Search results for: inclined load
820 Construction Innovation: Support for 3D Printing House
Authors: Andrea Palazzo, Daniel Macek, Veronika Malinova
Abstract:
Contour processing is the new technology challenge for architects and construction companies. The many advantages it promises make it one of the most interesting solutions for construction in terms of automation of building processes. The technology for 3D printing houses offers many application possibilities, from low-cost construction, to being considered by NASA for visionary projects as a good solution for building settlements on other planets. Another very important point is that clients, as architects, will no longer have many limits in design concerning ideas and creativity. The prices for real estate are constantly increasing and the lack of availability of construction materials as well as the speculation that has been created around it in 2021 is bringing prices to such a level that in the future it will be difficult for developers to find customers for these ultra-expensive homes. Hence, this paper starts with the introduction of 3D printing, which now has the potential to gain an important position in the market, becoming a valid alternative to the classic construction process. This technology is not only beneficial from an economic point of view but it is also a great opportunity to have an impact on the environment by reducing CO2 emissions. Further on in the article we will also understand if, after the COP 26 (2021 United Nations Climate Change Conference), world governments could also push towards building technologies that reduce the waste materials that are needed to be disposed of and at the same time reduce emissions with the contribution of governmental funds. This paper will give us insight on the multiple benefits of 3D printing and emphasize the importance of finding new solutions for materials that can be used by the printer. Therefore, based on the type of material, it will be possible to understand the compatibility with current regulations and how the authorities will be inclined to support this technology. This will help to enable the rise and development of this technology in Europe and in the rest of the world on actual housing projects and not only on prototypes.
Keywords: Additive manufacturing, building development building regulation, contour crafting, printing material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 337819 Using 3-Glycidoxypropyltrimethoxysilane Functionalized SiO2 Nanoparticles to Improve Flexural Properties of Glass Fibers/Epoxy Grid-Stiffened Composite Panels
Authors: Reza Eslami-Farsani, Hamed Khosravi, Saba Fayazzadeh
Abstract:
Lightweight and efficient structures have the aim to enhance the efficiency of the components in various industries. Toward this end, composites are one of the most widely used materials because of durability, high strength and modulus, and low weight. One type of the advanced composites is grid-stiffened composite (GSC) structures, which have been extensively considered in aerospace, automotive, and aircraft industries. They are one of the top candidates for replacing some of the traditional components, which are used here. Although there are a good number of published surveys on the design aspects and fabrication of GSC structures, little systematic work has been reported on their material modification to improve their properties, to our knowledge. Matrix modification using nanoparticles is an effective method to enhance the flexural properties of the fibrous composites. In the present study, a silanecoupling agent (3-glycidoxypropyltrimethoxysilane/3-GPTS) was introduced onto the silica (SiO2) nanoparticle surface and its effects on the three-point flexural response of isogrid E-glass/epoxy composites were assessed. Based on the Fourier Transform Infrared Spectrometer (FTIR) spectra, it was inferred that the 3-GPTS coupling agent was successfully grafted onto the surface of SiO2 nanoparticles after modification. Flexural test revealed an improvement of 16%, 14%, and 36% in stiffness, maximum load and energy absorption of the isogrid specimen filled with 3 wt.% 3- GPTS/SiO2 compared to the neat one. It would be worth mentioning that in these structures, considerable energy absorption was observed after the primary failure related to the load peak. In addition, 3- GPTMS functionalization had a positive effect on the flexural behavior of the multiscale isogrid composites. In conclusion, this study suggests that the addition of modified silica nanoparticles is a promising method to improve the flexural properties of the gridstiffened fibrous composite structures.Keywords: Isogrid-stiffened composite panels, silica nanoparticles, surface modification, flexural properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3011818 Performance, Emission and Combustion Characteristics of a Variable Compression Ratio Diesel Engine Fueled with Karanj Biodiesel and Its Blends
Authors: Ajay V. Kolhe, R. E. Shelke, S. S. Khandare
Abstract:
The use of biodiesel in conventional diesel engines results in substantial reduction of unburned hydrocarbon, carbon monoxide and particulate matters. The performance, emission and combustion characteristics of a single cylinder four stroke variable compression ratio engine when fueled with Karanja (Pongamia) methyl ester and its 10-50 % blends with diesel (on a volume basis) are investigated and compared with standard diesel. The suitability of karanja methyl ester as a biofuel has been established in this study. The useful brake power obtained is similar to diesel fuel for all loads. Experiment has been conducted at a fixed engine speed of 1500 rpm, variable load and at compression ratios of 17.5:1 and 18.5:1. The impact of compression ratio on fuel consumption, combustion pressures and exhaust gas emissions has been investigated and presented. Optimum compression ratio which gives best performance has been identified. The results indicate longer ignition delay, maximum rate of pressure rise, lower heat release rate and higher mass fraction burnt at higher compression ratio for pongamia oil methyl ester when compared to that of diesel. The brake thermal efficiency for pongamia oil methyl ester blends and diesel has been calculated and the blend B20 is found to give maximum thermal efficiency. The blends when used as fuel results in reduction of carbon monoxide, hydrocarbon and increase in nitrogen oxides emissions. PME as an oxygenated fuel generated more complete combustion, which means increased torque and power. This is also supported with higher thermal efficiencies of the PME blends. NOx is slightly increased due to the higher combustion temperature and the presence of fuel oxygen with the blend at full load. PME as a new Biodiesel and its blends can be used in diesel engines without any engine modification.
Keywords: Variable compression ratio CI engine, performance, combustion, emissions, biodiesel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3299817 3.5-bit Stage of the CMOS Pipeline ADC
Authors: Gao Wei, Xu Minglu, Xu Yan, Zhang Xiaotong, Wang Xinghua
Abstract:
A 3.5-bit stage of the CMOS pipelined ADC is proposed. In this report, the main part of 3.5-bit stage ADC is introduced. How the MDAC, comparator and encoder worked and designed are shown in details. Besides, an OTA which is used in fully differential pipelined ADC was described. Using gain-boost architecture with differential amplifier, this OTA achieve high-gain and high-speed. This design was using CMOS 0.18um process and simulation in Cadence. The result of the simulation shows that the OTA has a gain up to 80dB, the unity gain bandwidth of about 1.138GHz with 2pF load.
Keywords: pipelined ADC, MDAC, operational amplifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3554816 Effect of Out-of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate with a Circular Hole
Authors: Shingo Murakami, Shinichi Enoki
Abstract:
In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield load of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigated that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole.
Keywords: Stress concentration, patch, out-of-plane deformation, Finite Element Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293815 Comparative Analysis of Mobility Support in Mobile IP and SIP
Authors: Hasanul Ferdaus, Sazzadur Rahman, Kamrul Islam
Abstract:
With the rapid usage of portable devices mobility in IP networks becomes more important issue in the recent years. IETF standardized Mobile IP that works in Network Layer, which involves tunneling of IP packets from HA to Foreign Agent. Mobile IP suffers many problems of Triangular Routing, conflict with private addressing scheme, increase in load in HA, need of permanent home IP address, tunneling itself, and so on. In this paper, we proposed mobility management in Application Layer protocol SIP and show some comparative analysis between Mobile IP and SIP in context of mobility.Keywords: Mobility, mobile IP, SIP, tunneling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902814 Loop Heat Pipe: Simple Thermodynamic
Authors: Mohammad Hamdan, Emad Elnajjar
Abstract:
The LHP is a two-phase device with extremely high effective thermal conductivity that utilizes the thermodynamic pressure difference to circulate a cooling fluid. A thermodynamics analytical model is developed to explore different parameters effects on a Loop Heat Pipe (LHP).. The effects of pipe length, pipe diameter, condenser temperature, and heat load are reported. As pipe length increases and/or pipe diameter decreases, a higher temperature is expected in the evaporator.Keywords: Loop Heat Pipe, LHP, Passive Cooling, CapillaryForce.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2813813 Performance Analysis of Three Absorption Heat Pump Cycles, Full and Partial Loads Operations
Authors: B. Dehghan, T. Toppi, M. Aprile, M. Motta
Abstract:
The environmental concerns related to global warming and ozone layer depletion along with the growing worldwide demand for heating and cooling have brought an increasing attention toward ecological and efficient Heating, Ventilation, and Air Conditioning (HVAC) systems. Furthermore, since space heating accounts for a considerable part of the European primary/final energy use, it has been identified as one of the sectors with the most challenging targets in energy use reduction. Heat pumps are commonly considered as a technology able to contribute to the achievement of the targets. Current research focuses on the full load operation and seasonal performance assessment of three gas-driven absorption heat pump cycles. To do this, investigations of the gas-driven air-source ammonia-water absorption heat pump systems for small-scale space heating applications are presented. For each of the presented cycles, both full-load under various temperature conditions and seasonal performances are predicted by means of numerical simulations. It has been considered that small capacity appliances are usually equipped with fixed geometry restrictors, meaning that the solution mass flow rate is driven by the pressure difference across the associated restrictor valve. Results show that gas utilization efficiency (GUE) of the cycles varies between 1.2 and 1.7 for both full and partial loads and vapor exchange (VX) cycle is found to achieve the highest efficiency. It is noticed that, for typical space heating applications, heat pumps operate over a wide range of capacities and thermal lifts. Thus, partially, the novelty introduced in the paper is the investigation based on a seasonal performance approach, following the method prescribed in a recent European standard (EN 12309). The overall result is a modest variation in the seasonal performance for analyzed cycles, from 1.427 (single-effect) to 1.493 (vapor-exchange).
Keywords: Absorption cycles, gas utilization efficiency, heat pump, seasonal performance, vapor exchange cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 719812 Deformation Characteristics of Fire Damaged and Rehabilitated Normal Strength Concrete Beams
Authors: Yeo Kyeong Lee, Hae Won Min, Ji Yeon Kang, Hee Sun Kim, Yeong Soo Shin
Abstract:
In recent years, fire accidents have been steadily increased and the amount of property damage caused by the accidents has gradually raised. Damaging building structure, fire incidents bring about not only such property damage but also strength degradation and member deformation. As a result, the building structure undermines its structural ability. Examining the degradation and the deformation is very important because reusing the building is more economical than reconstruction. Therefore, engineers need to investigate the strength degradation and member deformation well, and make sure that they apply right rehabilitation methods. This study aims at evaluating deformation characteristics of fire damaged and rehabilitated normal strength concrete beams through both experiments and finite element analyses. For the experiments, control beams, fire damaged beams and rehabilitated beams are tested to examine deformation characteristics. Ten test beam specimens with compressive strength of 21MPa are fabricated and main test variables are selected as cover thickness of 40mm and 50mm and fire exposure time of 1 hour or 2 hours. After heating, fire damaged beams are air-recurred for 2 months and rehabilitated beams are repaired with polymeric cement mortar after being removed the fire damaged concrete cover. All beam specimens are tested under four points loading. FE analyses are executed to investigate the effects of main parameters applied to experimental study. Test results show that both maximum load and stiffness of the rehabilitated beams are higher than those of the fire damaged beams. In addition, predicted structural behaviors from the analyses also show good rehabilitation effect and the predicted load-deflection curves are similar to the experimental results. For the further, the proposed analytical method can be used to predict deformation characteristics of fire damaged and rehabilitated concrete beams without suffering from time and cost consuming of experimental process.Keywords: Fire, Normal strength concrete, Rehabilitation, Reinforced concrete beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387811 Seismic Analysis of a S-Curved Viaduct using Stick and Finite Element Models
Authors: Sourabh Agrawal, Ashok K. Jain
Abstract:
Stick models are widely used in studying the behaviour of straight as well as skew bridges and viaducts subjected to earthquakes while carrying out preliminary studies. The application of such models to highly curved bridges continues to pose challenging problems. A viaduct proposed in the foothills of the Himalayas in Northern India is chosen for the study. It is having 8 simply supported spans @ 30 m c/c. It is doubly curved in horizontal plane with 20 m radius. It is inclined in vertical plane as well. The superstructure consists of a box section. Three models have been used: a conventional stick model, an improved stick model and a 3D finite element model. The improved stick model is employed by making use of body constraints in order to study its capabilities. The first 8 frequencies are about 9.71% away in the latter two models. Later the difference increases to 80% in 50th mode. The viaduct was subjected to all three components of the El Centro earthquake of May 1940. The numerical integration was carried out using the Hilber- Hughes-Taylor method as implemented in SAP2000. Axial forces and moments in the bridge piers as well as lateral displacements at the bearing levels are compared for the three models. The maximum difference in the axial forces and bending moments and displacements vary by 25% between the improved and finite element model. Whereas, the maximum difference in the axial forces, moments, and displacements in various sections vary by 35% between the improved stick model and equivalent straight stick model. The difference for torsional moment was as high as 75%. It is concluded that the stick model with body constraints to model the bearings and expansion joints is not desirable in very sharp S curved viaducts even for preliminary analysis. This model can be used only to determine first 10 frequency and mode shapes but not for member forces. A 3D finite element analysis must be carried out for meaningful results.Keywords: Bearing, body constraint, box girder, curved viaduct, expansion joint, finite element, link element, seismic, stick model, time history analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2360810 Fuel Cell/DC-DC Convertor Control by Sliding Mode Method
Authors: Farzad Abdous
Abstract:
Fuel cell's system requires regulating circuit for voltage and current in order to control power in case of connecting to other generative devices or load. In this paper Fuel cell system and convertor, which is a multi-variable system, are controlled using sliding mode method. Use of weighting matrix in design procedure made it possible to regulate speed of control. Simulation results show the robustness and accuracy of proposed controller for controlling desired of outputs.Keywords: DC-DC converter, Fuel cell, PEM, Slides mode control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614809 Sensorless PM Motor with Multi Degree of Freedom Fuzzy Control
Authors: Faeka M. H. Khater, Farouk I. Ahmed, Mohamed I. Abu El- Sebah
Abstract:
This paper introduces application of multi degree of freedom fuzzy(MDOFF) controller in permanent magnet (PM)drive system. The drive system model is developed for FO control. Simulation of the system is carried out to predict the performance at NL and under load,. The results indicate that application of MDOFF controller is effective for sensorless PM drive system.
Keywords: Sensorless FO controller, PM drives system, MDOFF controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687808 Technical and Economic Impacts of Distributed Generation on Distribution System
Authors: N. Rugthaicharoencheep, S. Auchariyamet
Abstract:
Distributed Generation (DG) in the form of renewable power generation systems is currently preferred for clean power generation. It has a significant impact on the distribution systems. This impact may be either positively or negatively depending on the distribution system, distributed generator and load characteristics. In this works, an overview of DG is briefly introduced. The technology of DG is also listed while the technical impacts and economic impacts are explained.Keywords: Distributed Generation, Technical Impacts, Economic Impacts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5982807 The Invariant Properties of Two-Port Circuits
Authors: Alexandr A. Penin
Abstract:
Application of projective geometry to the theory of two-ports and cascade circuits with a load change is considered. The equations linking the input and output of a two-port are interpreted as projective transformations which have the invariant as a cross-ratio of four points. This invariant has place for all regime parameters in all parts of a cascade circuit. This approach allows justifying the definition of a regime and its change, to calculate a circuit without explicitly finding the aparameters, to transmit accurately an analogue signal through the unstable two-port.
Keywords: Circuit regime, geometric circuit theory, projective geometry, two-port.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569806 Loading Methodology for a Capacity Constrained Job-Shop
Authors: Viraj Tyagi, Ajai Jain, P. K. Jain, Aarushi Jain
Abstract:
This paper presents a genetic algorithm based loading methodology for a capacity constrained job-shop with the consideration of alternative process plans for each part to be produced. Performance analysis of the proposed methodology is carried out for two case studies by considering two different manufacturing scenarios. Results obtained indicate that the methodology is quite effective in improving the shop load balance, and hence, it can be included in the frameworks of manufacturing planning systems of job-shop oriented industries.Keywords: Manufacturing planning, loading, genetic algorithm, Job-Shop
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493805 Numerical Study on the Static Characteristics of Novel Aerostatic Thrust Bearings Possessing Elastomer Capillary Restrictor and Bearing Surface
Authors: S. W. Lo, S.-H. Lu, Y. H. Guo, L.-C. Hsu
Abstract:
In this paper a novel design of aerostatic thrust bearing is proposed and is analyzed numerically. The capillary restrictor and bearing disk are made of elastomer like silicone and PU. The viscoelasticity of elastomer helps the capillary expand for more air flux and at the same time, allows conicity of the bearing surface to form when the air pressure is enhanced. Therefore the bearing has the better ability of passive compensation. In the present example, as compared with the typical model, the new designs can nearly double the load capability and offer four times static stiffness.
Keywords: Aerostatic, bearing, elastomer, static stiffness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919804 Techniques for Reliability Evaluation in Distribution System Planning
Authors: T. Lantharthong, N. Phanthuna
Abstract:
This paper presents reliability evaluation techniques which are applied in distribution system planning studies and operation. Reliability of distribution systems is an important issue in power engineering for both utilities and customers. Reliability is a key issue in the design and operation of electric power distribution systems and load. Reliability evaluation of distribution systems has been the subject of many recent papers and the modeling and evaluation techniques have improved considerably.Keywords: Reliability Evaluation, Optimization Technique, Reliability Indices
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4568803 Analysis of Wi-Fi Access Networks Situation in the City Area
Authors: A. Statkus, S. Paulikas
Abstract:
With increasing number of wireless devices like laptops, Wi-Fi Web Cams, network extenders, etc., a new kind of problems appeared, mostly related to poor Wi-Fi throughput or communication problems. In this paper an investigation on wireless networks and it-s saturation in Vilnius City and its surrounding is presented, covering the main problems of wireless saturation and network load during day. Also an investigation on wireless channel selection and noise levels were made, showing the impact of neighbor AP to signal and noise levels and how it changes during the day.Keywords: IEEE 802.11b/g/n, wireless saturation, client activity, channel selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648802 Characterization of Indoor Power Lines as Data Communication Channels Experimental Details and Results
Authors: Sheroz Khan, A. F. Salami, W. A. Lawal, AHM Zahirul Alam, Shihab Abdel Hameed, M. J. E.Salami
Abstract:
In this paper, a multi-branch power line is modeled using ABCD matrix to show its worth as a communication channel. The model is simulated using MATLAB in an effort to investigate the effects of multiple loading, multipath, and those as a result of load mismatching. The channel transfer function is obtained and investigated using different cable lengths, and different number of bridge taps under given loading conditions.
Keywords: Power line Communication, Transfer Function, Channel Modeling, Signal Transmission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932801 Structural Analysis of Warehouse Rack Construction for Heavy Loads
Authors: C. Kozkurt, A. Fenercioglu, M. Soyaslan
Abstract:
In this study rack systems that are structural storage units of warehouses have been analyzed as structural with Finite Element Method (FEA). Each cell of discussed rack system storages pallets which have from 800 kg to 1000 kg weights and 0.80x1.15x1.50 m dimensions. Under this load, total deformations and equivalent stresses of structural elements and principal stresses, tensile stresses and shear stresses of connection elements have been analyzed. The results of analyses have been evaluated according to resistance limits of structural and connection elements. Obtained results have been presented as visual and magnitude.Keywords: warehouse, structural analysis, AS/RS, FEM, FEA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3738800 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters
Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran
Abstract:
The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.
Keywords: Electric propulsion, mass gauging, propellant, PVT, xenon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2189799 Numerical Simulation and Analysis of Axially Restrained Steel Cellular Beams in Fire
Authors: Asal Pournaghshband
Abstract:
This paper presents the development of a finite element model to study the large deflection behaviour of restrained stainless steel cellular beams at elevated temperature. Cellular beams are widely used for efficient utilization of raw materials to facilitate long spans with faster construction resulting sustainable design solution that can enhance the performance and merit of any construction project. However, their load carrying capacity is less than the equivalent beams without opening due to developing shear-moment interaction at the openings. In structural frames due to elements continuity, such beams are restrained by their adjoining members which has a substantial effect on beams behaviour in fire. Stainless steel has also become integral part of the build environment due to its excellent corrosion resistance, whole life-cycle costs, and sustainability. This paper reports the numerical investigations into the effect of structural continuity on the thermo-mechanical performance of restrained steel beams with circle and elongated circle shapes of web opening in fire. The numerical model is firstly validated using existing numerical results from the literature, and then employed to perform a parametric study. Parametric studies to explore the influence of variation in i) axial restraint stiffness, ii) steel grades, iii) shape and size of web openings, and iv) load level were described. Hence, the structural continuity is evaluated through the application of different levels of axial restraints on the response of carbon steel and stainless steel cellular beam in fire. The transit temperature for stainless steel cellular beam is shown to be less affected by the level of axial stiffness than the equivalent carbon steel cellular beam. Overall, it was established that whereas stainless steel cellular beams show similar stages of behaviour of carbon steel cellular beams in fire, they are capable of withstanding higher temperatures prior to the onset of catenary action in large deflection, despite the higher thermal expansion of stainless steel material.
Keywords: Axial restraint, catenary action, cellular beam, fire, numerical modelling, stainless steel, transit temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75798 A Design and Implementation Model for Web Caching Using Server “URL Rewriting“
Authors: Mostafa E. Saleh, A. Abdel Nabi, A. Baith Mohamed
Abstract:
In order to make surfing the internet faster, and to save redundant processing load with each request for the same web page, many caching techniques have been developed to reduce latency of retrieving data on World Wide Web. In this paper we will give a quick overview of existing web caching techniques used for dynamic web pages then we will introduce a design and implementation model that take advantage of “URL Rewriting" feature in some popular web servers, e.g. Apache, to provide an effective approach of caching dynamic web pages.
Keywords: Web Caching, URL Rewriting, Optimizing Web Performance, Dynamic Web Pages Loading Time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928797 Theoretical Study on a Thermal Model for Large Power Transformer Units
Authors: Traian Chiulan, Brandusa Pantelimon
Abstract:
The paper analyzes the large power transformer unit regimes, indicating the criteria for the management of the voltage operating conditions, as well as the change in the operating conditions with the load connected to the secondary winding of the transformer unit. Further, the paper presents the software application for the evaluation of the transformer unit operation under different conditions. The software application was developed by means of virtual instrumentation.
Keywords: Operating regimes, power transformer, overload, lifetime, virtual instrumentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639796 Low NOx Combustion Technology for Minimizing NOx
Authors: Sewon Kim, Changyeop Lee, Minjun Kwon
Abstract:
A noble low NOx combustion technology, based on partial oxidation combustion concept in a fuel rich combustion zone, is successfully applied in this research. The burner is designed such that a portion of fuel is heated and pre-vaporized in the furnace then injected into a fuel rich combustion zone so that a partial oxidation reaction occurs. The effects of equivalence ratio, thermal load, and fuel distribution ratio on the emissions of NOx and CO are experimentally investigated. This newly developed combustion technology showed very low NOx emission level, about 12 ppm, when light oil is used as a fuel.
Keywords: Burner, low NOx, liquid fuel, partial oxidation, fuel rich.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2924795 Fuzzy Control of a Three Phase ThyristorizedInduction Motor
Authors: Abolfazl Jalilvand, Mohammad Reza Feyzi, Sohrab Khanmohammad, Mohammad Bagher Bana Sharifian, Ali Sajjadi
Abstract:
Nowadays the control of stator voltage at a constant frequency is one of the traditional and low expense methods in order to control the speed of induction motors near its nominal speed. The torque of induction motor is a nonlinear function of the firing angle, phase angle and speed. In this paper the speed control of induction motor regarding various load torque and under different conditions will be investigated based on a fuzzy controller with inverse training.
Keywords: Three phase induction motor, AC converter, speedcontrol, fuzzy control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799794 Lumped Parameter Models for Numerical Simulation of the Dynamic Response of Hoisting Appliances
Authors: Giovanni Incerti, Luigi Solazzi, Candida Petrogalli
Abstract:
This paper describes three lumped parameters models for the study of the dynamic behavior of a boom crane. The models here proposed allows to evaluate the fluctuations of the load arising from the rope and structure elasticity and from the type of the motion command imposed by the winch. A calculation software was developed in order to determine the actual acceleration of the lifted mass and the dynamic overload during the lifting phase. Some application examples are presented, with the aim of showing the correlation between the magnitude of the stress and the type of the employed motion command.Keywords: Crane, dynamic model, overloading condition, vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1964793 Evaluation of Tension Capacity of Pile (Case Study in Sandy Soil)
Authors: Shooshpasha I., Kiakojoori M., Mirzagoltabar R. A.
Abstract:
High building constructions are increasing in south beaches of the Caspian Sea because of tourist attractions and limitation of residential areas. According to saturated alluvial fields transfer of load from high structures to the soil by piles is inevitable. In spite of most of these piles are under compression forces, tension piles are used in special conditions. Few studies have been conducted because of the limited use of these piles. Tension capacity of openended pipe piles in full scale was tested in this study. The length of the bored piles was 420 up to 480 cm and all were in 120 cm diameter. The results of testing 7 piles were compared with the results of relations given by researches.Keywords: piles, tension capacity, sand, shaft friction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6982792 Measurement of Systemic Power Efficiency of Microwave Heating Application
Authors: Yi He, Nutdechatorn Puangngernmak, Suramate Chalermwisutkul
Abstract:
Microwave heating process has been developed about sixty years while measurement system has also progressed. Because of irradiation of high frequency of microwave, researchers have been utilized many costly technical instrument measuring parameters to evaluate the performance of microwave heating system. Therefore, this paper is intended to present an easier and feasible efficiency measurement method. It can help inspecting efficiency of microwave heating system with good accuracy, while the method can also give reference to optimizing procedure for microwave heating system for various load material
Keywords: measurement, microwave heating system, systemic power efficiency
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849791 Injection Forging of Splines Using Numerical and Experimental Study
Authors: M.Zadshakoyan, H.Jafarzadeh, E.Abdi Sobbouhi
Abstract:
Injection forging is a Nett-shape manufacturing process in which one or two punches move axially causing a radial flow into a die cavity in a form which is prescribed by the exitgeometry, such as pulley, flanges, gears and splines on a shaft. This paper presents an experimental and numerical study of the injection forging of splines in terms of load requirement and material flow. Three dimensional finite element analyses are used to investigate the effect of some important parameters in this process. The experiment has been carried out using solid commercial lead billets with two different billet diameters and four different dies.Keywords: Injection forging, splines, material flow, FEM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775