Search results for: Data transformation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7864

Search results for: Data transformation

7144 A Hybrid Scheme for on-Line Diagnostic Decision Making Using Optimal Data Representation and Filtering Technique

Authors: Hyun-Woo Cho

Abstract:

The early diagnostic decision making in industrial processes is absolutely necessary to produce high quality final products. It helps to provide early warning for a special event in a process, and finding its assignable cause can be obtained. This work presents a hybrid diagnostic schmes for batch processes. Nonlinear representation of raw process data is combined with classification tree techniques. The nonlinear kernel-based dimension reduction is executed for nonlinear classification decision boundaries for fault classes. In order to enhance diagnosis performance for batch processes, filtering of the data is performed to get rid of the irrelevant information of the process data. For the diagnosis performance of several representation, filtering, and future observation estimation methods, four diagnostic schemes are evaluated. In this work, the performance of the presented diagnosis schemes is demonstrated using batch process data.

Keywords: Diagnostics, batch process, nonlinear representation, data filtering, multivariate statistical approach

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316
7143 Increasing Replica Consistency Performances with Load Balancing Strategy in Data Grid Systems

Authors: Sarra Senhadji, Amar Kateb, Hafida Belbachir

Abstract:

Data replication in data grid systems is one of the important solutions that improve availability, scalability, and fault tolerance. However, this technique can also bring some involved issues such as maintaining replica consistency. Moreover, as grid environment are very dynamic some nodes can be more uploaded than the others to become eventually a bottleneck. The main idea of our work is to propose a complementary solution between replica consistency maintenance and dynamic load balancing strategy to improve access performances under a simulated grid environment.

Keywords: Consistency, replication, data grid, load balancing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325
7142 Nonparametric Control Chart Using Density Weighted Support Vector Data Description

Authors: Myungraee Cha, Jun Seok Kim, Seung Hwan Park, Jun-Geol Baek

Abstract:

In manufacturing industries, development of measurement leads to increase the number of monitoring variables and eventually the importance of multivariate control comes to the fore. Statistical process control (SPC) is one of the most widely used as multivariate control chart. Nevertheless, SPC is restricted to apply in processes because its assumption of data as following specific distribution. Unfortunately, process data are composed by the mixture of several processes and it is hard to estimate as one certain distribution. To alternative conventional SPC, therefore, nonparametric control chart come into the picture because of the strength of nonparametric control chart, the absence of parameter estimation. SVDD based control chart is one of the nonparametric control charts having the advantage of flexible control boundary. However,basic concept of SVDD has been an oversight to the important of data characteristic, density distribution. Therefore, we proposed DW-SVDD (Density Weighted SVDD) to cover up the weakness of conventional SVDD. DW-SVDD makes a new attempt to consider dense of data as introducing the notion of density Weight. We extend as control chart using new proposed SVDD and a simulation study of various distributional data is conducted to demonstrate the improvement of performance.

Keywords: Density estimation, Multivariate control chart, Oneclass classification, Support vector data description (SVDD)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
7141 Using Interval Constrained Petri Nets and Fuzzy Method for Regulation of Quality: The Case of Weight in Tobacco Factory

Authors: Nabli L., Dhouibi H., Collart Dutilleul S., Craye E.

Abstract:

The existence of maximal durations drastically modifies the performance evaluation in Discrete Event Systems (DES). The same particularity may be found on systems where the associated constraints do not concern the time. For example weight measures, in chemical industry, are used in order to control the quantity of consumed raw materials. This parameter also takes a fundamental part in the product quality as the correct transformation process is based upon a given percentage of each essence. Weight regulation therefore increases the global productivity of the system by decreasing the quantity of rejected products. In this paper we present an approach based on mixing different characteristics theories, the fuzzy system and Petri net system to describe the behaviour. An industriel application on a tobacco manufacturing plant, where the critical parameter is the weight is presented as an illustration.

Keywords: Petri Net, Manufacturing systems, Performance evaluation, Fuzzy logic, Tolerant system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
7140 Model-Based Person Tracking Through Networked Cameras

Authors: Kyoung-Mi Lee, Youn-Mi Lee

Abstract:

This paper proposes a way to track persons by making use of multiple non-overlapping cameras. Tracking persons on multiple non-overlapping cameras enables data communication among cameras through the network connection between a camera and a computer, while at the same time transferring human feature data captured by a camera to another camera that is connected via the network. To track persons with a camera and send the tracking data to another camera, the proposed system uses a hierarchical human model that comprises a head, a torso, and legs. The feature data of the person being modeled are transferred to the server, after which the server sends the feature data of the human model to the cameras connected over the network. This enables a camera that captures a person's movement entering its vision to keep tracking the recognized person with the use of the feature data transferred from the server.

Keywords: Person tracking, human model, networked cameras, vision-based surveillance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
7139 Slugging Frequency Correlation for Inclined Gas-liquid Flow

Authors: V. Hernandez-Perez, M. Abdulkadir, B. J. Azzopardi

Abstract:

In this work, new experimental data for slugging frequency in inclined gas-liquid flow are reported, and a new correlation is proposed. Scale experiments were carried out using a mixture of air and water in a 6 m long pipe. Two different pipe diameters were used, namely, 38 and 67 mm. The data were taken with capacitance type sensors at a data acquisition frequency of 200 Hz over an interval of 60 seconds. For the range of flow conditions studied, the liquid superficial velocity is observed to influence the frequency strongly. A comparison of the present data with correlations available in the literature reveals a lack of agreement. A new correlation for slug frequency has been proposed for the inclined flow, which represents the main contribution of this work.

Keywords: slug frequency, inclined flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3163
7138 FCA-based Conceptual Knowledge Discovery in Folksonomy

Authors: Yu-Kyung Kang, Suk-Hyung Hwang, Kyoung-Mo Yang

Abstract:

The tagging data of (users, tags and resources) constitutes a folksonomy that is the user-driven and bottom-up approach to organizing and classifying information on the Web. Tagging data stored in the folksonomy include a lot of very useful information and knowledge. However, appropriate approach for analyzing tagging data and discovering hidden knowledge from them still remains one of the main problems on the folksonomy mining researches. In this paper, we have proposed a folksonomy data mining approach based on FCA for discovering hidden knowledge easily from folksonomy. Also we have demonstrated how our proposed approach can be applied in the collaborative tagging system through our experiment. Our proposed approach can be applied to some interesting areas such as social network analysis, semantic web mining and so on.

Keywords: Folksonomy data mining, formal concept analysis, collaborative tagging, conceptual knowledge discovery, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
7137 Minimum Data of a Speech Signal as Special Indicators of Identification in Phonoscopy

Authors: Nazaket Gazieva

Abstract:

Voice biometric data associated with physiological, psychological and other factors are widely used in forensic phonoscopy. There are various methods for identifying and verifying a person by voice. This article explores the minimum speech signal data as individual parameters of a speech signal. Monozygotic twins are believed to be genetically identical. Using the minimum data of the speech signal, we came to the conclusion that the voice imprint of monozygotic twins is individual. According to the conclusion of the experiment, we can conclude that the minimum indicators of the speech signal are more stable and reliable for phonoscopic examinations.

Keywords: Biometric voice prints, fundamental frequency, phonogram, speech signal, temporal characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 574
7136 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data

Authors: Ruchika Malhotra, Megha Khanna

Abstract:

The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.

Keywords: Change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
7135 Plant Varieties Selection System

Authors: Kitti Koonsanit, Chuleerat Jaruskulchai, Poonsak Miphokasap, Apisit Eiumnoh

Abstract:

In the end of the day, meteorological data and environmental data becomes widely used such as plant varieties selection system. Variety plant selection for planted area is of almost importance for all crops, including varieties of sugarcane. Since sugarcane have many varieties. Variety plant non selection for planting may not be adapted to the climate or soil conditions for planted area. Poor growth, bloom drop, poor fruit, and low price are to be from varieties which were not recommended for those planted area. This paper presents plant varieties selection system for planted areas in Thailand from meteorological data and environmental data by the use of decision tree techniques. With this software developed as an environmental data analysis tool, it can analyze resulting easier and faster. Our software is a front end of WEKA that provides fundamental data mining functions such as classify, clustering, and analysis functions. It also supports pre-processing, analysis, and decision tree output with exporting result. After that, our software can export and display data result to Google maps API in order to display result and plot plant icons effectively.

Keywords: Plant varieties selection system, decision tree, expert recommendation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
7134 Jitter Transfer in High Speed Data Links

Authors: Tsunwai Gary Yip

Abstract:

Phase locked loops for data links operating at 10 Gb/s or faster are low phase noise devices designed to operate with a low jitter reference clock. Characterization of their jitter transfer function is difficult because the intrinsic noise of the device is comparable to the random noise level in the reference clock signal. A linear model is proposed to account for the intrinsic noise of a PLL. The intrinsic noise data of a PLL for 10 Gb/s links is presented. The jitter transfer function of a PLL in a test chip for 12.8 Gb/s data links was determined in experiments using the 400 MHz reference clock as the source of simultaneous excitations over a wide range of frequency. The result shows that the PLL jitter transfer function can be approximated by a second order linear model.

Keywords: Intrinsic phase noise, jitter in data link, PLL jitter transfer function, high speed clocking in electronic circuit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
7133 Magnetic Properties Govern the Processes of DNA Replication and the Shortening of the Telomere

Authors: Adnan Y. Rojeab

Abstract:

This hypothesis shows that the induction and the remanent of magnetic properties govern the mechanism processes of DNA replication and the shortening of the telomere. The solenoid–like formation of each parental DNA strand, which exists at the initial stage of the replication process, enables an electric charge transformation through the strand to produce a magnetic field. The magnetic field, in turn, induces the surrounding medium to form a new (replicated) strand by a remanent magnetisation. Through the remanent [residual] magnetisation process, the replicated strand possesses a similar information pattern to that of the parental strand. In the same process, the remanent amount of magnetisation forms the medium in which it has less of both repetitive and pattern magnetisation than that of the parental strand, therefore the replicated strand shows a shortening in the length of its telomeres.

Keywords: DNA replication, magnetic properties, residual magnetisation, shortening of the telomere.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2705
7132 Biography of the Earth in the Light of the Laws of Classical Physics

Authors: I. V. Kuzminov

Abstract:

The proposed article is an analytical review of previously published articles in the series "Physics of Gravity", "The Picture of the World by Second Law of Thermodynamics" and others. The article shows the key role of the forces of gravity and the action of the second law of thermodynamics in shaping the picture of the world. In other words, the second law of thermodynamics can be called the law of matter cooling. The action in the compartment of the inverse temperature dependence of the forces of gravity and the second law of thermodynamics is carried out by the processes of separation, condensation, phase transitions, and transformation of matter. On the basis of the proposed concept, along the way, completely new versions of the development of events in the biography of the Earth are put forward. For example, new versions of the origin of planets, the origin of continents and others are being put forward. This article contains a list of articles and videos that are somehow related to the proposed topic. Articles and videos are presented in English and Russian.

Keywords: Gravity, the second law of thermodynamics, electron rotation, inverse temperature dependence, inertia forces, centrifugal forces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 129
7131 Investigating the Areas of Self-Reflection in Malaysian Students’ Personal Blogs: A Case Study

Authors: Chen May Oh, Nadzrah Abu Bakar

Abstract:

This case study investigates the areas of self-reflection through the written content of four university students’ blogs. The study was undertaken to explore the categories of self-reflection in relation to the use of blogs. Data collection methods included downloading students’ blog entries and recording individual interviews to further support the data. Data was analyzed using computer assisted qualitative data analysis software, Nvivo, to categories and code the data. The categories of self-reflection revealed in the findings showed that university students used blogs to reflect on (1) life in varsity, (2) emotions and feelings, (3) various relationships, (4) personal growth, (5) spirituality, (6) health conditions, (7) busyness with daily chores, (8) gifts for people and themselves and (9) personal interests. Overall, all four of the students had positive experiences and felt satisfied using blogs for self-reflection.

Keywords: Blogging, personal growth, self-reflection, university students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213
7130 Knowledge-Driven Decision Support System Based on Knowledge Warehouse and Data Mining by Improving Apriori Algorithm with Fuzzy Logic

Authors: Pejman Hosseinioun, Hasan Shakeri, Ghasem Ghorbanirostam

Abstract:

In recent years, we have seen an increasing importance of research and study on knowledge source, decision support systems, data mining and procedure of knowledge discovery in data bases and it is considered that each of these aspects affects the others. In this article, we have merged information source and knowledge source to suggest a knowledge based system within limits of management based on storing and restoring of knowledge to manage information and improve decision making and resources. In this article, we have used method of data mining and Apriori algorithm in procedure of knowledge discovery one of the problems of Apriori algorithm is that, a user should specify the minimum threshold for supporting the regularity. Imagine that a user wants to apply Apriori algorithm for a database with millions of transactions. Definitely, the user does not have necessary knowledge of all existing transactions in that database, and therefore cannot specify a suitable threshold. Our purpose in this article is to improve Apriori algorithm. To achieve our goal, we tried using fuzzy logic to put data in different clusters before applying the Apriori algorithm for existing data in the database and we also try to suggest the most suitable threshold to the user automatically.

Keywords: Decision support system, data mining, knowledge discovery, data discovery, fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
7129 A New Algorithm for Cluster Initialization

Authors: Moth'd Belal. Al-Daoud

Abstract:

Clustering is a very well known technique in data mining. One of the most widely used clustering techniques is the k-means algorithm. Solutions obtained from this technique are dependent on the initialization of cluster centers. In this article we propose a new algorithm to initialize the clusters. The proposed algorithm is based on finding a set of medians extracted from a dimension with maximum variance. The algorithm has been applied to different data sets and good results are obtained.

Keywords: clustering, k-means, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103
7128 Approximate Frequent Pattern Discovery Over Data Stream

Authors: Kittisak Kerdprasop, Nittaya Kerdprasop

Abstract:

Frequent pattern discovery over data stream is a hard problem because a continuously generated nature of stream does not allow a revisit on each data element. Furthermore, pattern discovery process must be fast to produce timely results. Based on these requirements, we propose an approximate approach to tackle the problem of discovering frequent patterns over continuous stream. Our approximation algorithm is intended to be applied to process a stream prior to the pattern discovery process. The results of approximate frequent pattern discovery have been reported in the paper.

Keywords: Frequent pattern discovery, Approximate algorithm, Data stream analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1342
7127 An Adaptive Hand-Talking System for the Hearing Impaired

Authors: Zhou Yu, Jiang Feng

Abstract:

An adaptive Chinese hand-talking system is presented in this paper. By analyzing the 3 data collecting strategies for new users, the adaptation framework including supervised and unsupervised adaptation methods is proposed. For supervised adaptation, affinity propagation (AP) is used to extract exemplar subsets, and enhanced maximum a posteriori / vector field smoothing (eMAP/VFS) is proposed to pool the adaptation data among different models. For unsupervised adaptation, polynomial segment models (PSMs) are used to help hidden Markov models (HMMs) to accurately label the unlabeled data, then the "labeled" data together with signerindependent models are inputted to MAP algorithm to generate signer-adapted models. Experimental results show that the proposed framework can execute both supervised adaptation with small amount of labeled data and unsupervised adaptation with large amount of unlabeled data to tailor the original models, and both achieve improvements on the performance of recognition rate.

Keywords: sign language recognition, signer adaptation, eMAP/VFS, polynomial segment model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
7126 The Different Roles between Sodium and Potassium Ions in Ion Exchange of WO3/SiO2 Catalysts

Authors: K. Pipitthapan, S. Maksasithorn, P. Praserthdam, J. Panpranot, K. Suriye, S. Kunjara Na Ayudhya

Abstract:

WO3/SiO2 catalysts were modified by an ion exchange method with sodium hydroxide or potassium hydroxide solution. The performance of the modified catalysts was tested in the metathesis of ethylene and trans-2-butene to propylene. During ion exchange, sodium and potassium ions played different roles. Sodium modified catalysts revealed constant trans-2-butene conversion and propylene selectivity when the concentrations of sodium in the solution were varied. In contrast, potassium modified catalysts showed reduction of the conversion and increase of the selectivity. From these results, potassium hydroxide may affect the transformation of tungsten oxide active species, resulting in the decrease in conversion whereas sodium hydroxide did not. Moreover, the modification of catalysts by this method improved the catalyst stability by lowering the amount of coke deposited on the catalyst surface.

Keywords: Acid sites, alkali metals, isomerization, metathesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
7125 Institutional Determinants of Economic Growth in Georgia and in Other Post-Communist Economies

Authors: Nazira Kakulia, Tsotne Zhghenti

Abstract:

The institutional development is one of the actual topics in economics science. New trends and directions of institutional development mostly depend on its structure and framework. Transformation of institutions is an important problem for every economy, especially for developing countries. The first research goal is to determine the importance and interactions between different institutions in Georgia. Using World Governance Indicators and Economic Freedom indexes it can be calculated the size for each institutional group. The second aim of this research is to evaluate Georgian institutional backwardness in comparison to other post-communist economies. We use statistical and econometric methods to evaluate the difference between the levels of institutional development in Georgia and in leading post-communist economies. Within the scope of this research, major findings are coefficients which are an assessment of their deviation (i.e. lag) of institutional indicators between Georgia and leading post-communist country which should be compared. The last part of the article includes analysis around the selected coefficients.

Keywords: Post-communist transition, institutions, economic growth, institutional development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 618
7124 Wavelet-Based Data Compression Technique for Wireless Sensor Networks

Authors: P. Kumsawat, N. Pimpru, K. Attakitmongcol, A.Srikaew

Abstract:

In this paper, we proposed an efficient data compression strategy exploiting the multi-resolution characteristic of the wavelet transform. We have developed a sensor node called “Smart Sensor Node; SSN". The main goals of the SSN design are lightweight, minimal power consumption, modular design and robust circuitry. The SSN is made up of four basic components which are a sensing unit, a processing unit, a transceiver unit and a power unit. FiOStd evaluation board is chosen as the main controller of the SSN for its low costs and high performance. The software coding of the implementation was done using Simulink model and MATLAB programming language. The experimental results show that the proposed data compression technique yields recover signal with good quality. This technique can be applied to compress the collected data to reduce the data communication as well as the energy consumption of the sensor and so the lifetime of sensor node can be extended.

Keywords: Wireless sensor network, wavelet transform, data compression, ZigBee, skipped high-pass sub-band.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2989
7123 A Middleware Transparent Framework for Applying MDA to SOA

Authors: Ali Taee Zade, Siamak Rasulzadeh, Reza Torkashvan

Abstract:

Although Model Driven Architecture has taken successful steps toward model-based software development, this approach still faces complex situations and ambiguous questions while applying to real world software systems. One of these questions - which has taken the most interest and focus - is how model transforms between different abstraction levels, MDA proposes. In this paper, we propose an approach based on Story Driven Modeling and Aspect Oriented Programming to ease these transformations. Service Oriented Architecture is taken as the target model to test the proposed mechanism in a functional system. Service Oriented Architecture and Model Driven Architecture [1] are both considered as the frontiers of their own domain in the software world. Following components - which was the greatest step after object oriented - SOA is introduced, focusing on more integrated and automated software solutions. On the other hand - and from the designers' point of view - MDA is just initiating another evolution. MDA is considered as the next big step after UML in designing domain.

Keywords: SOA, MDA, SDM, Model Transformation, Middleware Transparency, Aspects and Jini.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
7122 Monotone Rational Trigonometric Interpolation

Authors: Uzma Bashir, Jamaludin Md. Ali

Abstract:

This study is concerned with the visualization of monotone data using a piecewise C1 rational trigonometric interpolating scheme. Four positive shape parameters are incorporated in the structure of rational trigonometric spline. Conditions on two of these parameters are derived to attain the monotonicity of monotone data and othertwo are leftfree. Figures are used widely to exhibit that the proposed scheme produces graphically smooth monotone curves.

Keywords: Trigonometric splines, Monotone data, Shape preserving, C1 monotone interpolant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042
7121 Gabriel Mtsire’s "The Golden Spring" and Its Primary Sources, Textual and Content Changes Based on Cultural Development in the Context of the 4th-20th Centuries

Authors: Georgi Kalandadze

Abstract:

For studying the development of world civilizations, textual sources that have undergone textological and worldview changes are of great importance. The paper will discuss the collection of the XVIII century "The Golden Spring", compiled by Gabriel Mtsire, which includes texts of John Chrysostom. The teachings of John Chrysostom of the 4th century were translated into Georgian in the 10th-11th centuries by Euthymes of Athos. These texts correspond to the requirements of the Georgian society of the 10th-11th centuries. In the 18th century, Gabriel Mtsire collected and edited these texts to make them more understandable to his modern readers. In the 20th century, these texts were again adapted. Thus, the present study provides an opportunity to evaluate and outline the linguistic and content transformation process of the same work over 16 centuries.

Keywords: Gabriel Mtsire, John Chrysostom, Euthymius the Athonite, The Golden Spring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21
7120 Model of Optimal Centroids Approach for Multivariate Data Classification

Authors: Pham Van Nha, Le Cam Binh

Abstract:

Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.

Keywords: Analysis of optimization, artificial intelligence-based optimization, optimization for learning and data analysis, global optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 911
7119 Performance Optimization of Data Mining Application Using Radial Basis Function Classifier

Authors: M. Govindarajan, R. M.Chandrasekaran

Abstract:

Text data mining is a process of exploratory data analysis. Classification maps data into predefined groups or classes. It is often referred to as supervised learning because the classes are determined before examining the data. This paper describes proposed radial basis function Classifier that performs comparative crossvalidation for existing radial basis function Classifier. The feasibility and the benefits of the proposed approach are demonstrated by means of data mining problem: direct Marketing. Direct marketing has become an important application field of data mining. Comparative Cross-validation involves estimation of accuracy by either stratified k-fold cross-validation or equivalent repeated random subsampling. While the proposed method may have high bias; its performance (accuracy estimation in our case) may be poor due to high variance. Thus the accuracy with proposed radial basis function Classifier was less than with the existing radial basis function Classifier. However there is smaller the improvement in runtime and larger improvement in precision and recall. In the proposed method Classification accuracy and prediction accuracy are determined where the prediction accuracy is comparatively high.

Keywords: Text Data Mining, Comparative Cross-validation, Radial Basis Function, runtime, accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
7118 Application-Specific Instruction Sets Processor with Implicit Registers to Improve Register Bandwidth

Authors: Ginhsuan Li, Chiuyun Hung, Desheng Chen, Yiwen Wang

Abstract:

Application-Specific Instruction (ASI ) set Processors (ASIP) have become an important design choice for embedded systems due to runtime flexibility, which cannot be provided by custom ASIC solutions. One major bottleneck in maximizing ASIP performance is the limitation on the data bandwidth between the General Purpose Register File (GPRF) and ASIs. This paper presents the Implicit Registers (IRs) to provide the desirable data bandwidth. An ASI Input/Output model is proposed to formulate the overheads of the additional data transfer between the GPRF and IRs, therefore, an IRs allocation algorithm is used to achieve the better performance by minimizing the number of extra data transfer instructions. The experiment results show an up to 3.33x speedup compared to the results without using IRs.

Keywords: Application-Specific Instruction-set Processors, data bandwidth, configurable processor, implicit register.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
7117 Performance Evaluation of Data Transfer Protocol GridFTP for Grid Computing

Authors: Hiroyuki Ohsaki, Makoto Imase

Abstract:

In Grid computing, a data transfer protocol called GridFTP has been widely used for efficiently transferring a large volume of data. Currently, two versions of GridFTP protocols, GridFTP version 1 (GridFTP v1) and GridFTP version 2 (GridFTP v2), have been proposed in the GGF. GridFTP v2 supports several advanced features such as data streaming, dynamic resource allocation, and checksum transfer, by defining a transfer mode called X-block mode. However, in the literature, effectiveness of GridFTP v2 has not been fully investigated. In this paper, we therefore quantitatively evaluate performance of GridFTP v1 and GridFTP v2 using mathematical analysis and simulation experiments. We reveal the performance limitation of GridFTP v1, and quantitatively show effectiveness of GridFTP v2. Through several numerical examples, we show that by utilizing the data streaming feature, the average file transfer time of GridFTP v2 is significantly smaller than that of GridFTP v1.

Keywords: Grid Computing, GridFTP, Performance Evaluation, Queuing Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
7116 Work Structuring and the Feasibility of Application to Construction Projects in Vietnam

Authors: Viet-Hung Nguyen, Luh-Maan Chang

Abstract:

Design should be viewed concurrently by three ways as transformation, flow and value generation. An innovative approach to solve design – related problems is described as the integrated product - process design. As a foundation for a formal framework consisting of organizing principles and techniques, Work Structuring has been developed to guide efforts in the integration that enhances the development of operation and process design in alignment with product design. Vietnam construction projects are facing many delays, and cost overruns caused mostly by design related problems. A better design management that integrates product and process design could resolve these problems. A questionnaire survey and in – depth interviews were used to investigate the feasibility of applying Work Structuring to construction projects in Vietnam. The purpose of this paper is to present the research results and to illustrate the possible problems and potential solutions when Work Structuring is implemented to construction projects in Vietnam.

Keywords: integrated product – process design, Work Structuring, construction projects, Vietnam

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
7115 Perception-Oriented Model Driven Development for Designing Data Acquisition Process in Wireless Sensor Networks

Authors: K. Indra Gandhi

Abstract:

Wireless Sensor Networks (WSNs) have always been characterized for application-specific sensing, relaying and collection of information for further analysis. However, software development was not considered as a separate entity in this process of data collection which has posed severe limitations on the software development for WSN. Software development for WSN is a complex process since the components involved are data-driven, network-driven and application-driven in nature. This implies that there is a tremendous need for the separation of concern from the software development perspective. A layered approach for developing data acquisition design based on Model Driven Development (MDD) has been proposed as the sensed data collection process itself varies depending upon the application taken into consideration. This work focuses on the layered view of the data acquisition process so as to ease the software point of development. A metamodel has been proposed that enables reusability and realization of the software development as an adaptable component for WSN systems. Further, observing users perception indicates that proposed model helps in improving the programmer's productivity by realizing the collaborative system involved.

Keywords: Model-driven development, wireless sensor networks, data acquisition, separation of concern, layered design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 957