Search results for: Linear Quadratic Model
7884 Effect of Unbound Granular Materials Nonlinear Resilient Behavior on Pavement Response and Performance of Low Volume Roads
Authors: K. Sandjak, B. Tiliouine
Abstract:
Structural analysis of flexible pavements has been and still is currently performed using multi-layer elastic theory. However, for thinly surfaced pavements subjected to low to medium volumes of traffics, the importance of non-linear stress-strain behavior of unbound granular materials (UGM) requires the use of more sophisticated numerical models for structural design and performance of such pavements. In the present work, nonlinear unbound aggregates constitutive model is implemented within an axisymmetric finite element code developed to simulate the nonlinear behavior of pavement structures including two local aggregates of different mineralogical nature, typically used in Algerian pavements. The performance of the mechanical model is examined about its capability of representing adequately, under various conditions, the granular material non-linearity in pavement analysis. In addition, deflection data collected by Falling Weight Deflectometer (FWD) are incorporated into the analysis in order to assess the sensitivity of critical pavement design criteria and pavement design life to the constitutive model. Finally, conclusions of engineering significance are formulated.
Keywords: Nonlinear resilient behavior, unbound granular materials, RLT test results, FWD backcalculations, finite element simulations, pavement response and performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22947883 Face Recognition using Features Combination and a New Non-linear Kernel
Authors: Essam Al Daoud
Abstract:
To improve the classification rate of the face recognition, features combination and a novel non-linear kernel are proposed. The feature vector concatenates three different radius of local binary patterns and Gabor wavelet features. Gabor features are the mean, standard deviation and the skew of each scaling and orientation parameter. The aim of the new kernel is to incorporate the power of the kernel methods with the optimal balance between the features. To verify the effectiveness of the proposed method, numerous methods are tested by using four datasets, which are consisting of various emotions, orientations, configuration, expressions and lighting conditions. Empirical results show the superiority of the proposed technique when compared to other methods.Keywords: Face recognition, Gabor wavelet, LBP, Non-linearkerner
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15407882 Determining Optimum Time Multiplier Setting of Overcurrent Relays Using Mixed Integer Linear Programming
Authors: P. N. Korde, P. P. Bedekar
Abstract:
The time coordination of overcurrent relays (OCR) in a power distribution network is of great importance, as it reduces the power outages by avoiding the mal-operation of the backup relays. For this, the optimum value of the time multiplier setting (TMS) of OCRs should be chosen. The problem of determining the optimum value of TMS of OCRs in power distribution networks is formulated as a constrained optimization problem. The objective is to find the optimum value of TMS of OCRs to minimize the time of operation of relays under the constraint of maintaining the coordination of relays. A power distribution network can have a combination of numerical and electromechanical relays. The TMS of numerical relays can be set to any real value (which satisfies the constraints of the problem), whereas the TMS of electromechanical relays can be set in fixed step (0 to 1 in steps of 0.05). The main contribution of this paper is a formulation of the problem as a mixed-integer linear programming (MILP) problem and application of Gomory's cutting plane method to find the optimum value of TMS of OCRs. The TMS of electromechanical relays are taken as integers in the range 1 to 20 in the step of 1, and these values are mapped to 0.05 to 1 in the step of 0.05. The results obtained are compared with those obtained using a simplex method and its variants. It has been shown that the mixed-integer linear programming method outperforms the simplex method (and its variants) in the case of a system having a combination of numerical and electromechanical relays.
Keywords: Backup protection, constrained optimization, Gomory's cutting plane method, mixed-integer linear programming, overcurrent relay coordination, simplex method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4227881 A Comparison of Adaline and MLP Neural Network based Predictors in SIR Estimation in Mobile DS/CDMA Systems
Authors: Nahid Ardalani, Ahmadreza Khoogar, H. Roohi
Abstract:
In this paper we compare the response of linear and nonlinear neural network-based prediction schemes in prediction of received Signal-to-Interference Power Ratio (SIR) in Direct Sequence Code Division Multiple Access (DS/CDMA) systems. The nonlinear predictor is Multilayer Perceptron MLP and the linear predictor is an Adaptive Linear (Adaline) predictor. We solve the problem of complexity by using the Minimum Mean Squared Error (MMSE) principle to select the optimal predictors. The optimized Adaline predictor is compared to optimized MLP by employing noisy Rayleigh fading signals with 1.8 GHZ carrier frequency in an urban environment. The results show that the Adaline predictor can estimates SIR with the same error as MLP when the user has the velocity of 5 km/h and 60 km/h but by increasing the velocity up-to 120 km/h the mean squared error of MLP is two times more than Adaline predictor. This makes the Adaline predictor (with lower complexity) more suitable than MLP for closed-loop power control where efficient and accurate identification of the time-varying inverse dynamics of the multi path fading channel is required.Keywords: Power control, neural networks, DS/CDMA mobilecommunication systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25157880 An Algorithm of Finite Capacity Material Requirement Planning System for Multi-stage Assembly Flow Shop
Authors: T. Wuttipornpun, U. Wangrakdiskul, W. Songserm
Abstract:
This paper aims to develop an algorithm of finite capacity material requirement planning (FCMRP) system for a multistage assembly flow shop. The developed FCMRP system has two main stages. The first stage is to allocate operations to the first and second priority work centers and also determine the sequence of the operations on each work center. The second stage is to determine the optimal start time of each operation by using a linear programming model. Real data from a factory is used to analyze and evaluate the effectiveness of the proposed FCMRP system and also to guarantee a practical solution to the user. There are five performance measures, namely, the total tardiness, the number of tardy orders, the total earliness, the number of early orders, and the average flow-time. The proposed FCMRP system offers an adjustable solution which is a compromised solution among the conflicting performance measures. The user can adjust the weight of each performance measure to obtain the desired performance. The result shows that the combination of FCMRP NP3 and EDD outperforms other combinations in term of overall performance index. The calculation time for the proposed FCMRP system is about 10 minutes which is practical for the planners of the factory.Keywords: Material requirement planning, Finite capacity, Linear programming, Permutation, Application in industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23017879 Estimation of Time -Varying Linear Regression with Unknown Time -Volatility via Continuous Generalization of the Akaike Information Criterion
Authors: Elena Ezhova, Vadim Mottl, Olga Krasotkina
Abstract:
The problem of estimating time-varying regression is inevitably concerned with the necessity to choose the appropriate level of model volatility - ranging from the full stationarity of instant regression models to their absolute independence of each other. In the stationary case the number of regression coefficients to be estimated equals that of regressors, whereas the absence of any smoothness assumptions augments the dimension of the unknown vector by the factor of the time-series length. The Akaike Information Criterion is a commonly adopted means of adjusting a model to the given data set within a succession of nested parametric model classes, but its crucial restriction is that the classes are rigidly defined by the growing integer-valued dimension of the unknown vector. To make the Kullback information maximization principle underlying the classical AIC applicable to the problem of time-varying regression estimation, we extend it onto a wider class of data models in which the dimension of the parameter is fixed, but the freedom of its values is softly constrained by a family of continuously nested a priori probability distributions.Keywords: Time varying regression, time-volatility of regression coefficients, Akaike Information Criterion (AIC), Kullback information maximization principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15347878 Algorithm Design and Performance Evaluation of Equivalent CMOS Model
Authors: Parvinder S. Sandhu, Iqbaldeep Kaur, Amit Verma, Inderpreet Kaur, Birinderjit S. Kalyan
Abstract:
This work is a proposed model of CMOS for which the algorithm has been created and then the performance evaluation of this proposition has been done. In this context, another commonly used model called ZSTT (Zero Switching Time Transient) model is chosen to compare all the vital features and the results for the Proposed Equivalent CMOS are promising. In the end, the excerpts of the created algorithm are also includedKeywords: Dual Capacitor Model, ZSTT, CMOS, SPICEMacro-Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13317877 Artificial Neural Network based Modeling of Evaporation Losses in Reservoirs
Authors: Surinder Deswal, Mahesh Pal
Abstract:
An Artificial Neural Network based modeling technique has been used to study the influence of different combinations of meteorological parameters on evaporation from a reservoir. The data set used is taken from an earlier reported study. Several input combination were tried so as to find out the importance of different input parameters in predicting the evaporation. The prediction accuracy of Artificial Neural Network has also been compared with the accuracy of linear regression for predicting evaporation. The comparison demonstrated superior performance of Artificial Neural Network over linear regression approach. The findings of the study also revealed the requirement of all input parameters considered together, instead of individual parameters taken one at a time as reported in earlier studies, in predicting the evaporation. The highest correlation coefficient (0.960) along with lowest root mean square error (0.865) was obtained with the input combination of air temperature, wind speed, sunshine hours and mean relative humidity. A graph between the actual and predicted values of evaporation suggests that most of the values lie within a scatter of ±15% with all input parameters. The findings of this study suggest the usefulness of ANN technique in predicting the evaporation losses from reservoirs.Keywords: Artificial neural network, evaporation losses, multiple linear regression, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19787876 Ordinal Regression with Fenton-Wilkinson Order Statistics: A Case Study of an Orienteering Race
Authors: Joonas Pääkkönen
Abstract:
In sports, individuals and teams are typically interested in final rankings. Final results, such as times or distances, dictate these rankings, also known as places. Places can be further associated with ordered random variables, commonly referred to as order statistics. In this work, we introduce a simple, yet accurate order statistical ordinal regression function that predicts relay race places with changeover-times. We call this function the Fenton-Wilkinson Order Statistics model. This model is built on the following educated assumption: individual leg-times follow log-normal distributions. Moreover, our key idea is to utilize Fenton-Wilkinson approximations of changeover-times alongside an estimator for the total number of teams as in the notorious German tank problem. This original place regression function is sigmoidal and thus correctly predicts the existence of a small number of elite teams that significantly outperform the rest of the teams. Our model also describes how place increases linearly with changeover-time at the inflection point of the log-normal distribution function. With real-world data from Jukola 2019, a massive orienteering relay race, the model is shown to be highly accurate even when the size of the training set is only 5% of the whole data set. Numerical results also show that our model exhibits smaller place prediction root-mean-square-errors than linear regression, mord regression and Gaussian process regression.Keywords: Fenton-Wilkinson approximation, German tank problem, log-normal distribution, order statistics, ordinal regression, orienteering, sports analytics, sports modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8347875 Stability Criteria for Neural Networks with Two Additive Time-varying Delay Components
Authors: Qingqing Wang, Shouming Zhong
Abstract:
This paper is concerned with the stability problem with two additive time-varying delay components. By choosing one augmented Lyapunov-Krasovskii functional, using some new zero equalities, and combining linear matrix inequalities (LMI) techniques, two new sufficient criteria ensuring the global stability asymptotic stability of DNNs is obtained. These stability criteria are present in terms of linear matrix inequalities and can be easily checked. Finally, some examples are showed to demonstrate the effectiveness and less conservatism of the proposed method.
Keywords: Neural networks, Globally asymptotic stability, LMI approach, Additive time-varying delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15667874 Gauss-Seidel Iterative Methods for Rank Deficient Least Squares Problems
Authors: Davod Khojasteh Salkuyeh, Sayyed Hasan Azizi
Abstract:
We study the semiconvergence of Gauss-Seidel iterative methods for the least squares solution of minimal norm of rank deficient linear systems of equations. Necessary and sufficient conditions for the semiconvergence of the Gauss-Seidel iterative method are given. We also show that if the linear system of equations is consistent, then the proposed methods with a zero vector as an initial guess converge in one iteration. Some numerical results are given to illustrate the theoretical results.Keywords: rank deficient least squares problems, AOR iterativemethod, Gauss-Seidel iterative method, semiconvergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19287873 Modeling of Reinforcement in Concrete Beams Using Machine Learning Tools
Authors: Yogesh Aggarwal
Abstract:
The paper discusses the results obtained to predict reinforcement in singly reinforced beam using Neural Net (NN), Support Vector Machines (SVM-s) and Tree Based Models. Major advantage of SVM-s over NN is of minimizing a bound on the generalization error of model rather than minimizing a bound on mean square error over the data set as done in NN. Tree Based approach divides the problem into a small number of sub problems to reach at a conclusion. Number of data was created for different parameters of beam to calculate the reinforcement using limit state method for creation of models and validation. The results from this study suggest a remarkably good performance of tree based and SVM-s models. Further, this study found that these two techniques work well and even better than Neural Network methods. A comparison of predicted values with actual values suggests a very good correlation coefficient with all four techniques.Keywords: Linear Regression, M5 Model Tree, Neural Network, Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20357872 Studding of Number of Dataset on Precision of Estimated Saturated Hydraulic Conductivity
Authors: M. Siosemarde, M. Byzedi
Abstract:
Saturated hydraulic conductivity of Soil is an important property in processes involving water and solute flow in soils. Saturated hydraulic conductivity of soil is difficult to measure and can be highly variable, requiring a large number of replicate samples. In this study, 60 sets of soil samples were collected at Saqhez region of Kurdistan province-IRAN. The statistics such as Correlation Coefficient (R), Root Mean Square Error (RMSE), Mean Bias Error (MBE) and Mean Absolute Error (MAE) were used to evaluation the multiple linear regression models varied with number of dataset. In this study the multiple linear regression models were evaluated when only percentage of sand, silt, and clay content (SSC) were used as inputs, and when SSC and bulk density, Bd, (SSC+Bd) were used as inputs. The R, RMSE, MBE and MAE values of the 50 dataset for method (SSC), were calculated 0.925, 15.29, -1.03 and 12.51 and for method (SSC+Bd), were calculated 0.927, 15.28,-1.11 and 12.92, respectively, for relationship obtained from multiple linear regressions on data. Also the R, RMSE, MBE and MAE values of the 10 dataset for method (SSC), were calculated 0.725, 19.62, - 9.87 and 18.91 and for method (SSC+Bd), were calculated 0.618, 24.69, -17.37 and 22.16, respectively, which shows when number of dataset increase, precision of estimated saturated hydraulic conductivity, increases.Keywords: dataset, precision, saturated hydraulic conductivity, soil and statistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17937871 Time-Delay Estimation Using Cross-ΨB-Energy Operator
Authors: Z. Saidi, A.O. Boudraa, J.C. Cexus, S. Bourennane
Abstract:
In this paper, a new time-delay estimation technique based on the cross IB-energy operator [5] is introduced. This quadratic energy detector measures how much a signal is present in another one. The location of the peak of the energy operator, corresponding to the maximum of interaction between the two signals, is the estimate of the delay. The method is a fully data-driven approach. The discrete version of the continuous-time form of the cross IBenergy operator, for its implementation, is presented. The effectiveness of the proposed method is demonstrated on real underwater acoustic signals arriving from targets and the results compared to the cross-correlation method.Keywords: Teager-Kaiser energy operator, Cross-energyoperator, Time-Delay, Underwater acoustic signals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56497870 Advances on LuGre Friction Model
Authors: Mohammad Fuad Mohammad Naser, Faycal Ikhouane
Abstract:
LuGre friction model is an ordinary differential equation that is widely used in describing the friction phenomenon for mechanical systems. The importance of this model comes from the fact that it captures most of the friction behavior that has been observed including hysteresis. In this paper, we study some aspects related to the hysteresis behavior induced by the LuGre friction model.
Keywords: Hysteresis, LuGre model, operator, (strong) consistency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27127869 A Methodology for Creating a Conceptual Model Under Uncertainty
Authors: Bogdan Walek, Jiri Bartos, Cyril Klimes
Abstract:
This article deals with the conceptual modeling under uncertainty. First, the division of information systems with their definition will be described, focusing on those where the construction of a conceptual model is suitable for the design of future information system database. Furthermore, the disadvantages of the traditional approach in creating a conceptual model and database design will be analyzed. A comprehensive methodology for the creation of a conceptual model based on analysis of client requirements and the selection of a suitable domain model is proposed here. This article presents the expert system used for the construction of a conceptual model and is a suitable tool for database designers to create a conceptual model.
Keywords: Conceptual model, conceptual modeling, database, methodology, uncertainty, information system, entity, attribute, relationship, conceptual domain model, fuzzy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15847868 A Comparison of Marginal and Joint Generalized Quasi-likelihood Estimating Equations Based On the Com-Poisson GLM: Application to Car Breakdowns Data
Authors: N. Mamode Khan, V. Jowaheer
Abstract:
In this paper, we apply and compare two generalized estimating equation approaches to the analysis of car breakdowns data in Mauritius. Number of breakdowns experienced by a machinery is a highly under-dispersed count random variable and its value can be attributed to the factors related to the mechanical input and output of that machinery. Analyzing such under-dispersed count observation as a function of the explanatory factors has been a challenging problem. In this paper, we aim at estimating the effects of various factors on the number of breakdowns experienced by a passenger car based on a study performed in Mauritius over a year. We remark that the number of passenger car breakdowns is highly under-dispersed. These data are therefore modelled and analyzed using Com-Poisson regression model. We use the two types of quasi-likelihood estimation approaches to estimate the parameters of the model: marginal and joint generalized quasi-likelihood estimating equation approaches. Under-dispersion parameter is estimated to be around 2.14 justifying the appropriateness of Com-Poisson distribution in modelling underdispersed count responses recorded in this study.
Keywords: Breakdowns, under-dispersion, com-poisson, generalized linear model, marginal quasi-likelihood estimation, joint quasi-likelihood estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14707867 Improved Stability Criteria for Neural Networks with Two Additive Time-Varying Delays
Authors: Miaomiao Yang, Shouming Zhong
Abstract:
This paper studies the problem of stability criteria for neural networks with two additive time-varying delays.A new Lyapunov-Krasovskii function is constructed and some new delay dependent stability criterias are derived in the terms of linear matrix inequalities(LMI), zero equalities and reciprocally convex approach.The several stability criterion proposed in this paper is simpler and effective. Finally,numerical examples are provided to demonstrate the feasibility and effectiveness of our results.
Keywords: Stability, Neural networks, Linear Matrix Inequalities (LMI) , Lyapunov function, Time-varying delays
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14497866 Determination of Optimal Stress Locations in 2D–9 Noded Element in Finite Element Technique
Authors: Nishant Shrivastava, D. K. Sehgal
Abstract:
In Finite Element Technique nodal stresses are calculated through displacement as nodes. In this process, the displacement calculated at nodes is sufficiently good enough but stresses calculated at nodes are not sufficiently accurate. Therefore, the accuracy in the stress computation in FEM models based on the displacement technique is obviously matter of concern for computational time in shape optimization of engineering problems. In the present work same is focused to find out unique points within the element as well as the boundary of the element so, that good accuracy in stress computation can be achieved. Generally, major optimal stress points are located in domain of the element some points have been also located at boundary of the element where stresses are fairly accurate as compared to nodal values. Then, it is subsequently concluded that there is an existence of unique points within the element, where stresses have higher accuracy than other points in the elements. Therefore, it is main aim is to evolve a generalized procedure for the determination of the optimal stress location inside the element as well as at the boundaries of the element and verify the same with results from numerical experimentation. The results of quadratic 9 noded serendipity elements are presented and the location of distinct optimal stress points is determined inside the element, as well as at the boundaries. The theoretical results indicate various optimal stress locations are in local coordinates at origin and at a distance of 0.577 in both directions from origin. Also, at the boundaries optimal stress locations are at the midpoints of the element boundary and the locations are at a distance of 0.577 from the origin in both directions. The above findings were verified through experimentation and findings were authenticated. For numerical experimentation five engineering problems were identified and the numerical results of 9-noded element were compared to those obtained by using the same order of 25-noded quadratic Lagrangian elements, which are considered as standard. Then root mean square errors are plotted with respect to various locations within the elements as well as the boundaries and conclusions were drawn. After numerical verification it is noted that in a 9-noded element, origin and locations at a distance of 0.577 from origin in both directions are the best sampling points for the stresses. It was also noted that stresses calculated within line at boundary enclosed by 0.577 midpoints are also very good and the error found is very less. When sampling points move away from these points, then it causes line zone error to increase rapidly. Thus, it is established that there are unique points at boundary of element where stresses are accurate, which can be utilized in solving various engineering problems and are also useful in shape optimizations.
Keywords: Finite element, Lagrangian, optimal stress location, serendipity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6337865 A Study of the Effectiveness of the Routing Decision Support Algorithm
Authors: Wayne Goodridge, Alexander Nikov, Ashok Sahai
Abstract:
Multi criteria decision making (MCDM) methods like analytic hierarchy process, ELECTRE and multi-attribute utility theory are critically studied. They have irregularities in terms of the reliability of ranking of the best alternatives. The Routing Decision Support (RDS) algorithm is trying to improve some of their deficiencies. This paper gives a mathematical verification that the RDS algorithm conforms to the test criteria for an effective MCDM method when a linear preference function is considered.
Keywords: Decision support systems, linear preference function, multi-criteria decision-making algorithm, analytic hierarchy process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15847864 Optimum Shape and Design of Cooling Towers
Authors: A. M. El Ansary, A. A. El Damatty, A. O. Nassef
Abstract:
The aim of the current study is to develop a numerical tool that is capable of achieving an optimum shape and design of hyperbolic cooling towers based on coupling a non-linear finite element model developed in-house and a genetic algorithm optimization technique. The objective function is set to be the minimum weight of the tower. The geometric modeling of the tower is represented by means of B-spline curves. The finite element method is applied to model the elastic buckling behaviour of a tower subjected to wind pressure and dead load. The study is divided into two main parts. The first part investigates the optimum shape of the tower corresponding to minimum weight assuming constant thickness. The study is extended in the second part by introducing the shell thickness as one of the design variables in order to achieve an optimum shape and design. Design, functionality and practicality constraints are applied.Keywords: B-splines, Cooling towers, Finite element, Genetic algorithm, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32587863 New Approaches on Stability Analysis for Neural Networks with Time-Varying Delay
Authors: Qingqing Wang, Shouming Zhong
Abstract:
Utilizing the Lyapunov functional method and combining linear matrix inequality (LMI) techniques and integral inequality approach (IIA) to analyze the global asymptotic stability for delayed neural networks (DNNs),a new sufficient criterion ensuring the global stability of DNNs is obtained.The criteria are formulated in terms of a set of linear matrix inequalities,which can be checked efficiently by use of some standard numercial packages.In order to show the stability condition in this paper gives much less conservative results than those in the literature,numerical examples are considered.
Keywords: Neural networks, Globally asymptotic stability , LMI approach , IIA approach , Time-varying delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19397862 Application of Spreadsheet and Queuing Network Model to Capacity Optimization in Product Development
Authors: Muhammad Marsudi, Dzuraidah Abdul Wahab, Che Hassan Che Haron
Abstract:
Modeling of a manufacturing system enables one to identify the effects of key design parameters on the system performance and as a result to make correct decision. This paper proposes a manufacturing system modeling approach using a spreadsheet model based on queuing network theory, in which a static capacity planning model and stochastic queuing model are integrated. The model was used to improve the existing system utilization in relation to product design. The model incorporates few parameters such as utilization, cycle time, throughput, and batch size. The study also showed that the validity of developed model is good enough to apply and the maximum value of relative error is 10%, far below the limit value 32%. Therefore, the model developed in this study is a valuable alternative model in evaluating a manufacturing systemKeywords: Manufacturing system, product design, spreadsheet model, utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19207861 New Stabilization for Switched Neutral Systems with Perturbations
Authors: Lianglin Xiong, Shouming Zhong, Mao Ye
Abstract:
This paper addresses the stabilization issues for a class of uncertain switched neutral systems with nonlinear perturbations. Based on new classes of piecewise Lyapunov functionals, the stability assumption on all the main operators or the convex combination of coefficient matrices is avoid, and a new switching rule is introduced to stabilize the neutral systems. The switching rule is designed from the solution of the so-called Lyapunov-Metzler linear matrix inequalities. Finally, three simulation examples are given to demonstrate the significant improvements over the existing results.
Keywords: Switched neutral system, piecewise Lyapunov functional, nonlinear perturbation, Lyapunov-Metzler linear matrix inequality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16567860 1-D Modeling of Hydrate Decomposition in Porous Media
Authors: F. Esmaeilzadeh, M. E. Zeighami, J. Fathi
Abstract:
This paper describes a one-dimensional numerical model for natural gas production from the dissociation of methane hydrate in hydrate-capped gas reservoir under depressurization and thermal stimulation. Some of the hydrate reservoirs discovered are overlying a free-gas layer, known as hydrate-capped gas reservoirs. These reservoirs are thought to be easiest and probably the first type of hydrate reservoirs to be produced. The mathematical equations that can be described this type of reservoir include mass balance, heat balance and kinetics of hydrate decomposition. These non-linear partial differential equations are solved using finite-difference fully implicit scheme. In the model, the effect of convection and conduction heat transfer, variation change of formation porosity, the effect of using different equations of state such as PR and ER and steam or hot water injection are considered. In addition distributions of pressure, temperature, saturation of gas, hydrate and water in the reservoir are evaluated. It is shown that the gas production rate is a sensitive function of well pressure.
Keywords: Hydrate reservoir, numerical modeling, depressurization, thermal stimulation, gas generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20557859 Probe of Crack Initiate at the Toe of Concrete Gravity Dam using Numerical Analysis
Authors: M. S. Salimi, H. Kiamanesh, N. Hedayat
Abstract:
In this survey the process of crack propagation at the toe of concrete gravity dam is investigated by applying principals and criteria of linear elastic fracture mechanic. Simulating process of earthquake conditions for three models of dam with different geometrical condition, in empty reservoir under plain stress is calculated through special fracture mechanic software FRANNC2D [1] for determining fracture mechanic criteria. The outcomes showed that in spite of the primary expectations, the simultaneous existence of fillet in both toe and heel area (model 3), the rate of maximum principal stress has not been decreased; however, even the maximum principal stress has increased, so it caused stress intensity factors increase which is undesirable. On the other hand, the dam with heel fillet has shown the best attitude and it is because of items like decreasing the rates of maximum and minimum principal stresses and also is related to decreasing the rates of stress intensity factors for 1st & 2nd modes of the model.Keywords: Stress intensity factor, concrete gravity dam, numerical analysis, geometry of toe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17407858 The Statistical Properties of Filtered Signals
Authors: Ephraim Gower, Thato Tsalaile, Monageng Kgwadi, Malcolm Hawksford.
Abstract:
In this paper, the statistical properties of filtered or convolved signals are considered by deriving the resulting density functions as well as the exact mean and variance expressions given a prior knowledge about the statistics of the individual signals in the filtering or convolution process. It is shown that the density function after linear convolution is a mixture density, where the number of density components is equal to the number of observations of the shortest signal. For circular convolution, the observed samples are characterized by a single density function, which is a sum of products.
Keywords: Circular Convolution, linear Convolution, mixture density function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15167857 Efficiency of Robust Heuristic Gradient Based Enumerative and Tunneling Algorithms for Constrained Integer Programming Problems
Authors: Vijaya K. Srivastava, Davide Spinello
Abstract:
This paper presents performance of two robust gradient-based heuristic optimization procedures based on 3n enumeration and tunneling approach to seek global optimum of constrained integer problems. Both these procedures consist of two distinct phases for locating the global optimum of integer problems with a linear or non-linear objective function subject to linear or non-linear constraints. In both procedures, in the first phase, a local minimum of the function is found using the gradient approach coupled with hemstitching moves when a constraint is violated in order to return the search to the feasible region. In the second phase, in one optimization procedure, the second sub-procedure examines 3n integer combinations on the boundary and within hypercube volume encompassing the result neighboring the result from the first phase and in the second optimization procedure a tunneling function is constructed at the local minimum of the first phase so as to find another point on the other side of the barrier where the function value is approximately the same. In the next cycle, the search for the global optimum commences in both optimization procedures again using this new-found point as the starting vector. The search continues and repeated for various step sizes along the function gradient as well as that along the vector normal to the violated constraints until no improvement in optimum value is found. The results from both these proposed optimization methods are presented and compared with one provided by popular MS Excel solver that is provided within MS Office suite and other published results.
Keywords: Constrained integer problems, enumerative search algorithm, Heuristic algorithm, tunneling algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8017856 A Bayesian Hierarchical 13COBT to Correct Estimates Associated with a Delayed Gastric Emptying
Authors: Leslie J.C.Bluck, Sarah J.Jackson, Georgios Vlasakakis, Adrian Mander
Abstract:
The use of a Bayesian Hierarchical Model (BHM) to interpret breath measurements obtained during a 13C Octanoic Breath Test (13COBT) is demonstrated. The statistical analysis was implemented using WinBUGS, a commercially available computer package for Bayesian inference. A hierarchical setting was adopted where poorly defined parameters associated with a delayed Gastric Emptying (GE) were able to "borrow" strength from global distributions. This is proved to be a sufficient tool to correct model's failures and data inconsistencies apparent in conventional analyses employing a Non-linear least squares technique (NLS). Direct comparison of two parameters describing gastric emptying ng ( tlag -lag phase, t1/ 2 -half emptying time) revealed a strong correlation between the two methods. Despite our large dataset ( n = 164 ), Bayesian modeling was fast and provided a successful fitting for all subjects. On the contrary, NLS failed to return acceptable estimates in cases where GE was delayed.
Keywords: Bayesian hierarchical analysis, 13COBT, Gastricemptying, WinBUGS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14557855 An Optimized Design of Non-uniform Filterbank
Authors: Ram Kumar Soni, Alok Jain, Rajiv Saxena
Abstract:
The tree structured approach of non-uniform filterbank (NUFB) is normally used in perfect reconstruction (PR). The PR is not always feasible due to certain limitations, i.e, constraints in selecting design parameters, design complexity and some times output is severely affected by aliasing error if necessary and sufficient conditions of PR is not satisfied perfectly. Therefore, there has been generalized interest of researchers to go for near perfect reconstruction (NPR). In this proposed work, an optimized tree structure technique is used for the design of NPR non-uniform filterbank. Window functions of Blackman family are used to design the prototype FIR filter. A single variable linear optimization is used to minimize the amplitude distortion. The main feature of the proposed design is its simplicity with linear phase property.Keywords: Tree structure, NUFB, QMF, NPR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738