Search results for: finite volume method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33026

Search results for: finite volume method

32336 Evaluation of a New Method for Detection of Kidney Stone during Laparoscopy Using 3D Conceptual Modeling

Authors: Elnaz Afshari, Siamak Najarian, Naser Simforoosh, Siamak Hajizadeh Farkoush

Abstract:

Minimally invasive surgery (MIS) is now being widely used as a preferred choice for various types of operations. The need to detect various tactile properties, justifies the key role of tactile sensing that is currently missing in MIS. In this regard, Laparoscopy is one of the methods of minimally invasive surgery that can be used in kidney stone removal surgeries. At this moment, determination of the exact location of stone during laparoscopy is one of the limitations of this method that no scientific solution has been found for so far. Artificial tactile sensing is a new method for obtaining the characteristics of a hard object embedded in a soft tissue. Artificial palpation is an important application of artificial tactile sensing that can be used in different types of surgeries. In this study, a new method for determining the exact location of stone during laparoscopy is presented. In the present study, the effects of stone existence on the surface of kidney were investigated using conceptual 3D model of kidney containing a simulated stone. Having imitated palpation and modeled it conceptually, indications of stone existence that appear on the surface of kidney were determined. A number of different cases were created and solved by the software and using stress distribution contours and stress graphs, it is illustrated that the created stress patterns on the surface of kidney show not only the existence of stone inside, but also its exact location. So three-dimensional analysis leads to a novel method of predicting the exact location of stone and can be directly applied to the incorporation of tactile sensing in artificial palpation, helping surgeons in non-invasive procedures.

Keywords: Kidney Stone, Laparoscopic Surgery, Artificial Tactile Sensing, Finite Element Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
32335 Static Study of Piezoelectric Bimorph Beams with Delamination Zone

Authors: A. Zemirline, M. Ouali, A. Mahieddine

Abstract:

The FOSDT (the First Order Shear Deformation Theory) is taking into consideration to study the static behavior of a bimorph beam, with a delamination zone between the upper and the lower layer. The effect of limit conditions and lengths of the delamination zone are presented in this paper, with a PVDF piezoelectric material application. A FEM “Finite Element Method” is used to discretize the beam. In the axial displacement, a displacement field appears in the debonded zone with inverse effect between the upper and the lower layer was observed.

Keywords: Beam, Delamination, Piezoelectricity, Static.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
32334 An Active Set Method in Image Inpainting

Authors: Marrick Neri, Esmeraldo Ronnie Rey Zara

Abstract:

In this paper, we apply a semismooth active set method to image inpainting. The method exploits primal and dual features of a proposed regularized total variation model, following after the technique presented in [4]. Numerical results show that the method is fast and efficient in inpainting sufficiently thin domains.

Keywords: Active set method, image inpainting, total variation model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
32333 Seat Assignment Problem Optimization

Authors: Mohammed Salem Alzahrani

Abstract:

In this paper the optimality of the solution of an existing real word assignment problem known as the seat assignment problem using Seat Assignment Method (SAM) is discussed. SAM is the newly driven method from three existing methods, Hungarian Method, Northwest Corner Method and Least Cost Method in a special way that produces the easiness & fairness among all methods that solve the seat assignment problem.

Keywords: Assignment Problem, Hungarian Method, Least Cost Method, Northwest Corner Method, Seat Assignment Method (SAM), A Real Word Assignment Problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3438
32332 Heat Transfer in a Parallel-Plate Enclosure with Graded-Index Coatings on its Walls

Authors: Jiun-Wei Chen, Chih-Yang Wu, Ming-Feng Hou

Abstract:

A numerical study on the heat transfer in the thermal barrier coatings and the substrates of a parallel-plate enclosure is carried out. Some of the thermal barrier coatings, such as ceramics, are semitransparent and are of interest for high-temperature applications where radiation effects are significant. The radiative transfer equations and the energy equations are solved by using the discrete ordinates method and the finite difference method. Illustrative results are presented for temperature distributions in the coatings and the opaque walls under various heating conditions. The results show that the temperature distribution is more uniform in the interior portion of each coating away from its boundary for the case with a larger average of varying refractive index and a positive gradient of refractive index enhances radiative transfer to the substrates.

Keywords: Radiative transfer, parallel-plate enclosure, coatings, varying refractive index

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
32331 Application of Neural Network and Finite Element for Prediction the Limiting Drawing Ratio in Deep Drawing Process

Authors: H.Mohammadi Majd, M.Jalali Azizpour, A.V. Hoseini

Abstract:

In this paper back-propagation artificial neural network (BPANN) is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.

Keywords: Back-propagation artificial neural network(BPANN), deep drawing, prediction, limiting drawing ratio (LDR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
32330 Analysis of Endovascular Graft Features Affecting Endotension Following Endovascular Aneurysm Repair

Authors: Zeinab Hooshyar, Alireza Mehdizadeh

Abstract:

Endovascular aneurysm repair is a new and minimally invasive repair for patients with abdominal aortic aneurysm (AAA). This method has potential advantages that are incomparable with other repair methods. However, the enlargement of aneurysm in the absence of endoleak, which is known as endotension, may occur as one of post-operative compliances of this method. Typically, endotension is mainly as a result of pressure transmitted to aneurysm sac by endovascular installed graft. After installation of graft the aneurysm sac reduces significantly but remains non-zero. There are some factors which affect this pressure transmitted. In this study, the geometry features of installed vascular graft have been considered. It is inferred that graft neck angle and iliac bifurcation angle are two factors which can affect the drag force on graft and consequently the pressure transmitted to aneurysm.

Keywords: Endovascular graft, transmitted pressure, Drag force, Finite Element Modeling, neck angle, iliac bifurcation angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
32329 Viscoelastic Modeling of Brain MRE Data Using FE Method

Authors: H. Ajabi Naeeni, M. Haghpanahi

Abstract:

Dynamic shear test on simulated phantom can be used to validate magnetic resonance elastography (MRE) measurements. Phantom gel has been usually utilized for the cell culture of cartilage and soft tissue and also been used for mechanical property characterization using imaging systems. The viscoelastic property of the phantom would be important for dynamic experiments and analyses. In this study, An axisymmetric FE model is presented for determining the dynamic shear behaviour of brain simulated phantom using ABAQUS. The main objective of this study was to investigate the effect of excitation frequencies and boundary conditions on shear modulus and shear viscosity in viscoelastic media.

Keywords: Viscoelastic, MR Elastography, Finite Element, Brain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
32328 Numerical Analysis of the Melting of Nano-Enhanced Phase Change Material in a Rectangular Latent Heat Storage Unit

Authors: Radouane Elbahjaoui, Hamid El Qarnia

Abstract:

Melting of Paraffin Wax (P116) dispersed with Al2O3 nanoparticles in a rectangular latent heat storage unit (LHSU) is numerically investigated. The storage unit consists of a number of vertical and identical plates of nano-enhanced phase change material (NEPCM) separated by rectangular channels in which heat transfer fluid flows (HTF: Water). A two dimensional mathematical model is considered to investigate numerically the heat and flow characteristics of the LHSU. The melting problem was formulated using the enthalpy porosity method. The finite volume approach was used for solving equations. The effects of nanoparticles’ volumetric fraction and the Reynolds number on the thermal performance of the storage unit were investigated.

Keywords: Nano-enhanced phase change material, phase change material, nanoparticles, latent heat storage unit, melting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
32327 Optimizing the Design of Radial/Axial PMSM and SRM used for Powered Wheel-Chairs

Authors: D. Fodorean, D.C. Popa, F. Jurca, M. Ruba

Abstract:

the paper presents the optimization results for several electrical machines dedicated for powered electric wheel-chairs. The optimization, using the Hook-Jeeves algorithm, was employed based on a design approach which takes into consideration the road conditions. Also, through numerical simulations (based on finite element method), the analytical approach was validated. The optimization approach gave satisfactory results and the best suited variant was chosen for the motorization of the wheel-chair.

Keywords: electrical machines, numerical validation, optimization, electric wheel chair.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2064
32326 Natural Convection in Wavy-Wall Cavities Filled with Power-Law Fluid

Authors: Cha’o-Kuang Chen, Ching-Chang Cho

Abstract:

This paper investigates the natural convection heat transfer performance in a complex-wavy-wall cavity filled with power-law fluid. In performing the simulations, the continuity, Cauchy momentum and energy equations are solved subject to the Boussinesq approximation using a finite volume method. The simulations focus specifically on the effects of the flow behavior index in the power-law model and the Rayleigh number on the flow streamlines, isothermal contours and mean Nusselt number within the cavity. The results show that pseudoplastic fluids have a better heat transfer performance than Newtonian or dilatant fluids. Moreover, it is shown that for Rayleigh numbers greater than Ra=103, the mean Nusselt number has a significantly increase as the flow behavior index is decreased.

Keywords: Non-Newtonian fluid, Power-law fluid, Natural convection, Heat transfer enhancement, Cavity, Wavy wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
32325 An Efficient Backward Semi-Lagrangian Scheme for Nonlinear Advection-Diffusion Equation

Authors: Soyoon Bak, Sunyoung Bu, Philsu Kim

Abstract:

In this paper, a backward semi-Lagrangian scheme combined with the second-order backward difference formula is designed to calculate the numerical solutions of nonlinear advection-diffusion equations. The primary aims of this paper are to remove any iteration process and to get an efficient algorithm with the convergence order of accuracy 2 in time. In order to achieve these objects, we use the second-order central finite difference and the B-spline approximations of degree 2 and 3 in order to approximate the diffusion term and the spatial discretization, respectively. For the temporal discretization, the second order backward difference formula is applied. To calculate the numerical solution of the starting point of the characteristic curves, we use the error correction methodology developed by the authors recently. The proposed algorithm turns out to be completely iteration free, which resolves the main weakness of the conventional backward semi-Lagrangian method. Also, the adaptability of the proposed method is indicated by numerical simulations for Burgers’ equations. Throughout these numerical simulations, it is shown that the numerical results is in good agreement with the analytic solution and the present scheme offer better accuracy in comparison with other existing numerical schemes.

Keywords: Semi-Lagrangian method, Iteration free method, Nonlinear advection-diffusion equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
32324 Developing a New Vibration Analysis Calculative Method for Esfahan Subway Train and Railways Design, Manufacturing, and Construction

Authors: Omid A. Zargar

Abstract:

The simulated mass and spring method evaluation for subway or railways construction and installation systems have a wide application in rail industries. This kind of design should be optimizing all related parameters to reduce the amount of vibration in cities, homelands, historical zones and other critical locations. Finite element method could help us a lot to analysis such applications with an excellent accuracy but always developing some simple, fast and user friendly evaluation method required in subway industrial applications. In addition, process parameter optimization extremely required in railway industries to achieve some optimal design of railways with maximum safety, reliability and performance. Furthermore, it is important to reduce vibrations and further related maintenance costs as well as possible. In this paper a simple but useful simulated mass and spring evaluation system developed for Esfahan subway construction. Besides, some of related recent patent and innovations in rail world industries like Suspension mass tuned vibration reducer, short sleeper vibration attenuation fastener and Airtight track vibration-noise reducing fastener discussed in details.

Keywords: Subway construction engineering, natural frequency, operation frequency, vibration analysis, polyurethane layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2346
32323 Positive Solutions of Initial Value Problem for the Systems of Second Order Integro-Differential Equations in Banach Space

Authors: Lv Yuhua

Abstract:

In this paper, by establishing a new comparison result, we investigate the existence of positive solutions for initial value problems of nonlinear systems of second order integro-differential equations in Banach space.We improve and generalize some results  (see[5,6]), and the results is new even in finite dimensional spaces.

Keywords: Systems of integro-differential equations, monotone iterative method, comparison result, cone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
32322 CFD Modeling of PROX Microreactor for Fuel Processing

Authors: M. Vahabi, M. H. Akbari

Abstract:

In order to investigate a PROX microreactor performance, two-dimensional modeling of the reacting flow between two parallel plates is performed through a finite volume method using an improved SIMPLE algorithm. A three-step surface kinetics including hydrogen oxidation, carbon monoxide oxidation and water-gas shift reaction is applied for a Pt-Fe/γ-Al2O3 catalyst and operating temperatures of about 100ºC. Flow pattern, pressure field, temperature distribution, and mole fractions of species are found in the whole domain for all cases. Also, the required reactive length for removing carbon monoxide from about 2% to less than 10 ppm is found. Furthermore, effects of hydraulic diameter, wall temperature, and inlet mole fraction of air and water are investigated by considering carbon monoxide selectivity and conversion. It is found that air and water addition may improve the performance of the microreactor in carbon monoxide removal in such operating conditions; this is in agreement with the pervious published results.

Keywords: CFD, Fuel Processing, PROX, Reacting Flow, SIMPLE algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
32321 Study of Explicit Finite Difference Method in One Dimensional System

Authors: Azizollah Khormali, Seyyed Shahab Tabatabaee Moradi, Dmitry Petrakov

Abstract:

One of the most important parameters in petroleum reservoirs is the pressure distribution along the reservoir, as the pressure varies with the time and location. A popular method to determine the pressure distribution in a reservoir in the unsteady state regime of flow is applying Darcy’s equation and solving this equation numerically. The numerical simulation of reservoirs is based on these numerical solutions of different partial differential equations (PDEs) representing the multiphase flow of fluids. Pressure profile has obtained in a one dimensional system solving Darcy’s equation explicitly. Changes of pressure profile in three situations are investigated in this work. These situations include section length changes, step time changes and time approach to infinity. The effects of these changes in pressure profile are shown and discussed in the paper.

Keywords: Explicit solution, Numerical simulation, Petroleum reservoir, Pressure distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4193
32320 Optimizing of Gas Consumption in Gas-burner Space Heater

Authors: Saead Negahdari, Davood Jalali Vahid

Abstract:

Nowadays, the importance of energy saving is clearance to everyone. By attention to increasing price of fuels and also the problems of environment pollutions, there are the most efforts for using fuels littler and more optimum in everywhere. This essay studies optimizing of gas consumption in gas-burner space heaters. In oven of each gas-burner space heaters there is two snags to prevent the hot air (the result of combustion of natural gas) to go out of oven of the gas-burner space heaters directly without delivering its heat to the space of favorite environment like a room. These snags cause a excess circulating that helps hot air deliver its heat to the space of favorite environment. It means the exhaust air temperature will be decreased then when there are no snags. This is the aim of this essay to use maximum potential energy of the natural gas to make heat. In this study, by the help of a finite volume software (FLUENT) consumption of the gas-burner space heaters is simulated and optimized. At the end of this writing, by comparing the results of software and experimental results, it will be proved the authenticity of this method.

Keywords: FLUENT, Heat transfer, Oven of Gas-burner spaceheaters, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
32319 Analytic and Finite Element Solutions for Temperature Profiles in Welding using Varied Heat Source Models

Authors: Djarot B. Darmadi, John Norrish, Anh Kiet Tieu

Abstract:

Solutions for the temperature profile around a moving heat source are obtained using both analytic and finite element (FEM) methods. Analytic and FEM solutions are applied to study the temperature profile in welding. A moving heat source is represented using both point heat source and uniform distributed disc heat source models. Analytic solutions are obtained by solving the partial differential equation for energy conservation in a solid, and FEM results are provided by simulating welding using the ANSYS software. Comparison is made for quasi steady state conditions. The results provided by the analytic solutions are in good agreement with results obtained by FEM.

Keywords: Analytic solution, FEM, Temperature profile, HeatSource Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2211
32318 GPU-Based Volume Rendering for Medical Imagery

Authors: Hadjira Bentoumi, Pascal Gautron, Kadi Bouatouch

Abstract:

We present a method for fast volume rendering using graphics hardware (GPU). To our knowledge, it is the first implementation on the GPU. Based on the Shear-Warp algorithm, our GPU-based method provides real-time frame rates and outperforms the CPU-based implementation. When the number of slices is not sufficient, we add in-between slices computed by interpolation. This improves then the quality of the rendered images. We have also implemented the ray marching algorithm on the GPU. The results generated by the three algorithms (CPU-based and GPU-based Shear- Warp, GPU-based Ray Marching) for two test models has proved that the ray marching algorithm outperforms the shear-warp methods in terms of speed up and image quality.

Keywords: Volume rendering, graphics processors

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
32317 Computational Study and Wear Prediction of Steam Turbine Blade with Titanium-Nitride Coating Deposited by Physical Vapor Deposition Method

Authors: Karuna Tuchinda, Sasithon Bland

Abstract:

This work investigates the wear of a steam turbine blade coated with titanium nitride (TiN), and compares to the wear of uncoated blades. The coating is deposited on by physical vapor deposition (PVD) method. The working conditions of the blade were simulated and surface temperature and pressure values as well as flow velocity and flow direction were obtained. This data was used in the finite element wear model developed here in order to predict the wear of the blade. The wear mechanisms considered are erosive wear due to particle impingement and fluid jet, and fatigue wear due to repeated impingement of particles and fluid jet. Results show that the life of the TiN-coated blade is approximately 1.76 times longer than the life of the uncoated one.

Keywords: Physical vapour deposition, steam turbine blade, titanium-based coating, wear prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3144
32316 Large Eddy Simulation of Hydrogen Deflagration in Open Space and Vented Enclosure

Authors: T. Nozu, K. Hibi, T. Nishiie

Abstract:

This paper discusses the applicability of the numerical model for a damage prediction method of the accidental hydrogen explosion occurring in a hydrogen facility. The numerical model was based on an unstructured finite volume method (FVM) code “NuFD/FrontFlowRed”. For simulating unsteady turbulent combustion of leaked hydrogen gas, a combination of Large Eddy Simulation (LES) and a combustion model were used. The combustion model was based on a two scalar flamelet approach, where a G-equation model and a conserved scalar model expressed a propagation of premixed flame surface and a diffusion combustion process, respectively. For validation of this numerical model, we have simulated the previous two types of hydrogen explosion tests. One is open-space explosion test, and the source was a prismatic 5.27 m3 volume with 30% of hydrogen-air mixture. A reinforced concrete wall was set 4 m away from the front surface of the source. The source was ignited at the bottom center by a spark. The other is vented enclosure explosion test, and the chamber was 4.6 m × 4.6 m × 3.0 m with a vent opening on one side. Vent area of 5.4 m2 was used. Test was performed with ignition at the center of the wall opposite the vent. Hydrogen-air mixtures with hydrogen concentrations close to 18% vol. were used in the tests. The results from the numerical simulations are compared with the previous experimental data for the accuracy of the numerical model, and we have verified that the simulated overpressures and flame time-of-arrival data were in good agreement with the results of the previous two explosion tests.

Keywords: Deflagration, Large Eddy Simulation, Turbulent combustion, Vented enclosure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
32315 Optimum Design of an 8x8 Optical Switch with Thermal Compensated Mechanisms

Authors: Tien-Tung Chung, Chin-Te Lin, Chung-Yun Lee, Kuang-Chao Fan, Shou-Heng Chen

Abstract:

This paper studies the optimum design for reducing optical loss of an 8x8 mechanical type optical switch due to the temperature change. The 8x8 optical switch is composed of a base, 8 input fibers, 8 output fibers, 3 fixed mirrors and 17 movable mirrors. First, an innovative switch configuration is proposed with thermal-compensated design. Most mechanical type optical switches have a disadvantage that their precision and accuracy are influenced by the ambient temperature. Therefore, the thermal-compensated design is to deal with this situation by using materials with different thermal expansion coefficients (α). Second, a parametric modeling program is developed to generate solid models for finite element analysis, and the thermal and structural behaviors of the switch are analyzed. Finally, an integrated optimum design program, combining Autodesk Inventor Professional software, finite element analysis software, and genetic algorithms, is developed for improving the thermal behaviors that the optical loss of the switch is reduced. By changing design parameters of the switch in the integrated design program, the final optimum design that satisfies the design constraints and specifications can be found.

Keywords: Optical switch, finite element analysis, thermal-compensated design, optimum design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
32314 Simplified Stress Gradient Method for Stress-Intensity Factor Determination

Authors: Jeries J. Abou-Hanna

Abstract:

Several techniques exist for determining stress-intensity factors in linear elastic fracture mechanics analysis. These techniques are based on analytical, numerical, and empirical approaches that have been well documented in literature and engineering handbooks. However, not all techniques share the same merit. In addition to overly-conservative results, the numerical methods that require extensive computational effort, and those requiring copious user parameters hinder practicing engineers from efficiently evaluating stress-intensity factors. This paper investigates the prospects of reducing the complexity and required variables to determine stress-intensity factors through the utilization of the stress gradient and a weighting function. The heart of this work resides in the understanding that fracture emanating from stress concentration locations cannot be explained by a single maximum stress value approach, but requires use of a critical volume in which the crack exists. In order to understand the effectiveness of this technique, this study investigated components of different notch geometry and varying levels of stress gradients. Two forms of weighting functions were employed to determine stress-intensity factors and results were compared to analytical exact methods. The results indicated that the “exponential” weighting function was superior to the “absolute” weighting function. An error band +/- 10% was met for cases ranging from a steep stress gradient in a sharp v-notch to the less severe stress transitions of a large circular notch. The incorporation of the proposed method has shown to be a worthwhile consideration.

Keywords: Fracture mechanics, finite element method, stress intensity factor, stress gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 753
32313 An Alternative Proof for the Topological Entropy of the Motzkin Shift

Authors: Fahad Alsharari, Mohd Salmi Md Noorani

Abstract:

A Motzkin shift is a mathematical model for constraints on genetic sequences. In terms of the theory of symbolic dynamics, the Motzkin shift is nonsofic, and therefore, we cannot use the Perron- Frobenius theory to calculate its topological entropy. The Motzkin shift M(M,N) which comes from language theory, is defined to be the shift system over an alphabet A that consists of N negative symbols, N positive symbols and M neutral symbols. For an x in the full shift, x will be in the Motzkin subshift M(M,N) if and only if every finite block appearing in x has a non-zero reduced form. Therefore, the constraint for x cannot be bounded in length. K. Inoue has shown that the entropy of the Motzkin shift M(M,N) is log(M + N + 1). In this paper, a new direct method of calculating the topological entropy of the Motzkin shift is given without any measure theoretical discussion.

Keywords: Motzkin shift, topological entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005
32312 Gas Detonation Forming by a Mixture of H2+O2 Detonation

Authors: Morteza Khaleghi Meybodi, Hossein Bisadi

Abstract:

Explosive forming is one of the unconventional techniques in which, most commonly, the water is used as the pressure transmission medium. One of the newest methods in explosive forming is gas detonation forming which uses a normal shock wave derived of gas detonation, to form sheet metals. For this purpose a detonation is developed from the reaction of H2+O2 mixture in a long cylindrical detonation tube. The detonation wave goes through the detonation tube and acts as a blast load on the steel blank and forms it. Experimental results are compared with a finite element model; and the comparison of the experimental and numerical results obtained from strain, thickness variation and deformed geometry is carried out. Numerical and experimental results showed approximately 75 – 90 % similarity in formability of desired shape. Also optimum percent of gas mixture obtained when we mix 68% H2 with 32% O2.

Keywords: Explosive forming, High strain rate, Gas detonation, Finite element analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2140
32311 Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model

Authors: N. Jinesh, K. Shankar

Abstract:

This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally.

Keywords: Structural identification, PZT patches, inverse problem, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 925
32310 Modelling of Soil Structure Interaction of Integral Abutment Bridges

Authors: Thevaneyan K. David, John P. Forth

Abstract:

Integral Abutment Bridges (IAB) are defined as simple or multiple span bridges in which the bridge deck is cast monolithically with the abutment walls. This kind of bridges are becoming very popular due to different aspects such as good response under seismic loading, low initial costs, elimination of bearings, and less maintenance. However the main issue related to the analysis of this type of structures is dealing with soil-structure interaction of the abutment walls and the supporting piles. Various soil constitutive models have been used in studies of soil-structure interaction in this kind of structures by researchers. This paper is an effort to review the implementation of various finite elements model which explicitly incorporates the nonlinear soil and linear structural response considering various soil constitutive models and finite element mesh.

Keywords: Constitutive Models, FEM, Integral AbutmentBridges, Soil-structure Interactions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4711
32309 On Diffusion Approximation of Discrete Markov Dynamical Systems

Authors: Jevgenijs Carkovs

Abstract:

The paper is devoted to stochastic analysis of finite dimensional difference equation with dependent on ergodic Markov chain increments, which are proportional to small parameter ". A point-form solution of this difference equation may be represented as vertexes of a time-dependent continuous broken line given on the segment [0,1] with "-dependent scaling of intervals between vertexes. Tending " to zero one may apply stochastic averaging and diffusion approximation procedures and construct continuous approximation of the initial stochastic iterations as an ordinary or stochastic Ito differential equation. The paper proves that for sufficiently small " these equations may be successfully applied not only to approximate finite number of iterations but also for asymptotic analysis of iterations, when number of iterations tends to infinity.

Keywords: Markov dynamical system, diffusion approximation, equilibrium stochastic stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
32308 Strain Based Evaluation of Dents in Pressurized Pipes

Authors: Maziar Ramezani, Thomas Neitzert

Abstract:

A dent is a gross distortion of the pipe cross-section. Dent depth is defined as the maximum reduction in the diameter of the pipe compared to the original diameter. Pipeline dent finite element (FE) simulation and theoretical analysis are conducted in this paper to develop an understanding of the geometric characteristics and strain distribution in the pressurized dented pipe. Based on the results, the magnitude of the denting force increases significantly with increasing the internal pressure, and the maximum circumferential and longitudinal strains increase by increasing the internal pressure and the dent depth. The results can be used for characterizing dents and ranking their risks to the integrity of a pipeline.

Keywords: dented steel pipelines, Finite element model, Internal pressure, Strain distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5478
32307 Numerical Analysis of End Plate Bolted Connection with Corrugated Beam

Authors: M. A. Sadeghian, J. Yang, Q. F. Liu

Abstract:

Steel extended end plate bolted connections are recommended to be widely utilized in special moment-resisting frame subjected to monotonic loading. Improper design of steel beam to column connection can lead to the collapse and fatality of structures. Therefore comprehensive research studies of beam to column connection design should be carried out. Also the performance and effect of corrugated on the strength of beam column end plate connection up to failure under monotonic loading in horizontal direction is presented in this paper. The non-linear elastic–plastic behavior has been considered through a finite element analysis using the multi-purpose software package LUSAS. The effect of vertically and horizontally types of corrugated web was also investigated.

Keywords: Corrugated beam, monotonic loading, finite element analysis, end plate connection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473