Search results for: Robust regression.
736 Person Re-Identification Using Siamese Convolutional Neural Network
Authors: Sello Mokwena, Monyepao Thabang
Abstract:
In this study, we propose a comprehensive approach to address the challenges in person re-identification models. By combining a centroid tracking algorithm with a Siamese convolutional neural network model, our method excels in detecting, tracking, and capturing robust person features across non-overlapping camera views. The algorithm efficiently identifies individuals in the camera network, while the neural network extracts fine-grained global features for precise cross-image comparisons. The approach's effectiveness is further accentuated by leveraging the camera network topology for guidance. Our empirical analysis of benchmark datasets highlights its competitive performance, particularly evident when background subtraction techniques are selectively applied, underscoring its potential in advancing person re-identification techniques.
Keywords: Camera network, convolutional neural network topology, person tracking, person re-identification, Siamese.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81735 'Drought Proofing' Australian Cities: Implications for Climate Change Adaptation and Sustainability
Authors: Phoenix Lawhon Isler, John Merson, David Roser
Abstract:
Urban water management in Australia faces increasing pressure to deal with the challenges of droughts, growing population and the climate change uncertainty. Addressing these challenges is an opportunity to incorporate the parallel goals of sustainable water management and climate change adaptation through holistic, non-technical means. This paper presents case studies from Perth and Sydney which show how despite robust adaptation plans and experience, recent efforts to 'drought proof' cities have focused on supply-side measures (i.e. desalination), rather than rethinking how water is used and managing demand. The trend towards desalination as a climate adaptation measure raises questions about the sustainability of urban water futures in Australia.
Keywords: Climate change adaptation, desalination, drought management, sustainable urban water management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2254734 A New Approach to Steganography using Sinc-Convolution Method
Authors: Ahmad R. Naghsh-Nilchi, Latifeh Pourmohammadbagher
Abstract:
Both image steganography and image encryption have advantages and disadvantages. Steganograhy allows us to hide a desired image containing confidential information in a covered or host image while image encryption is decomposing the desired image to a non-readable, non-comprehended manner. The encryption methods are usually much more robust than the steganographic ones. However, they have a high visibility and would provoke the attackers easily since it usually is obvious from an encrypted image that something is hidden! The combination of steganography and encryption will cover both of their weaknesses and therefore, it increases the security. In this paper an image encryption method based on sinc-convolution along with using an encryption key of 128 bit length is introduced. Then, the encrypted image is covered by a host image using a modified version of JSteg steganography algorithm. This method could be applied to almost all image formats including TIF, BMP, GIF and JPEG. The experiment results show that our method is able to hide a desired image with high security and low visibility.Keywords: Sinc Approximation, Image Encryption, Sincconvolution, Image Steganography, JSTEG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828733 Aircraft Gas Turbine Engines Technical Condition Identification System
Authors: A. M. Pashayev, C. Ardil, D. D. Askerov, R. A. Sadiqov, P. S. Abdullayev
Abstract:
In this paper is shown that the probability-statistic methods application, especially at the early stage of the aviation gas turbine engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence is considered the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods. Training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. Thus for GTE technical condition more adequate model making are analysed dynamics of skewness and kurtosis coefficients' changes. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE work parameters have fuzzy character. Hence consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics changes- dynamics of GTE work parameters allows to draw conclusion on necessity of the Fuzzy Statistical Analysis at preliminary identification of the engines' technical condition. Researches of correlation coefficients values- changes shows also on their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. For checking of models adequacy is considered the Fuzzy Multiple Correlation Coefficient of Fuzzy Multiple Regression. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (Hard Computing technology is used) on measurements of input and output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stage-bystage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine temperature condition was made.
Keywords: Gas turbine engines, neural networks, fuzzy logic, fuzzy statistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904732 Sensorless Sliding Power Control of Doubly Fed Induction Wind Generator Based on MRAS Observer
Authors: Hicham Serhoud, Djilani Benattous
Abstract:
In this paper present a sensorless maximum wind power extraction for variable speed constant frequency (VSCF) wind power generation systems with a doubly-fed induction generators (DFIG), to ensure stability and to impose the ideal feedback control solution despite of model uncertainties , using the principles of an active and reactive power controller (DPC) a robust sliding mode power control has been proposed to guarantees fast response times and precise control actions for control the active and reactive power independently. The simulation results in MATLAB/Simulink platform confirmed the good dynamic performance of power control approach for DFIGbased variable speed wind turbines.
Keywords: Doubly fed induction generator , sliding modecontrol, maximal wind energy capture, MRAS estimator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023731 Improved Computational Efficiency of Machine Learning Algorithms Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK
Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick
Abstract:
The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning (ML) archetypal that could forecast the COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID-19 cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organization (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data are split into 8:2 ratio for training and testing purposes to forecast future new COVID-19 cases. Support Vector Machine (SVM), Random Forest (RF), and linear regression (LR) algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID-19 cases is evaluated. RF outperformed the other two ML algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n = 30. The mean square error obtained for RF is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis, RF algorithm can perform more effectively and efficiently in predicting the new COVID-19 cases, which could help the health sector to take relevant control measures for the spread of the virus.
Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172730 Real Time Video Based Smoke Detection Using Double Optical Flow Estimation
Authors: Anton Stadler, Thorsten Ike
Abstract:
In this paper, we present a video based smoke detection algorithm based on TVL1 optical flow estimation. The main part of the algorithm is an accumulating system for motion angles and upward motion speed of the flow field. We optimized the usage of TVL1 flow estimation for the detection of smoke with very low smoke density. Therefore, we use adapted flow parameters and estimate the flow field on difference images. We show in theory and in evaluation that this improves the performance of smoke detection significantly. We evaluate the smoke algorithm using videos with different smoke densities and different backgrounds. We show that smoke detection is very reliable in varying scenarios. Further we verify that our algorithm is very robust towards crowded scenes disturbance videos.Keywords: Low density, optical flow, upward smoke motion, video based smoke detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419729 A Robust Image Steganography Method Using PMM in Bit Plane Domain
Authors: Souvik Bhattacharyya, Aparajita Khan, Indradip Banerjee, Gautam Sanyal
Abstract:
Steganography is the art and science that hides the information in an appropriate cover carrier like image, text, audio and video media. In this work the authors propose a new image based steganographic method for hiding information within the complex bit planes of the image. After slicing into bit planes the cover image is analyzed to extract the most complex planes in decreasing order based on their bit plane complexity. The complexity function next determines the complex noisy blocks of the chosen bit plane and finally pixel mapping method (PMM) has been used to embed secret bits into those regions of the bit plane. The novel approach of using pixel mapping method (PMM) in bit plane domain adaptively embeds data on most complex regions of image, provides high embedding capacity, better imperceptibility and resistance to steganalysis attack.
Keywords: PMM (Pixel Mapping Method), Bit Plane, Steganography, SSIM, KL-Divergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2867728 Real-time Tracking in Image Sequences based-on Parameters Updating with Temporal and Spatial Neighborhoods Mixture Gaussian Model
Abstract:
Gaussian mixture background model is widely used in moving target detection of the image sequences. However, traditional Gaussian mixture background model usually considers the time continuity of the pixels, and establishes background through statistical distribution of pixels without taking into account the pixels- spatial similarity, which will cause noise, imperfection and other problems. This paper proposes a new Gaussian mixture modeling approach, which combines the color and gradient of the spatial information, and integrates the spatial information of the pixel sequences to establish Gaussian mixture background. The experimental results show that the movement background can be extracted accurately and efficiently, and the algorithm is more robust, and can work in real time in tracking applications.Keywords: Gaussian mixture model, real-time tracking, sequence image, gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477727 Continuum-Based Modelling Approaches for Cell Mechanics
Authors: Yogesh D. Bansod, Jiri Bursa
Abstract:
The quantitative study of cell mechanics is of paramount interest, since it regulates the behaviour of the living cells in response to the myriad of extracellular and intracellular mechanical stimuli. The novel experimental techniques together with robust computational approaches have given rise to new theories and models, which describe cell mechanics as combination of biomechanical and biochemical processes. This review paper encapsulates the existing continuum-based computational approaches that have been developed for interpreting the mechanical responses of living cells under different loading and boundary conditions. The salient features and drawbacks of each model are discussed from both structural and biological points of view. This discussion can contribute to the development of even more precise and realistic computational models of cell mechanics based on continuum approaches or on their combination with microstructural approaches, which in turn may provide a better understanding of mechanotransduction in living cells.Keywords: Cell mechanics, computational models, continuum approach, mechanical models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2955726 Scope, Relevance and Sustainability of Decentralized Renewable Energy Systems in Developing Economies: Imperatives from Indian Case Studies
Authors: Harshit Vallecha, Prabha Bhola
Abstract:
‘Energy for all’, is a global issue of concern for the past many years. Despite the number of technological advancements and innovations, significant numbers of people are living without access to electricity around the world. India, an emerging economy, tops the list of nations having the maximum number of residents living off the grid, thus raising global attention in past few years to provide clean and sustainable energy access solutions to all of its residents. It is evident from developed economies that centralized planning and electrification alone is not sufficient for meeting energy security. Implementation of off-grid and consumer-driven energy models like Decentralized Renewable Energy (DRE) systems have played a significant role in meeting the national energy demand in developed nations. Cases of DRE systems have been reported in developing countries like India for the past few years. This paper attempts to profile the status of DRE projects in the Indian context with their scope and relevance to ensure universal electrification. Diversified cases of DRE projects, particularly solar, biomass and micro hydro are identified in different Indian states. Critical factors affecting the sustainability of DRE projects are extracted with their interlinkages in the context of developers, beneficiaries and promoters involved in such projects. Socio-techno-economic indicators are identified through similar cases in the context of DRE projects. Exploratory factor analysis is performed to evaluate the critical sustainability factors followed by regression analysis to establish the relationship between the dependent and independent factors. The generated EFA-Regression model provides a basis to develop the sustainability and replicability framework for broader coverage of DRE projects in developing nations in order to attain the goal of universal electrification with least carbon emissions.
Keywords: Climate change, decentralized generation, electricity access, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1004725 Emotion Recognition Using Neural Network: A Comparative Study
Authors: Nermine Ahmed Hendy, Hania Farag
Abstract:
Emotion recognition is an important research field that finds lots of applications nowadays. This work emphasizes on recognizing different emotions from speech signal. The extracted features are related to statistics of pitch, formants, and energy contours, as well as spectral, perceptual and temporal features, jitter, and shimmer. The Artificial Neural Networks (ANN) was chosen as the classifier. Working on finding a robust and fast ANN classifier suitable for different real life application is our concern. Several experiments were carried out on different ANN to investigate the different factors that impact the classification success rate. Using a database containing 7 different emotions, it will be shown that with a proper and careful adjustment of features format, training data sorting, number of features selected and even the ANN type and architecture used, a success rate of 85% or even more can be achieved without increasing the system complicity and the computation time
Keywords: Classification, emotion recognition, features extraction, feature selection, neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4698724 Attention-Based Spatio-Temporal Approach for Fire and Smoke Detection
Authors: A. Mirrashid, M. Khoshbin, A. Atghaei, H. Shahbazi
Abstract:
In various industries, smoke and fire are two of the most important threats in the workplace. One of the common methods for detecting smoke and fire is the use of infrared thermal and smoke sensors, which cannot be used in outdoor applications. Therefore, the use of vision-based methods seems necessary. The problem of smoke and fire detection is spatiotemporal and requires spatiotemporal solutions. This paper presents a method that uses spatial features along with temporal-based features to detect smoke and fire in the scene. It consists of three main parts; the task of each part is to reduce the error of the previous part so that the final model has a robust performance. This method also uses transformer modules to increase the accuracy of the model. The results of our model show the proper performance of the proposed approach in solving the problem of smoke and fire detection and can be used to increase workplace safety.
Keywords: Attention, fire detection, smoke detection, spatiotemporal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 356723 Leadership Competences: The Case of Slovenian Healthcare
Authors: Helena Kovačič, Andrej Rus
Abstract:
The authors of this paper compared ratings for leadership competences of managers in the healthcare sector and professional managers in Slovenia. Managers’ competence scores were analyzed for Slovenia and compared with some other EU countries. Comparisons of correlations yielded significant differences in leader/non-leader healthcare professionals in their relational competences. Cross-cultural comparisons also point to these differences in many countries included in the survey. Comparing these managers with the professional managers, one of the relational competences significantly distinguishes the two groups, namely the competence of taking initiative in establishing contacts with experts outside the organization. What is surprising from our analysis is the high number of competences that significantly differentiate leaders in healthcare from professional managers. Empirically based assessment provided a robust method for assessing and comparing leadership competences and point out significant results for leadership development.
Keywords: Leadership, competences, healthcare.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698722 Robust Features for Impulsive Noisy Speech Recognition Using Relative Spectral Analysis
Authors: Hajer Rahali, Zied Hajaiej, Noureddine Ellouze
Abstract:
The goal of speech parameterization is to extract the relevant information about what is being spoken from the audio signal. In speech recognition systems Mel-Frequency Cepstral Coefficients (MFCC) and Relative Spectral Mel-Frequency Cepstral Coefficients (RASTA-MFCC) are the two main techniques used. It will be shown in this paper that it presents some modifications to the original MFCC method. In our work the effectiveness of proposed changes to MFCC called Modified Function Cepstral Coefficients (MODFCC) were tested and compared against the original MFCC and RASTA-MFCC features. The prosodic features such as jitter and shimmer are added to baseline spectral features. The above-mentioned techniques were tested with impulsive signals under various noisy conditions within AURORA databases.
Keywords: Auditory filter, impulsive noise, MFCC, prosodic features, RASTA filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2323721 Resource-Constrained Heterogeneous Workflow Scheduling Algorithm for Heterogeneous Computing Clusters
Authors: Lei Wang, Jiahao Zhou
Abstract:
The development of heterogeneous computing clusters provides robust computational support for large-scale workflows, commonly seen in domains such as scientific computing and artificial intelligence. However, the tasks within these large-scale workflows are increasingly heterogeneous, exhibiting varying demands on computing resources. This shift necessitates the integration of resource-constrained considerations into the workflow scheduling problem on heterogeneous computing platforms. In this study, we propose a scheduling algorithm designed to minimize the makespan under heterogeneous constraints, employing a greedy strategy to effectively address the scheduling challenges posed by heterogeneous workflows. We evaluate the performance of the proposed algorithm using randomly generated heterogeneous workflows and a corresponding heterogeneous computing platform. The experimental results demonstrate a 15.2% improvement in performance compared to existing state-of-the-art methods.
Keywords: Heterogeneous Computing, Workflow Scheduling, Constrained Resources, Minimal Makespan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21720 Ultrasonic Echo Image Adaptive Watermarking Using the Just-Noticeable Difference Estimation
Authors: Amnach Khawne, Kazuhiko Hamamoto, Orachat Chitsobhuk
Abstract:
Most of the image watermarking methods, using the properties of the human visual system (HVS), have been proposed in literature. The component of the visual threshold is usually related to either the spatial contrast sensitivity function (CSF) or the visual masking. Especially on the contrast masking, most methods have not mention to the effect near to the edge region. Since the HVS is sensitive what happens on the edge area. This paper proposes ultrasound image watermarking using the visual threshold corresponding to the HVS in which the coefficients in a DCT-block have been classified based on the texture, edge, and plain area. This classification method enables not only useful for imperceptibility when the watermark is insert into an image but also achievable a robustness of watermark detection. A comparison of the proposed method with other methods has been carried out which shown that the proposed method robusts to blockwise memoryless manipulations, and also robust against noise addition.
Keywords: Medical image watermarking, Human Visual System, Image Adaptive Watermark
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602719 Dynamic Models versus Frailty Models for Recurrent Event Data
Authors: Entisar A. Elgmati
Abstract:
Recurrent event data is a special type of multivariate survival data. Dynamic and frailty models are one of the approaches that dealt with this kind of data. A comparison between these two models is studied using the empirical standard deviation of the standardized martingale residual processes as a way of assessing the fit of the two models based on the Aalen additive regression model. Here we found both approaches took heterogeneity into account and produce residual standard deviations close to each other both in the simulation study and in the real data set.Keywords: Dynamic, frailty, misspecification, recurrent events.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2350718 A DCT-Based Secure JPEG Image Authentication Scheme
Authors: Mona F. M. Mursi, Ghazy M.R. Assassa, Hatim A. Aboalsamh, Khaled Alghathbar
Abstract:
The challenge in the case of image authentication is that in many cases images need to be subjected to non malicious operations like compression, so the authentication techniques need to be compression tolerant. In this paper we propose an image authentication system that is tolerant to JPEG lossy compression operations. A scheme for JPEG grey scale images is proposed based on a data embedding method that is based on a secret key and a secret mapping vector in the frequency domain. An encrypted feature vector extracted from the image DCT coefficients, is embedded redundantly, and invisibly in the marked image. On the receiver side, the feature vector from the received image is derived again and compared against the extracted watermark to verify the image authenticity. The proposed scheme is robust against JPEG compression up to a maximum compression of approximately 80%,, but sensitive to malicious attacks such as cutting and pasting.
Keywords: Authentication, DCT, JPEG, Watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745717 Four Phase Methodology for Developing Secure Software
Authors: Carlos Gonzalez-Flores, Ernesto Liñan-García
Abstract:
A simple and robust approach for developing secure software. A Four Phase methodology consists in developing the non-secure software in phase one, and for the next three phases, one phase for each of the secure developing types (i.e. self-protected software, secure code transformation, and the secure shield). Our methodology requires first the determination and understanding of the type of security level needed for the software. The methodology proposes the use of several teams to accomplish this task. One Software Engineering Developing Team, a Compiler Team, a Specification and Requirements Testing Team, and for each of the secure software developing types: three teams of Secure Software Developing, three teams of Code Breakers, and three teams of Intrusion Analysis. These teams will interact among each other and make decisions to provide a secure software code protected against a required level of intruder.
Keywords: Secure Software, Four Phase Methodology, Software Engineering, Code Breakers, Intrusion Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834716 OCR For Printed Urdu Script Using Feed Forward Neural Network
Authors: Inam Shamsher, Zaheer Ahmad, Jehanzeb Khan Orakzai, Awais Adnan
Abstract:
This paper deals with an Optical Character Recognition system for printed Urdu, a popular Pakistani/Indian script and is the third largest understandable language in the world, especially in the subcontinent but fewer efforts are made to make it understandable to computers. Lot of work has been done in the field of literature and Islamic studies in Urdu, which has to be computerized. In the proposed system individual characters are recognized using our own proposed method/ algorithms. The feature detection methods are simple and robust. Supervised learning is used to train the feed forward neural network. A prototype of the system has been tested on printed Urdu characters and currently achieves 98.3% character level accuracy on average .Although the system is script/ language independent but we have designed it for Urdu characters only.Keywords: Algorithm, Feed Forward Neural Networks, Supervised learning, Pattern Matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3035715 Function Approximation with Radial Basis Function Neural Networks via FIR Filter
Authors: Kyu Chul Lee, Sung Hyun Yoo, Choon Ki Ahn, Myo Taeg Lim
Abstract:
Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore , the number of centers will be considered since it affects the performance of approximation.
Keywords: Extended kalmin filter (EKF), classification problem, radial basis function networks (RBFN), finite impulse response (FIR)filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399714 A Technique for Improving the Performance of Median Smoothers at the Corners Characterized by Low Order Polynomials
Authors: E. Srinivasan, D. Ebenezer
Abstract:
Median filters with larger windows offer greater smoothing and are more robust than the median filters of smaller windows. However, the larger median smoothers (the median filters with the larger windows) fail to track low order polynomial trends in the signals. Due to this, constant regions are produced at the signal corners, leading to the loss of fine details. In this paper, an algorithm, which combines the ability of the 3-point median smoother in preserving the low order polynomial trends and the superior noise filtering characteristics of the larger median smoother, is introduced. The proposed algorithm (called the combiner algorithm in this paper) is evaluated for its performance on a test image corrupted with different types of noise and the results obtained are included.
Keywords: Image filtering, detail preservation, median filters, nonlinear filters, order statistics filtering, Rank order filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374713 New Proxy Signatures Preserving Privacy and as Secure as ElGamal Signatures
Authors: Song Han, Elizabeth Chang, Jie Wang, Wanquan Liu
Abstract:
Digital signature is a useful primitive to attain the integrity and authenticity in various wire or wireless communications. Proxy signature is one type of the digital signatures. It helps the proxy signer to sign messages on behalf of the original signer. It is very useful when the original signer (e.g. the president of a company) is not available to sign a specific document. If the original signer can not forge valid proxy signatures through impersonating the proxy signer, it will be robust in a virtual environment; thus the original signer can not shift any illegal action initiated by herself to the proxy signer. In this paper, we propose a new proxy signature scheme. The new scheme can prevent the original signer from impersonating the proxy signer to sign messages. The proposed scheme is based on the regular ElGamal signature. In addition, the fair privacy of the proxy signer is maintained. That means, the privacy of the proxy signer is preserved; and the privacy can be revealed when it is necessary.
Keywords: ElGamal signature, proxy signature, security, hash function, fair privacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815712 Multimachine Power System Stabilizers Design Using PSO Algorithm
Authors: H. Shayeghi, A. Safari, H. A. Shayanfar
Abstract:
In this paper, multiobjective design of multi-machine Power System Stabilizers (PSSs) using Particle Swarm Optimization (PSO) is presented. The stabilizers are tuned to simultaneously shift the lightly damped and undamped electro-mechanical modes of all machines to a prescribed zone in the s-plane. A multiobjective problem is formulated to optimize a composite set of objective functions comprising the damping factor, and the damping ratio of the lightly damped electromechanical modes. The PSSs parameters tuning problem is converted to an optimization problem which is solved by PSO with the eigenvalue-based multiobjective function. The proposed PSO based PSSs is tested on a multimachine power system under different operating conditions and disturbances through eigenvalue analysis and some performance indices to illustrate its robust performance.
Keywords: PSS Design, Particle Swarm Optimization, Dynamic Stability, Multiobjective Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2646711 Recognition of Grocery Products in Images Captured by Cellular Phones
Authors: Farshideh Einsele, Hassan Foroosh
Abstract:
In this paper, we present a robust algorithm to recognize extracted text from grocery product images captured by mobile phone cameras. Recognition of such text is challenging since text in grocery product images varies in its size, orientation, style, illumination, and can suffer from perspective distortion. Pre-processing is performed to make the characters scale and rotation invariant. Since text degradations can not be appropriately defined using well-known geometric transformations such as translation, rotation, affine transformation and shearing, we use the whole character black pixels as our feature vector. Classification is performed with minimum distance classifier using the maximum likelihood criterion, which delivers very promising Character Recognition Rate (CRR) of 89%. We achieve considerably higher Word Recognition Rate (WRR) of 99% when using lower level linguistic knowledge about product words during the recognition process.
Keywords: Camera-based OCR, Feature extraction, Document and image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2470710 Robust On-Body Communications using Creeping Wave: Methodology and Analysis
Abstract:
In this paper methodology to exploit creeping wave for body area network BAN communication reliability are described. Creeping wave propagation effects are visualized & analyzed. During this work Dipole, IA antennas various antennas were redesigned using existing designs and their propagation characteristics were verified for optimum performance when used on BANs. These antennas were then applied on body shapes-including rectangular, spherical and cylindrical so that all the effects of actual human body can be taken nearly into account. Parametric simulation scheme was devised so that on Body channel characterization can be visualized at front, curved and back region. In the next phase multiple inputs multiple output MIMO scheme was introduced where virtual antennas were used in order to diminish the effects of antennas on the propagation of waves. Results were, extracted and analyzed at different heights. Finally based on comparative measurement and analysis it was concluded that on body propagation can be exploited to gain spatial diversity.Keywords: BAN, Creeping Wave, MIMO, WIAs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715709 A Bacterial Foraging Optimization Algorithm Applied to the Synthesis of Polyacrylamide Hydrogels
Authors: Florin Leon, Silvia Curteanu
Abstract:
The Bacterial Foraging Optimization (BFO) algorithm is inspired by the behavior of bacteria such as Escherichia coli or Myxococcus xanthus when searching for food, more precisely the chemotaxis behavior. Bacteria perceive chemical gradients in the environment, such as nutrients, and also other individual bacteria, and move toward or in the opposite direction to those signals. The application example considered as a case study consists in establishing the dependency between the reaction yield of hydrogels based on polyacrylamide and the working conditions such as time, temperature, monomer, initiator, crosslinking agent and inclusion polymer concentrations, as well as type of the polymer added. This process is modeled with a neural network which is included in an optimization procedure based on BFO. An experimental study of BFO parameters is performed. The results show that the algorithm is quite robust and can obtain good results for diverse combinations of parameter values.
Keywords: Bacterial foraging optimization, hydrogels, neural networks, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 730708 Hybrid Quasi-Steady Thermal Lattice Boltzmann Model for Studying the Behavior of Oil in Water Emulsions Used in Machining Tool Cooling and Lubrication
Authors: W. Hasan, H. Farhat, A. Alhilo, L. Tamimi
Abstract:
Oil in water (O/W) emulsions are utilized extensively for cooling and lubricating cutting tools during parts machining. A robust Lattice Boltzmann (LBM) thermal-surfactants model, which provides a useful platform for exploring complex emulsions’ characteristics under variety of flow conditions, is used here for the study of the fluid behavior during conventional tools cooling. The transient thermal capabilities of the model are employed for simulating the effects of the flow conditions of O/W emulsions on the cooling of cutting tools. The model results show that the temperature outcome is slightly affected by reversing the direction of upper plate (workpiece). On the other hand, an important increase in effective viscosity is seen which supports better lubrication during the work.
Keywords: Hybrid lattice Boltzmann method, Gunstensen model, thermal, surfactant-covered droplet, Marangoni stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783707 Implementation of a Virtual Testbed for Secure IoT Firmware Update Using Blockchain
Authors: Tarun Chand, Michael Jurczyk
Abstract:
With the increasing need and popularity of IoT devices and how integrated they are becoming in our daily lives and industries; these devices make for a very lucrative target for malicious actors. And since these devices have such limited resources, the implementation of robust security features is a tradeoff to be made for the actual functionality the device was intended for. This makes them an easy target with high returns. Several frameworks for the secure firmware update of these devices have been recently proposed in the literature. They focus on methods such as blockchains and distributed file systems to secure firmware updates, but do not go into the details of the actual implementation of these frameworks and the lower-level interactions among these methods used. This work integrates some of these security measures into one overall framework and details the actual lower-level implementation of this framework in a virtual dockerized testbed running on AWS.
Keywords: Blockchain, Ethereum, Geth, IPFS, secure IoT-firmware update, virtual testbed development
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69