Search results for: Medical image watermarking
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2050

Search results for: Medical image watermarking

1300 Recognition of Gene Names from Gene Pathway Figures Using Siamese Network

Authors: Muhammad Azam, Micheal Olaolu Arowolo, Fei He, Mihail Popescu, Dong Xu

Abstract:

The number of biological papers is growing quickly, which means that the number of biological pathway figures in those papers is also increasing quickly. Each pathway figure shows extensive biological information, like the names of genes and how the genes are related. However, manually annotating pathway figures takes a lot of time and work. Even though using advanced image understanding models could speed up the process of curation, these models still need to be made more accurate. To improve gene name recognition from pathway figures, we applied a Siamese network to map image segments to a library of pictures containing known genes in a similar way to person recognition from photos in many photo applications. We used a triple loss function and a triplet spatial pyramid pooling network by combining the triplet convolution neural network and the spatial pyramid pooling (TSPP-Net). We compared VGG19 and VGG16 as the Siamese network model. VGG16 achieved better performance with an accuracy of 93%, which is much higher than Optical Character Recognition (OCR) results.

Keywords: Biological pathway, image understanding, gene name recognition, object detection, Siamese network, Visual Geometry Group.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 675
1299 Denoising based on Wavelets and Deblurring via Self-Organizing Map for Synthetic Aperture Radar Images

Authors: Mario Mastriani

Abstract:

This work deals with unsupervised image deblurring. We present a new deblurring procedure on images provided by lowresolution synthetic aperture radar (SAR) or simply by multimedia in presence of multiplicative (speckle) or additive noise, respectively. The method we propose is defined as a two-step process. First, we use an original technique for noise reduction in wavelet domain. Then, the learning of a Kohonen self-organizing map (SOM) is performed directly on the denoised image to take out it the blur. This technique has been successfully applied to real SAR images, and the simulation results are presented to demonstrate the effectiveness of the proposed algorithms.

Keywords: Blur, Kohonen self-organizing map, noise, speckle, synthetic aperture radar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
1298 An Efficient Burst Errors Combating for Image Transmission over Mobile WPANs

Authors: Mohsen A. M. El-Bendary, Mostafa A. R. El-Tokhy

Abstract:

This paper presents an efficient burst error spreading tool. Also, it studies a vital issue in wireless communications, which is the transmission of images over wireless networks. IEEE ZigBee 802.15.4 is a short-range communication standard that could be used for small distance multimedia transmissions. In fact, the ZigBee network is a Wireless Personal Area Network (WPAN), which needs a strong interleaving mechanism for protection against error bursts. Also, it is low power technology and utilized in the Wireless Sensor Networks (WSN) implementation. This paper presents the chaotic interleaving scheme as a data randomization tool for this purpose. This scheme depends on the chaotic Baker map. The mobility effects on the image transmission are studied with different velocity through utilizing the Jakes’ model. A comparison study between the proposed chaotic interleaving scheme and the traditional block and convolutional interleaving schemes for image transmission over a correlated fading channel is presented. The simulation results show the superiority of the proposed chaotic interleaving scheme over the traditional schemes.

Keywords: WPANs, Burst Errors, Mobility, Interleaving Techniques, Fading channels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
1297 An Improved Switching Median filter for Uniformly Distributed Impulse Noise Removal

Authors: Rajoo Pandey

Abstract:

The performance of an image filtering system depends on its ability to detect the presence of noisy pixels in the image. Most of the impulse detection schemes assume the presence of salt and pepper noise in the images and do not work satisfactorily in case of uniformly distributed impulse noise. In this paper, a new algorithm is presented to improve the performance of switching median filter in detection of uniformly distributed impulse noise. The performance of the proposed scheme is demonstrated by the results obtained from computer simulations on various images.

Keywords: Switching median filter, Impulse noise, Imagefiltering, Impulse detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
1296 Importance of Knowledge in the Interdisciplinary Production Processes of Innovative Medical Tools

Authors: Katarzyna Mleczko

Abstract:

Processes of production of innovative medical tools have interdisciplinary character. They consist of direct and indirect close cooperation of specialists of different scientific branches. The Knowledge they have seems to be important for undertaken design, construction and manufacturing processes. The Knowledge exchange between participants of these processes is therefore crucial for the final result, which are innovative medical products. The paper draws attention to the necessity of feedback from the end user to the designer / manufacturer of medical tools which will allow for more accurate understanding of user needs. The study describes prerequisites of production processes of innovative medical (surgical) tools including participants and category of knowledge resources occurring in these processes. They are the result of research in selected Polish organizations involved in the production of medical instruments and are the basis for further work on the development of knowledge sharing model in interdisciplinary teams geographically dispersed.

Keywords: Interdisciplinary production processes, knowledge exchange, knowledge sharing, medical tools, user-centered design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
1295 An 8-Bit, 100-MSPS Fully Dynamic SAR ADC for Ultra-High Speed Image Sensor

Authors: F. Rarbi, D. Dzahini, W. Uhring

Abstract:

In this paper, a dynamic and power efficient 8-bit and 100-MSPS Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC) is presented. The circuit uses a non-differential capacitive Digital-to-Analog (DAC) architecture segmented by 2. The prototype is produced in a commercial 65-nm 1P7M CMOS technology with 1.2-V supply voltage. The size of the core ADC is 208.6 x 103.6 µm2. The post-layout noise simulation results feature a SNR of 46.9 dB at Nyquist frequency, which means an effective number of bit (ENOB) of 7.5-b. The total power consumption of this SAR ADC is only 1.55 mW at 100-MSPS. It achieves then a figure of merit of 85.6 fJ/step.

Keywords: CMOS analog to digital converter, dynamic comparator, image sensor application, successive approximation register.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
1294 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux

Authors: Hao Mi, Ming Yang, Tian-yue Yang

Abstract:

Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.

Keywords: Remote monitoring, non-destructive testing, embedded linux system, image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 966
1293 A Simulation Software for DNA Computing Algorithms Implementation

Authors: M. S. Muhammad, S. M. W. Masra, K. Kipli, N. Zamhari

Abstract:

The capturing of gel electrophoresis image represents the output of a DNA computing algorithm. Before this image is being captured, DNA computing involves parallel overlap assembly (POA) and polymerase chain reaction (PCR) that is the main of this computing algorithm. However, the design of the DNA oligonucleotides to represent a problem is quite complicated and is prone to errors. In order to reduce these errors during the design stage before the actual in-vitro experiment is carried out; a simulation software capable of simulating the POA and PCR processes is developed. This simulation software capability is unlimited where problem of any size and complexity can be simulated, thus saving cost due to possible errors during the design process. Information regarding the DNA sequence during the computing process as well as the computing output can be extracted at the same time using the simulation software.

Keywords: DNA computing, PCR, POA, simulation software

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
1292 New Features for Specific JPEG Steganalysis

Authors: Johann Barbier, Eric Filiol, Kichenakoumar Mayoura

Abstract:

We present in this paper a new approach for specific JPEG steganalysis and propose studying statistics of the compressed DCT coefficients. Traditionally, steganographic algorithms try to preserve statistics of the DCT and of the spatial domain, but they cannot preserve both and also control the alteration of the compressed data. We have noticed a deviation of the entropy of the compressed data after a first embedding. This deviation is greater when the image is a cover medium than when the image is a stego image. To observe this deviation, we pointed out new statistic features and combined them with the Multiple Embedding Method. This approach is motivated by the Avalanche Criterion of the JPEG lossless compression step. This criterion makes possible the design of detectors whose detection rates are independent of the payload. Finally, we designed a Fisher discriminant based classifier for well known steganographic algorithms, Outguess, F5 and Hide and Seek. The experiemental results we obtained show the efficiency of our classifier for these algorithms. Moreover, it is also designed to work with low embedding rates (< 10-5) and according to the avalanche criterion of RLE and Huffman compression step, its efficiency is independent of the quantity of hidden information.

Keywords: Compressed frequency domain, Fisher discriminant, specific JPEG steganalysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162
1291 Advanced Image Analysis Tools Development for the Early Stage Bronchial Cancer Detection

Authors: P. Bountris, E. Farantatos, N. Apostolou

Abstract:

Autofluorescence (AF) bronchoscopy is an established method to detect dysplasia and carcinoma in situ (CIS). For this reason the “Sotiria" Hospital uses the Karl Storz D-light system. However, in early tumor stages the visualization is not that obvious. With the help of a PC, we analyzed the color images we captured by developing certain tools in Matlab®. We used statistical methods based on texture analysis, signal processing methods based on Gabor models and conversion algorithms between devicedependent color spaces. Our belief is that we reduced the error made by the naked eye. The tools we implemented improve the quality of patients' life.

Keywords: Bronchoscopy, digital image processing, lung cancer, texture analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
1290 Determinants of Brand Equity: Offering a Model to Chocolate Industry

Authors: Emari Hossien

Abstract:

This study examined the underlying dimensions of brand equity in the chocolate industry. For this purpose, researchers developed a model to identify which factors are influential in building brand equity. The second purpose was to assess brand loyalty and brand images mediating effect between brand attitude, brand personality, brand association with brand equity. The study employed structural equation modeling to investigate the causal relationships between the dimensions of brand equity and brand equity itself. It specifically measured the way in which consumers’ perceptions of the dimensions of brand equity affected the overall brand equity evaluations. Data were collected from a sample of consumers of chocolate industry in Iran. The results of this empirical study indicate that brand loyalty and brand image are important components of brand equity in this industry. Moreover, the role of brand loyalty and brand image as mediating factors in the intention of brand equity are supported. The principal contribution of the present research is that it provides empirical evidence of the multidimensionality of consumer based brand equity, supporting Aaker´s and Keller´s conceptualization of brand equity. The present research also enriched brand equity building by incorporating the brand personality and brand image, as recommended by previous researchers. Moreover, creating the brand equity index in chocolate industry of Iran particularly is novel.

Keywords: brand equity, brand personality, structural equationmodeling, Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3614
1289 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line

Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez

Abstract:

Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.

Keywords: Deep-learning, image classification, image identification, industrial engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 758
1288 Depth Estimation in DNN Using Stereo Thermal Image Pairs

Authors: Ahmet Faruk Akyuz, Hasan Sakir Bilge

Abstract:

Depth estimation using stereo images is a challenging problem in computer vision. Many different studies have been carried out to solve this problem. With advancing machine learning, tackling this problem is often done with neural network-based solutions. The images used in these studies are mostly in the visible spectrum. However, the need to use the Infrared (IR) spectrum for depth estimation has emerged because it gives better results than visible spectra in some conditions. At this point, we recommend using thermal-thermal (IR) image pairs for depth estimation. In this study, we used two well-known networks (PSMNet, FADNet) with minor modifications to demonstrate the viability of this idea.

Keywords: thermal stereo matching, depth estimation, deep neural networks, CNN

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694
1287 Q-Map: Clinical Concept Mining from Clinical Documents

Authors: Sheikh Shams Azam, Manoj Raju, Venkatesh Pagidimarri, Vamsi Kasivajjala

Abstract:

Over the past decade, there has been a steep rise in the data-driven analysis in major areas of medicine, such as clinical decision support system, survival analysis, patient similarity analysis, image analytics etc. Most of the data in the field are well-structured and available in numerical or categorical formats which can be used for experiments directly. But on the opposite end of the spectrum, there exists a wide expanse of data that is intractable for direct analysis owing to its unstructured nature which can be found in the form of discharge summaries, clinical notes, procedural notes which are in human written narrative format and neither have any relational model nor any standard grammatical structure. An important step in the utilization of these texts for such studies is to transform and process the data to retrieve structured information from the haystack of irrelevant data using information retrieval and data mining techniques. To address this problem, the authors present Q-Map in this paper, which is a simple yet robust system that can sift through massive datasets with unregulated formats to retrieve structured information aggressively and efficiently. It is backed by an effective mining technique which is based on a string matching algorithm that is indexed on curated knowledge sources, that is both fast and configurable. The authors also briefly examine its comparative performance with MetaMap, one of the most reputed tools for medical concepts retrieval and present the advantages the former displays over the latter.

Keywords: Information retrieval (IR), unified medical language system (UMLS), Syntax Based Analysis, natural language processing (NLP), medical informatics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779
1286 Performance of Compound Enhancement Algorithms on Dental Radiograph Images

Authors: S.A.Ahmad, M.N.Taib, N.E.A.Khalid, R.Ahmad, H.Taib

Abstract:

The purpose of this research is to compare the original intra-oral digital dental radiograph images with images that are enhanced using a combination of image processing algorithms. Intraoral digital dental radiograph images are often noisy, blur edges and low in contrast. A combination of sharpening and enhancement method are used to overcome these problems. Three types of proposed compound algorithms used are Sharp Adaptive Histogram Equalization (SAHE), Sharp Median Adaptive Histogram Equalization (SMAHE) and Sharp Contrast adaptive histogram equalization (SCLAHE). This paper presents an initial study of the perception of six dentists on the details of abnormal pathologies and improvement of image quality in ten intra-oral radiographs. The research focus on the detection of only three types of pathology which is periapical radiolucency, widen periodontal ligament space and loss of lamina dura. The overall result shows that SCLAHE-s slightly improve the appearance of dental abnormalities- over the original image and also outperform the other two proposed compound algorithms.

Keywords: intra-oral dental radiograph, histogram equalization, sharpening, CLAHE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
1285 Visual Search Based Indoor Localization in Low Light via RGB-D Camera

Authors: Yali Zheng, Peipei Luo, Shinan Chen, Jiasheng Hao, Hong Cheng

Abstract:

Most of traditional visual indoor navigation algorithms and methods only consider the localization in ordinary daytime, while we focus on the indoor re-localization in low light in the paper. As RGB images are degraded in low light, less discriminative infrared and depth image pairs are taken, as the input, by RGB-D cameras, the most similar candidates, as the output, are searched from databases which is built in the bag-of-word framework. Epipolar constraints can be used to relocalize the query infrared and depth image sequence. We evaluate our method in two datasets captured by Kinect2. The results demonstrate very promising re-localization results for indoor navigation system in low light environments.

Keywords: Indoor navigation, low light, RGB-D camera, vision based.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
1284 Lung Nodule Detection in CT Scans

Authors: M. Antonelli, G. Frosini, B. Lazzerini, F. Marcelloni

Abstract:

In this paper we describe a computer-aided diagnosis (CAD) system for automated detection of pulmonary nodules in computed-tomography (CT) images. After extracting the pulmonary parenchyma using a combination of image processing techniques, a region growing method is applied to detect nodules based on 3D geometric features. We applied the CAD system to CT scans collected in a screening program for lung cancer detection. Each scan consists of a sequence of about 300 slices stored in DICOM (Digital Imaging and Communications in Medicine) format. All malignant nodules were detected and a low false-positive detection rate was achieved.

Keywords: computer assisted diagnosis, medical imagesegmentation, shape recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
1283 Detection of Ultrasonic Images in the Presence of a Random Number of Scatterers: A Statistical Learning Approach

Authors: J. P. Dubois, O. M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a statistical learning tool that was initially developed by Vapnik in 1979 and later developed to a more complex concept of structural risk minimization (SRM). SVM is playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM was applied to the detection of medical ultrasound images in the presence of partially developed speckle noise. The simulation was done for single look and multi-look speckle models to give a complete overlook and insight to the new proposed model of the SVM-based detector. The structure of the SVM was derived and applied to clinical ultrasound images and its performance in terms of the mean square error (MSE) metric was calculated. We showed that the SVM-detected ultrasound images have a very low MSE and are of good quality. The quality of the processed speckled images improved for the multi-look model. Furthermore, the contrast of the SVM detected images was higher than that of the original non-noisy images, indicating that the SVM approach increased the distance between the pixel reflectivity levels (detection hypotheses) in the original images.

Keywords: LS-SVM, medical ultrasound imaging, partially developed speckle, multi-look model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1341
1282 A Comparative Study of Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) for Airflow Measurement

Authors: Sijie Fu, Pascal-Henry Biwolé, Christian Mathis

Abstract:

Among modern airflow measurement methods, Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV), as visualized and non-instructive measurement techniques, are playing more important role. This paper conducts a comparative experimental study for airflow measurement employing both techniques with the same condition. Velocity vector fields, velocity contour fields, voticity profiles and turbulence profiles are selected as the comparison indexes. The results show that the performance of both PIV and PTV techniques for airflow measurement is satisfied, but some differences between the both techniques are existed, it suggests that selecting the measurement technique should be based on a comprehensive consideration.

Keywords: PIV, PTV, airflow measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4307
1281 Robust Face Recognition Using Eigen Faces and Karhunen-Loeve Algorithm

Authors: Parvinder S. Sandhu, Iqbaldeep Kaur, Amit Verma, Prateek Gupta

Abstract:

The current research paper is an implementation of Eigen Faces and Karhunen-Loeve Algorithm for face recognition. The designed program works in a manner where a unique identification number is given to each face under trial. These faces are kept in a database from where any particular face can be matched and found out of the available test faces. The Karhunen –Loeve Algorithm has been implemented to find out the appropriate right face (with same features) with respect to given input image as test data image having unique identification number. The procedure involves usage of Eigen faces for the recognition of faces.

Keywords: Eigen Faces, Karhunen-Loeve Algorithm, FaceRecognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
1280 Non-destructive Watermelon Ripeness Determination Using Image Processing and Artificial Neural Network (ANN)

Authors: Shah Rizam M. S. B., Farah Yasmin A.R., Ahmad Ihsan M. Y., Shazana K.

Abstract:

Agriculture products are being more demanding in market today. To increase its productivity, automation to produce these products will be very helpful. The purpose of this work is to measure and determine the ripeness and quality of watermelon. The textures on watermelon skin will be captured using digital camera. These images will be filtered using image processing technique. All these information gathered will be trained using ANN to determine the watermelon ripeness accuracy. Initial results showed that the best model has produced percentage accuracy of 86.51%, when measured at 32 hidden units with a balanced percentage rate of training dataset.

Keywords: Artificial Neural Network (ANN), Digital ImageProcessing, YCbCr Colour Space, Watermelon Ripeness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2952
1279 Iris Recognition Based On the Low Order Norms of Gradient Components

Authors: Iman A. Saad, Loay E. George

Abstract:

Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.

Keywords: Iris recognition, contrast stretching, gradient features, texture features, Euclidean metric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
1278 Fast Algorithm of Infrared Point Target Detection in Fluctuant Background

Authors: Yang Weiping, Zhang Zhilong, Li Jicheng, Chen Zengping, He Jun

Abstract:

The background estimation approach using a small window median filter is presented on the bases of analyzing IR point target, noise and clutter model. After simplifying the two-dimensional filter, a simple method of adopting one-dimensional median filter is illustrated to make estimations of background according to the characteristics of IR scanning system. The adaptive threshold is used to segment canceled image in the background. Experimental results show that the algorithm achieved good performance and satisfy the requirement of big size image-s real-time processing.

Keywords: Point target, background estimation, median filter, adaptive threshold, target detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
1277 Detection of Leaks in Water Mains Using Ground Penetrating Radar

Authors: Alaa Al Hawari, Mohammad Khader, Tarek Zayed, Osama Moselhi

Abstract:

Ground Penetrating Radar (GPR) is one of the most effective electromagnetic techniques for non-destructive non-invasive subsurface features investigation. Water leak from pipelines is the most common undesirable reason of potable water losses. Rapid detection of such losses is going to enhance the use of the Water Distribution Networks (WDN) and decrease threatens associated with water mains leaks. In this study, GPR approach was developed to detect leaks by implementing an appropriate imaging analyzing strategy based on image refinement, reflection polarity and reflection amplitude that would ease the process of interpreting the collected raw radargram image.

Keywords: Water Networks, Leakage, Water pipelines, Ground Penetrating Radar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2315
1276 Poor Medical Waste Management (MWM) Practices and Its Risks to Human Health and the Environment: A Literature Review

Authors: Babanyara Y. Y., Ibrahim D. B., Garba T., Bogoro A. G., Abubakar, M. Y.

Abstract:

Medical care is vital for our life, health and well-being. But the waste generated from medical activities can be hazardous, toxic and even lethal because of their high potential for diseases transmission. The hazardous and toxic parts of waste from healthcare establishments comprising infectious, medical and radioactive material as well as sharps constitute a grave risks to mankind and the environment, if these are not properly treated / disposed or are allowed to be mixed with other municipal waste. In Nigeria, practical information on this aspect is inadequate and research on the public health implications of poor management of medical wastes is few and limited in scope. Findings drawn from Literature particularly in the third world countries highlights financial problems, lack of awareness of risks involved in MWM, lack of appropriate legislation and lack of specialized MWM staff. The paper recommends how MWM practices can be improved in medical facilities.

Keywords: Environmental pollution, infectious, management, medical waste, public health.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14085
1275 A Self Configuring System for Object Recognition in Color Images

Authors: Michela Lecca

Abstract:

System MEMORI automatically detects and recognizes rotated and/or rescaled versions of the objects of a database within digital color images with cluttered background. This task is accomplished by means of a region grouping algorithm guided by heuristic rules, whose parameters concern some geometrical properties and the recognition score of the database objects. This paper focuses on the strategies implemented in MEMORI for the estimation of the heuristic rule parameters. This estimation, being automatic, makes the system a highly user-friendly tool.

Keywords: Automatic object recognition, clustering, content based image retrieval system, image segmentation, region adjacency graph, region grouping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
1274 Random Subspace Neural Classifier for Meteor Recognition in the Night Sky

Authors: Carlos Vera, Tetyana Baydyk, Ernst Kussul, Graciela Velasco, Miguel Aparicio

Abstract:

This article describes the Random Subspace Neural Classifier (RSC) for the recognition of meteors in the night sky. We used images of meteors entering the atmosphere at night between 8:00 p.m.-5: 00 a.m. The objective of this project is to classify meteor and star images (with stars as the image background). The monitoring of the sky and the classification of meteors are made for future applications by scientists. The image database was collected from different websites. We worked with RGB-type images with dimensions of 220x220 pixels stored in the BitMap Protocol (BMP) format. Subsequent window scanning and processing were carried out for each image. The scan window where the characteristics were extracted had the size of 20x20 pixels with a scanning step size of 10 pixels. Brightness, contrast and contour orientation histograms were used as inputs for the RSC. The RSC worked with two classes and classified into: 1) with meteors and 2) without meteors. Different tests were carried out by varying the number of training cycles and the number of images for training and recognition. The percentage error for the neural classifier was calculated. The results show a good RSC classifier response with 89% correct recognition. The results of these experiments are presented and discussed.

Keywords: Contour orientation histogram, meteors, night sky, RSC neural classifier, stars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 407
1273 Edge Detection Algorithm Based on Wavelet De-nosing Applied tothe X-ray Image Enhancement of the Electric Equipment

Authors: Fei Xue, Hong Yu, Da-da Wang, Wei Zhang, Rong-min Zou, Xiao-lanCai

Abstract:

The X-ray technology has been used in non-destructive evaluation in the Power System, in which a visual non-destructive inspection method for the electrical equipment is provided. However, lots of noise is existed in the images that are got from the X-ray digital images equipment. Therefore, the auto defect detection which based on these images will be very difficult to proceed. A theory on X-ray image de-noising algorithm based on wavelet transform is proposed in this paper. Then the edge detection algorithm is used so that the defect can be pushed out. The result of experiment shows that the method which utilized by this paper is very useful for de-noising on the X-ray images.

Keywords: de-noising, edge detection, wavelet transform, X-ray

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
1272 Using Secure-Image Mechanism to Protect Mobile Agent Against Malicious Hosts

Authors: Tarig Mohamed Ahmed

Abstract:

The usage of internet is rapidly increasing and the usage of mobile agent technology in internet environment has a great demand. The security issue one of main obstacles that restrict the mobile agent technology to spread. This paper proposes Secure-Image Mechanism (SIM) as a new mechanism to protect mobile agents against malicious hosts. . SIM aims to protect mobile agent by using the symmetric encryption and hash function in cryptography science. This mechanism can prevent the eavesdropping and alteration attacks. It assists the mobile agents to continue their journey normally incase attacks occurred.

Keywords: Agent protection, cryptography, mobile agent security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
1271 Analysis of Medical Data using Data Mining and Formal Concept Analysis

Authors: Anamika Gupta, Naveen Kumar, Vasudha Bhatnagar

Abstract:

This paper focuses on analyzing medical diagnostic data using classification rules in data mining and context reduction in formal concept analysis. It helps in finding redundancies among the various medical examination tests used in diagnosis of a disease. Classification rules have been derived from positive and negative association rules using the Concept lattice structure of the Formal Concept Analysis. Context reduction technique given in Formal Concept Analysis along with classification rules has been used to find redundancies among the various medical examination tests. Also it finds out whether expensive medical tests can be replaced by some cheaper tests.

Keywords: Data Mining, Formal Concept Analysis, Medical Data, Negative Classification Rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738