Search results for: Shear Wall
253 A Comparative Study of Turbulence Models Performance for Turbulent Flow in a Planar Asymmetric Diffuser
Authors: Samy M. El-Behery, Mofreh H. Hamed
Abstract:
This paper presents a computational study of the separated flow in a planer asymmetric diffuser. The steady RANS equations for turbulent incompressible fluid flow and six turbulence closures are used in the present study. The commercial software code, FLUENT 6.3.26, was used for solving the set of governing equations using various turbulence models. Five of the used turbulence models are available directly in the code while the v2-f turbulence model was implemented via User Defined Scalars (UDS) and User Defined Functions (UDF). A series of computational analysis is performed to assess the performance of turbulence models at different grid density. The results show that the standard k-ω, SST k-ω and v2-f models clearly performed better than other models when an adverse pressure gradient was present. The RSM model shows an acceptable agreement with the velocity and turbulent kinetic energy profiles but it failed to predict the location of separation and attachment points. The standard k-ε and the low-Re k- ε delivered very poor results.
Keywords: Turbulence models, turbulent flow, wall functions, separation, reattachment, diffuser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3769252 MHD Natural Convection Flow of Tangent Hyperbolic Nanofluid Past a Vertical Permeable Cone
Authors: A. Mahdy
Abstract:
In this paper, a non-similraity analysis has been presented to exhibit the two-dimensional boundary layer flow of magnetohydrodynamic (MHD) natural convection of tangent hyperbolic nanofluid nearby a vertical permeable cone in the presence of variable wall temperature impact. The mutated boundary layer nonlinear governing equations are solved numerically by the an efficient implicit finite difference procedure. For both nanofluid effective viscosity and nanofluid thermal conductivity, a number of experimental relations have been recognized. For characterizing the nanofluid, the compatible nanoparticle volume fraction model has been used. Nusselt number and skin friction coefficient are calculated for some values of Weissenberg number W, surface temperature exponent n, magnetic field parameter Mg, power law index m and Prandtl number Pr as functions of suction parameter. The rate of heat transfer from a vertical permeable cone in a regular fluid is less than that in nanofluids. A best convection has been presented by Copper nanoparticle among all the used nanoparticles.Keywords: Tangent hyperbolic nanofluid, finite difference, non-similarity, isothermal cone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 784251 Performance Study of Scraped Surface Heat Exchanger with Helical Ribbons
Abstract:
In this work, numerical simulations were carried out using a specific CFD code in order to study the performance of an innovative Scraped Surface Heat Exchanger (SSHE) with helical ribbons for Bingham fluids (threshold fluids). The resolution of three-dimensional form of the conservation equations (continuity, momentum and energy equations) was carried out basing on the finite volume method (FVM). After studying the effect of dimensionless numbers (axial Reynolds, rotational Reynolds and Oldroyd numbers) on the hydrodynamic and thermal behaviors within SSHE, a parametric study was developed, by varying the width of the helical ribbon, the clearance between the stator wall and the tip of the ribbon and the number of turns of the helical ribbon, in order to improve the heat transfer inside the exchanger. The effect of these geometrical numbers on the hydrodynamic and thermal behaviors was discussed.Keywords: Heat transfer, helical ribbons, hydrodynamic behavior, parametric study, scraped surface heat exchanger, thermal behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1249250 Despiking of Turbulent Flow Data in Gravel Bed Stream
Authors: Ratul Das
Abstract:
The present experimental study insights the decontamination of instantaneous velocity fluctuations captured by Acoustic Doppler Velocimeter (ADV) in gravel-bed streams to ascertain near-bed turbulence for low Reynolds number. The interference between incidental and reflected pulses produce spikes in the ADV data especially in the near-bed flow zone and therefore filtering the data are very essential. Nortek’s Vectrino four-receiver ADV probe was used to capture the instantaneous three-dimensional velocity fluctuations over a non-cohesive bed. A spike removal algorithm based on the acceleration threshold method was applied to note the bed roughness and its influence on velocity fluctuations and velocity power spectra in the carrier fluid. The velocity power spectra of despiked signals with a best combination of velocity threshold (VT) and acceleration threshold (AT) are proposed which ascertained velocity power spectra a satisfactory fit with the Kolmogorov “–5/3 scaling-law” in the inertial sub-range. Also, velocity distributions below the roughness crest level fairly follows a third-degree polynomial series.
Keywords: Acoustic Doppler Velocimeter, gravel-bed, spike removal, Reynolds shear stress, near-bed turbulence, velocity power spectra.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1179249 Coupled Lateral-Torsional Free Vibrations Analysis of Laminated Composite Beam using Differential Quadrature Method
Authors: S.H. Mirtalaie, M. Mohammadi, M.A. Hajabasi, F.Hejripour
Abstract:
In this paper the Differential Quadrature Method (DQM) is employed to study the coupled lateral-torsional free vibration behavior of the laminated composite beams. In such structures due to the fiber orientations in various layers, the lateral displacement leads to a twisting moment. The coupling of lateral and torsional vibrations is modeled by the bending-twisting material coupling rigidity. In the present study, in addition to the material coupling, the effects of shear deformation and rotary inertia are taken into account in the definition of the potential and kinetic energies of the beam. The governing differential equations of motion which form a system of three coupled PDEs are solved numerically using DQ procedure under different boundary conditions consist of the combinations of simply, clamped, free and other end conditions. The resulting natural frequencies and mode shapes for cantilever beam are compared with similar results in the literature and good agreement is achieved.
Keywords: Differential Quadrature Method, Free vibration, Laminated composite beam, Material coupling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129248 Free Vibration Analysis of Conical Helicoidal Rods Having Elliptical Cross Sections Positioned in Different Orientation
Authors: Merve Ermis, Akif Kutlu, Nihal Eratlı, Mehmet H. Omurtag
Abstract:
In this study, the free vibration analysis of conical helicoidal rods with two different elliptically oriented cross sections is investigated and the results are compared by the circular cross-section keeping the net area for all cases equal to each other. Problems are solved by using the mixed finite element formulation. Element matrices based on Timoshenko beam theory are employed. The finite element matrices are derived by directly inserting the analytical expressions (arc length, curvature, and torsion) defining helix geometry into the formulation. Helicoidal rod domain is discretized by a two-noded curvilinear element. Each node of the element has 12 DOFs, namely, three translations, three rotations, two shear forces, one axial force, two bending moments and one torque. A parametric study is performed to investigate the influence of elliptical cross sectional geometry and its orientation over the natural frequencies of the conical type helicoidal rod.Keywords: Conical helix, elliptical cross section, finite element, free vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277247 Studying Frame-Resistant Steel Structures under near Field Ground Motion
Authors: S. A. Hashemi, A. Khoshraftar
Abstract:
This paper presents the influence of the vertical seismic component on the non-linear dynamics analysis of three different structures. The subject structures were analyzed and designed according to recent codes. This paper considers three types of buildings: 5-, 10-, and 15-story buildings. The non-linear dynamics analysis of the structures with assuming elastic-perfectly-plastic behavior was performed using RAM PERFORM-3D software; the horizontal component was taken into consideration with and without the incorporation of the corresponding vertical component. Dynamic responses obtained for the horizontal component acting alone were compared with those obtained from the simultaneous application of both seismic components. The results show that the effect of the vertical component of ground motion may increase the axial load significantly in the interior columns and, consequently, the stories. The plastic mechanisms would be changed. The P-Delta effect is expected to increase. The punching base plate shear of the columns should be considered. Moreover, the vertical component increases the input energy when the structures exhibit inelastic behavior and are taller.Keywords: Inelastic behavior, non-linear dynamic analysis, steel structure, vertical component.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795246 Comparative Analysis of Turbulent Plane Jets from a Sharp-Edged Orifice, a Beveled-Edge Orifice and a Radially Contoured Nozzle
Authors: Ravinesh C. Deo
Abstract:
This article investigates through experiments the flow characteristics of plane jets from sharp-edged orifice-plate, beveled-edge and radially contoured nozzle. The first two configurations exhibit saddle-backed velocity profiles while the third shows a top-hat. A vena contracta is found for the jet emanating from orifice at x/h » 3 while the contoured case displays a potential core extending to the range x/h = 5. A spurt in jet pressure on the centerline supports vena contracta for the orifice-jet. Momentum thicknesses and integral length scales elongate linearly with x although the growth of the shear-layer and large-scale eddies for the orifice are greater than the contoured case. The near-field spectrum exhibits higher frequency of the primary eddies that concur with enhanced turbulence intensity. Importantly, highly “turbulent” state of the orifice-jet prevails in the far-field where the spectra confirm more energetic secondary eddies associated with greater flapping amplitude of the orifice-jet.
Keywords: Orifice, beveled-edge-orifice, radially contoured nozzle, plane jets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2678245 Detached-Eddy Simulation of Vortex Generator Jet Using Chimera Grids
Authors: Saqib Mahmood, Rolf Radespiel
Abstract:
This paper aims at numerically analysing the effect of an active flow control (AFC) by a vortex generator jet (VGJ) submerged in a boundary layer via Chimera Grids and Detached- Eddy Simulation (DES). The performance of DES results are judged against Reynolds-Averaged Navier-Stokes (RANS) and compared with the experiments that showed an unsteady vortex motion downstream of VGJ. Experimental results showed that the mechanism of embedding logitudinal vortex structure in the main stream flow is quite effective in increasing the near wall momentum of separated aircraft wing. In order to simulate such a flow configuration together with the VGJ, an efficient numerical approach is required. This requirement is fulfilled by performing the DES simulation over the flat plate using the DLR TAU Code. The DES predictions identify the vortex region via smooth hybrid length scale and predict the unsteady vortex motion observed in the experiments. The DES results also showed that the sufficient grid refinement in the vortex region resolves the turbulent scales downstream of the VGJ, the spatial vortex core postion and nondimensional momentum coefficient RVx .Keywords: VGJ, Chimera Grid, DES, RANS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481244 Influence of AgNO3 Treatment on the Flavonolignan Production in Cell Suspension Culture of Silybum marianum (L.) Gaertn
Authors: Anna Vildová, H. Hendrychová, J. Kubeš, L. Tůmová
Abstract:
The abiotic elicitation is one of the methods for increasing the secondary metabolites production in plant tissue cultures and it seems to be more effective than traditional strategies. This study verified the use of silver nitrate as elicitor to enhance flavonolignans and flavonoid taxifolin production in suspension culture of Sylibum marianum (L.) Gaertn. Silver nitrate in various concentrations (5.887.10-3 mol/L, 5.887.10-4 mol/L, 5.887.10-5 mol/L) was used as elicitor. The content of secondary metabolites in cell suspension cultures was determined by high performance liquid chromatography. The samples were taken after 6, 12, 24, 48, 72 and 168 hours of treatment. The highest content of taxifolin production (2.2 mg.g-1) in cell suspension culture of Silybum marianum (L.) Gaertn. was detected after silver nitrate (5.887.10-4 mol/L) treatment and 72 h application. Flavonolignans such as silybinA, silybin B, silydianin, silychristin, isosilybin A, isosilybin B were not produced by cell suspension culture of S. marianum after elicitor treatment. Our results show that the secondarymetabolites could be released from S. marianum cells into the nutrient medium by changed permeability of cell wall.Keywords: Silybum marianum (L.) Gaertn., elicitation, silver nitrate, taxifolin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794243 Effects of Ground Motion Characteristics on Damage of RC Buildings: A Detailed Investigation
Authors: M. Elassaly
Abstract:
Damage status of RC buildings is greatly influenced by the characteristics of the imposed ground motion. Peak Ground Acceleration and frequency contents are considered the main two factors that affect ground motion characteristics; hence, affecting the seismic response of RC structures and consequently their damage state. A detailed investigation on the combined effects of these two factors on damage assessment of RC buildings is carried out. Twenty one earthquake records are analyzed and arranged into three groups, according to their frequency contents. These records are used in an investigation to define the expected damage state that would be attained by RC buildings, if subjected to varying ground motion characteristics. The damage assessment is conducted through examining drift ratios and damage indices of the overall structure and the significant structural components of RC building. Base and story shear of RC building model, are also investigated, for cases when the model is subjected to the chosen twenty one earthquake records. Nonlinear dynamic analyses are performed on a 2-dimensional model of a 12-story RC building.Keywords: Damage, frequency content, ground motion, PGA, RC building, seismic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2096242 Finite Element Assessment on Bond Behavior of FRP-to-Concrete Joints under Cyclic Loading
Authors: F. Atheer, Al-Saoudi, Robin Kalfat, Riadh Al-Mahaidi
Abstract:
Over the last two decades, externally bonded fiber reinforced polymer (FRP) composites bonded to concrete substrates has become a popular method for strengthening reinforced concrete (RC) highway and railway bridges. Such structures are exposed to severe cyclic loading throughout their lifetime often resulting in fatigue damage to structural components and a reduction in the service life of the structure. Since experimental and numerical results on the fatigue performance of FRP-to-concrete joints are still limited, the current research focuses on assessing the fatigue performance of externally bonded FRP-to-concrete joints using a direct shear test. Some early results indicate that the stress ratio and the applied cyclic stress level have a direct influence on the fatigue life of the externally bonded FRP. In addition, a calibrated finite element model is developed to provide further insight into the influence of certain parameters such as: concrete strength, FRP thickness, number of cycles, frequency, and stiffness on the fatigue life of the FRP-toconcrete joints.Keywords: FRP, concrete bond, control, fatigue, finite element model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898241 Effect of Vibration Amplitude and Welding Force on Weld Strength of Ultrasonic Metal Welding
Authors: Ziad. Sh. Al Sarraf
Abstract:
Ultrasonic metal welding has been the subject of ongoing research and development, most recently concentrating on metal joining in miniature devices, for example to allow solder-free wire bonding. As well as at the small scale, there are also opportunities to research the joining of thicker sheet metals and to widen the range of similar and dissimilar materials that can be successfully joined using this technology. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal spot welding device. The ultrasonic metal spot welding horn is modelled using finite element analysis (FEA) and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered effectively to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. The results show how the weld strength is particularly sensitive to the combination of clamping force and ultrasonic vibration amplitude of the welding tip, but there are optimal combinations of these and also limits that must be clearly identified.Keywords: Ultrasonic welding, vibration amplitude, welding force, weld strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2189240 Anodic Growth of Highly Ordered Titanium Oxide Nanotube Arrays: Effects of Critical Anodization Factors on their Photocatalytic Activity
Authors: Chin-Jung Lin, Yi-Hsien Yu, Szu-Ying Chen, Ya-Hsuan Liou
Abstract:
Highly ordered arrays of TiO2 nanotubes (TiNTs) were grown vertically on Ti foil by electrochemical anodization. We controlled the lengths of these TiNTs from 2.4 to 26.8 ¶üÇóμm while varying the water contents (1, 3, and 6 wt%) of the electrolyte in ethylene glycol in the presence of 0.5 wt% NH4F with anodization for various applied voltages (20–80 V), periods (10–240 min) and temperatures (10–30 oC). For vertically aligned TiNT arrays, not only the increase in their tube lengths, but also their geometric (wall thickness and surface roughness) and crystalline structure lead to a significant influence on photocatalytic activity. The length optimization for methylene blue (MB) photodegradation was 18 μm. Further extending the TiNT length yielded lower photocatalytic activity presumably related to the limited MB diffusion and light-penetration depth into the TiNT arrays. The results indicated that a maximum MB photodegradation rate was obtained for the discrete anatase TiO2 nanotubes with thick and rough walls.
Keywords: Anodic oxidation, nanotube, photocatalytic, TiO2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2675239 The Application of FSI Techniques in Modeling of Realist Pulmonary Systems
Authors: Abdurrahim Bolukbasi, Hassan Athari, Dogan Ciloglu
Abstract:
The modeling lung respiratory system that has complex anatomy and biophysics presents several challenges including tissue-driven flow patterns and wall motion. Also, the pulmonary lung system because of that they stretch and recoil with each breath, has not static walls and structures. The direct relationship between air flow and tissue motion in the lung structures naturally prefers an FSI simulation technique. Therefore, in order to toward the realistic simulation of pulmonary breathing mechanics the development of a coupled FSI computational model is an important step. A simple but physiologically relevant three-dimensional deep long geometry is designed and fluid-structure interaction (FSI) coupling technique is utilized for simulating the deformation of the lung parenchyma tissue that produces airflow fields. The real understanding of respiratory tissue system as a complex phenomenon have been investigated with respect to respiratory patterns, fluid dynamics and tissue viscoelasticity and tidal breathing period.
Keywords: Lung deformation and mechanics, tissue mechanics, viscoelasticity, fluid-structure interactions, ANSYS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2328238 Multi-Wavelength Q-Switched Erbium-Doped Fiber Laser with Photonic Crystal Fiber and Multi-Walled Carbon Nanotubes
Authors: Zian Cheak Tiu, Harith Ahmad, Sulaiman Wadi Harun
Abstract:
A simple multi-wavelength passively Q-switched Erbium-doped fiber laser (EDFL) is demonstrated using low cost multi-walled carbon nanotubes (MWCNTs) based saturable absorber (SA), which is prepared using polyvinyl alcohol (PVA) as a host polymer. The multi-wavelength operation is achieved based on nonlinear polarization rotation (NPR) effect by incorporating 50 m long photonic crystal fiber (PCF) in the ring cavity. The EDFL produces a stable multi-wavelength comb spectrum for more than 14 lines with a fixed spacing of 0.48 nm. The laser also demonstrates a stable pulse train with the repetition rate increases from 14.9 kHz to 25.4 kHz as the pump power increases from the threshold power of 69.0 mW to the maximum pump power of 133.8 mW. The minimum pulse width of 4.4 μs was obtained at the maximum pump power of 133.8 mW while the highest energy of 0.74 nJ was obtained at pump power of 69.0 mW.
Keywords: Multi-wavelength, Q-switched, multi-wall carbon nanotube, photonic crystal fiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2488237 Numerical Study for Compressive Strength of Basalt Composite Sandwich Infill Panel
Authors: Viriyavudh Sim, Jung Kyu Choi, Yong Ju Kwak, Oh Hyeon Jeon, Woo Young Jung
Abstract:
In this study, we investigated the buckling performance of basalt fiber reinforced polymer (BFRP) sandwich infill panels. Fiber Reinforced Polymer (FRP) is a major evolution for energy dissipation when used as infill material of frame structure, a basic Polymer Matrix Composite (PMC) infill wall system consists of two FRP laminates surrounding an infill of foam core. Furthermore, this type of component is for retrofitting and strengthening frame structure to withstand the seismic disaster. In-plane compression was considered in the numerical analysis with ABAQUS platform to determine the buckling failure load of BFRP infill panel system. The present result shows that the sandwich BFRP infill panel system has higher resistance to buckling failure than those of glass fiber reinforced polymer (GFRP) infill panel system, i.e. 16% increase in buckling resistance capacity.
Keywords: Basalt fiber reinforced polymer, buckling performance, FEM analysis, sandwich infill panel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1350236 Hydrodynamic Force on Acoustically Driven Bubble in Sulfuric Acid
Authors: Zeinab Galavani, Reza Rezaei-Nasirabad, Rasoul Sadighi-Bonabi
Abstract:
Using a force balanced translational-radial dynamics, phase space of the moving single bubble sonoluminescence (m- SBSL) in 85% wt sulfuric acid has been numerically calculated. This phase space is compared with that of single bubble sonoluminescence (SBSL) in pure water which has been calculated by using the mere radial dynamics. It is shown that in 85% wt sulfuric acid, in a general agreement with experiment, the bubble-s positional instability threshold lays under the shape instability threshold. At the onset of spatial instability of moving sonoluminescing (SL) bubble in 85% wt sulfuric acid, temporal effects of the hydrodynamic force on the bubble translational-radial dynamics have been investigated. The appearance of non-zero history force on the moving SL bubble is because of proper condition which was produced by high viscosity of acid. Around the moving bubble collapse due to the rapid contraction of the bubble wall, the inertial based added mass force overcomes the viscous based history force and induces acceleration on the bubble translational motion.Keywords: Bjerknes force, History force, Reynolds number, Sonoluminescence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543235 Rotor Dynamic Analysis for a Shaft Train by Using Finite Element Method
Authors: M. Najafi
Abstract:
In the present paper, a large turbo-generator shaft train including a heavy-duty gas turbine engine, a coupling, and a generator is established. The method of analysis is based on finite element simplified model for lateral and torsional vibration calculation. The basic elements of rotor are the shafts and the disks which are represented as circular cross section flexible beams and rigid body elements, respectively. For more accurate results, the gyroscopic effect and bearing dynamics coefficients and function of rotation are taken into account, and for the influence of shear effect, rotor has been modeled in the form of Timoshenko beam. Lateral critical speeds, critical speed map, damped mode shapes, Campbell diagram, zones of instability, amplitudes, phase angles response due to synchronous forces of excitation and amplification factor are calculated. Also, in the present paper, the effect of imbalanced rotor and effects of changing in internal force and temperature are studied.
Keywords: Rotor dynamic analysis, Finite element method, shaft train, Campbell diagram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1201234 Contribution of the SidePlate Beam-Column Connections to the Seismic Responses of Special Moment Frames
Authors: Gökhan Yüksel, Serdar Akça, İlker Kalkan
Abstract:
The present study is an attempt to demonstrate the significant levels of contribution of the moment-resisting beam-column connections with side plates to the earthquake behavior of special steel moment frames. To this end, the moment-curvature relationships of a regular beam-column connection and its SidePlate counterpart were determined with the help of finite element analyses. The connection stiffness and deformability values from these finite element analyses were used in the linear time-history analyses of an example structural steel frame under three different seismic excitations. The top-story lateral drift, base shear, and overturning moment values in two orthogonal directions were obtained from these time-history analyses and compared to each other. The results revealed the improvements in the system response with the use of SidePlate connections. The paper ends with crucial recommendations for the plan and design of further studies on this very topic.
Keywords: Seismic detailing, special moment frame, steel structures, beam-column connection, earthquake-resistant design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 528233 Using Micropiles to Improve the Anzali's Saturated Loose Silty Sand
Authors: S. A. Naeini, M. Hamidzadeh
Abstract:
Today, with the daily advancement of geotechnical engineering on soil improvement and modification of the physical properties and shear strength of soil, it is now possible to construct structures with high-volume and high service load on loose sandy soils. One of such methods is using micropiles, which are mostly used to control asymmetrical subsidence, increase bearing capacity, and prevent soil liquefaction. This study examined the improvement of Anzali's saturated loose silty sand using 192 micropiles with a length of 8 meters and diameter of 75 mm. Bandar-e Anzali is one of Iran's coastal populated cities which are located in a high-seismicity region. The effects of the insertion of micropiles on prevention of liquefaction and improvement of subsidence were examined through comparison of the results of Standard Penetration Test (SPT) and Plate Load Test (PLT) before and after implementation of the micropiles. The results show that the SPT values and the ultimate bearing capacity of silty sand increased after the implementation of the micropiles. Therefore, the installation of micropiles increases the strength of silty sand improving the resistance of soil against liquefaction.
Keywords: Soil improvement, silty sand, micropiles, SPT, PLT, strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327232 Laboratory Investigation of Expansive Soil Stabilized with Calcium Chloride
Authors: Magdi M. E. Zumrawi, Khalid A. Eltayeb
Abstract:
Chemical stabilization is a technique commonly used to improve the expansive soil properties. In this regard, an attempt has been made to evaluate the influence of Calcium Chloride (CaCl2) stabilizer on the engineering properties of expansive soil. A series of laboratory experiments including consistency limits, free swell, compaction, and shear strength tests were performed to investigate the effect of CaCl2 additive with various percentages 0%, 2%, 5%, 10% and 15% for improving expansive soil. The results obtained shows that the increase in the percentage of CaCl2decreased the liquid limit and plasticity index leading to significant reduction in the free swell index. This, in turn, increased the maximum dry density and decreased the optimum moisture content which results in greater strength. The unconfined compressive strength of soil stabilized with 5% CaCl2 increased approximately by 50% as compared to virgin soil. It can be concluded that CaCl2 had shown promising influence on the strength and swelling properties of expansive soil, thereby giving an advantage in improving problematic expansive soil.Keywords: Calcium chloride, chemical stabilization, expansive soil, improving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3028231 Physical and Mechanical Phenomena Associated with Rock Failure in Brazilian Disc Specimens
Authors: Hamid Reza Nejati, Amin Nazerigivi, Ahmad Reza Sayadi
Abstract:
Failure mechanism of rocks is one of the fundamental aspects to study rock engineering stability. Rock is a material that contains flaws, initial damage, micro-cracks, etc. Failure of rock structure is largely due to tensile stress and was influenced by various parameters. In the present study, the effect of brittleness and loading rate on the physical and mechanical phenomena produced in rock during loading sequences is considered. For this purpose, Acoustic Emission (AE) technique is used to monitor fracturing process of three rock types (onyx marble, sandstone and soft limestone) with different brittleness and sandstone samples under different loading rate. The results of experimental tests revealed that brittleness and loading rate have a significant effect on the mode and number of induced fracture in rocks. An increase in rock brittleness increases the frequency of induced cracks, and the number of tensile fracture decreases when loading rate increases.Keywords: Brittleness, loading rate, acoustic emission, tensile fracture, shear fracture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420230 Numerical Investigation of Poling Vector Angle on Adaptive Sandwich Plate Deflection
Authors: Alireza Pouladkhan, Mohammad Yavari Foroushani, Ali Mortazavi
Abstract:
This paper presents a finite element model for a Sandwich Plate containing a piezoelectric core. A sandwich plate with a piezoelectric core is constructed using the shear mode of piezoelectric materials. The orientation of poling vector has a significant effect on deflection and stress induced in the piezo-actuated adaptive sandwich plate. In the present study, the influence of this factor for a clamped-clamped-free-free and simple-simple-free-free square sandwich plate is investigated using Finite Element Method. The study uses ABAQUS (v.6.7) software to derive the finite element model of the sandwich plate. By using this model, the study gives the influences of the poling vector angle on the response of the smart structure and determines the maximum transverse displacement and maximum stress induced.
Keywords: Finite element method, Sandwich plate, Poling vector, Piezoelectric materials, Smart structure, Electric enthalpy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957229 Experimental and Analytical Study of Scrap Tire Rubber Pad for Seismic Isolation
Authors: Huma Kanta Mishra, Akira Igarashi
Abstract:
A seismic isolation pad produced by utilizing the scrap tire rubber which contains interleaved steel reinforcing cords has been proposed. The steel cords are expected to function similar to the steel plates used in conventional laminated rubber bearings. The scrap tire rubber pad (STRP) isolator is intended to be used in low rise residential buildings of highly seismic areas of the developing countries. Experimental investigation was conducted on unbonded STRP isolators, and test results provided useful information including stiffness, damping values and an eventual instability of the isolation unit. Finite element analysis (FE analysis) of STRP isolator was carried out on properly bonded samples. These types of isolators provide positive incremental force resisting capacity up to shear strain level of 155%. This paper briefly discusses the force deformation behavior of bonded STRP isolators including stability of the isolation unit.Keywords: base isolation, buckling load, finite element analysis, STRP isolators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2952228 Numerical Analysis of Laminar Flow around Square Cylinders with EHD Phenomenon
Authors: M. Salmanpour, O. Nourani Zonouz
Abstract:
In this research, a numerical simulation of an Electrohydrodynamic (EHD) actuator’s effects on the flow around a square cylinder by using a finite volume method has been investigated. This is one of the newest ways for controlling the fluid flows. Two plate electrodes are flush-mounted on the surface of the cylinder and one wire electrode is placed on the line with zero angle of attack relative to the stagnation point and excited with DC power supply. The discharge produces an electric force and changes the local momentum behaviors in the fluid layers. For this purpose, after selecting proper domain and boundary conditions, the electric field relating to the problem has been analyzed and then the results in the form of electrical body force have been entered in the governing equations of fluid field (Navier-Stokes equations). The effect of ionic wind resulted from the Electrohydrodynamic actuator, on the velocity, pressure and the wake behind cylinder has been considered. According to the results, it is observed that the fluid flow accelerates in the nearest wall of the frontal half of the cylinder and the pressure difference between frontal and hinder cylinder is increased.
Keywords: CFD, corona discharge, electro hydrodynamics, flow around square cylinders.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 878227 Parametric Study of Confined Turbulent Impinging Slot Jets upon a Flat Plate
Authors: A. M. Tahsini, S. Tadayon Mousavi
Abstract:
In the present paper, a numerical investigation has been carried out to classify and clarify the effects of paramount parameters on turbulent impinging slot jets. The effects of nozzle-s exit turbulent intensity, distance between nozzle and impinging plate are studied at Reynolds number 5000 and 20000. In addition, the effect of Mach number that is varied between 0.3-0.8 at a constant Reynolds number 133000 is investigated to elucidate the effect of compressibility in impinging jet upon a flat plate. The wall that is located at the same level with nozzle-s exit confines the flow. A compressible finite volume solver is implemented for simulation the flow behavior. One equation Spalart-Allmaras turbulent model is used to simulate turbulent flow at this study. Assessment of the Spalart-Allmaras turbulent model at high nozzle to plate distance, and giving enough insights to characterize the effect of Mach number at high Reynolds number for the complex impinging jet flow are the remarkable results of this study.Keywords: Impinging jet, Numerical simulation, Turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2474226 Sinusoidal Roughness Elements in a Square Cavity
Abstract:
Numerical studies were conducted using Lattice Boltzmann Method (LBM) to study the natural convection in a square cavity in the presence of roughness. An algorithm based on a single relaxation time Bhatnagar-Gross-Krook (BGK) model of Lattice Boltzmann Method (LBM) was developed. Roughness was introduced on both the hot and cold walls in the form of sinusoidal roughness elements. The study was conducted for a Newtonian fluid of Prandtl number (Pr) 1.0. The range of Ra number was explored from 10^3 to 10^6 in a laminar region. Thermal and hydrodynamic behavior of fluid was analyzed using a differentially heated square cavity with roughness elements present on both the hot and cold wall. Neumann boundary conditions were introduced on horizontal walls with vertical walls as isothermal. The roughness elements were at the same boundary condition as corresponding walls. Computational algorithm was validated against previous benchmark studies performed with different numerical methods, and a good agreement was found to exist. Results indicate that the maximum reduction in the average heat transfer was 16.66 percent at Ra number 10^5.
Keywords: Lattice Boltzmann Method Natural convection, Nusselt Number Rayleigh number, Roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153225 Surface Activation of Carbon Nanotubes Generating a Chemical Interaction in Epoxy Nanocomposite
Authors: Mohamed Eldessouki, Ebraheem Shady, Yasser Gowayed
Abstract:
Carbon nanotubes (CNTs) are known for having high elastic properties with high surface area that promote them as good candidates for reinforcing polymeric matrices. In composite materials, CNTs lack chemical bonding with the surrounding matrix which decreases the possibility of better stress transfer between the components. In this work, a chemical treatment for activating the surface of the multi-wall carbon nanotubes (MWCNT) was applied and the effect of this functionalization on the elastic properties of the epoxy nanocomposites was studied. Functional amino-groups were added to the surface of the CNTs and it was evaluated to be about 34% of the total weight of the CNTs. Elastic modulus was found to increase by about 40% of the neat epoxy resin at CNTs’ weight fraction of 0.5%. The elastic modulus was found to decrease after reaching a certain concentration of CNTs which was found to be 1% wt. The scanning electron microscopic pictures showed the effect of the CNTs on the crack propagation through the sample by forming stress concentrated spots at the nanocomposite samples.
Keywords: Carbon nanotubes functionalization, crack propagation, elastic modulus, epoxy nanocomposites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980224 Mercury Removing Capacity of Multiwall Carbon Nanotubes as Detected by Cold Vapor Atomic Absorption Spectroscopy: Kinetic & Equilibrium Studies
Authors: Yasser M. Moustafa, Rania E. Morsi, Mohammed Fathy
Abstract:
Multiwall carbon nanotubes, prepared by chemical vapor deposition, have an average diameter of 60-100 nm as shown by High Resolution Transmittance Electron Microscope, HR-TEM. The Multiwall carbon nanotubes (MWCNTs) were further characterized using X-ray Diffraction and Raman Spectroscopy. Mercury uptake capacity of MWCNTs was studied using batch adsorption method at different concentration ranges up to 150 ppm. Mercury concentration (before and after the treatment) was measured using cold vapor atomic absorption spectroscopy. The effect of time, concentration, pH and adsorbent dose were studied. MWCNT were found to perform complete absorption in the sub-ppm concentrations (parts per billion levels) while for high concentrations, the adsorption efficiency was 92% at the optimum conditions; 0.1 g of the adsorbent at 150 ppm mercury (II) solution. The adsorption of mercury on MWCNTs was found to follow the Freundlich adsorption isotherm and the pseudo-second order kinetic model.
Keywords: Cold Vapor Atomic Absorption Spectroscopy, Hydride System, Mercury Removing, Multi Wall Carbon Nanotubes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419