Al4V powders was investigated in this present study. Sintering of the alloy powders was performed in the 650–850°C temperature range at a constant heating rate, applied pressure and holding time of 100°C/min, 50 MPa and 5 min, respectively. Density measurements were carried out according to Archimedes’ principle and microhardness tests were performed on sectioned as-polished surfaces at a load of 100gf and dwell time of 15 s. Dry sliding wear tests were performed at varied sliding loads of 5, 15, 25 and 35 N using the ball-on-disc tribometer configuration with WC as the counterface material. Microstructural characterization of the sintered samples and wear tracks were carried out using SEM and EDX techniques. The density and hardness characteristics of sintered samples increased with increasing sintering temperature. Near full densification (99.6% of the theoretical density) and Vickers’ micro-indentation hardness of 360 HV were attained at 850°C. The coefficient of friction (COF) and wear depth improved significantly with increased sintering temperature under all the loading conditions examined, except at 25 N indicating better mechanical properties at high sintering temperatures. Worn surface analyses showed the wear mechanism was a synergy of adhesive and abrasive wears, although the former was prevalent.
Keywords: Hardness, powder metallurgy, Spark plasma sintering, wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580