Search results for: Background Detection
1259 BER Analysis of Energy Detection Spectrum Sensing in Cognitive Radio Using GNU Radio
Authors: B. Siva Kumar Reddy, B. Lakshmi
Abstract:
Cognitive Radio is a turning out technology that empowers viable usage of the spectrum. Energy Detector-based Sensing is the most broadly utilized spectrum sensing strategy. Besides, it's a lot of generic as receivers doesn't would like any information on the primary user's signals, channel data, of even the sort of modulation. This paper puts forth the execution of energy detection sensing for AM (Amplitude Modulated) signal at 710 KHz, FM (Frequency Modulated) signal at 103.45 MHz (local station frequency), Wi-Fi signal at 2.4 GHz and WiMAX signals at 6 GHz. The OFDM/OFDMA based WiMAX physical layer with convolutional channel coding is actualized utilizing USRP N210 (Universal Software Radio Peripheral) and GNU Radio based Software Defined Radio (SDR). Test outcomes demonstrated the BER (Bit Error Rate) augmentation with channel noise and BER execution is dissected for different Eb/N0 (the energy per bit to noise power spectral density ratio) values.
Keywords: BER, Cognitive Radio, GNU Radio, OFDM, SDR, WiMAX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45421258 Cardiac Disorder Classification Based On Extreme Learning Machine
Authors: Chul Kwak, Oh-Wook Kwon
Abstract:
In this paper, an extreme learning machine with an automatic segmentation algorithm is applied to heart disorder classification by heart sound signals. From continuous heart sound signals, the starting points of the first (S1) and the second heart pulses (S2) are extracted and corrected by utilizing an inter-pulse histogram. From the corrected pulse positions, a single period of heart sound signals is extracted and converted to a feature vector including the mel-scaled filter bank energy coefficients and the envelope coefficients of uniform-sized sub-segments. An extreme learning machine is used to classify the feature vector. In our cardiac disorder classification and detection experiments with 9 cardiac disorder categories, the proposed method shows significantly better performance than multi-layer perceptron, support vector machine, and hidden Markov model; it achieves the classification accuracy of 81.6% and the detection accuracy of 96.9%.
Keywords: Heart sound classification, extreme learning machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19341257 Evidence Theory Enabled Quickest Change Detection Using Big Time-Series Data from Internet of Things
Authors: Hossein Jafari, Xiangfang Li, Lijun Qian, Alexander Aved, Timothy Kroecker
Abstract:
Traditionally in sensor networks and recently in the Internet of Things, numerous heterogeneous sensors are deployed in distributed manner to monitor a phenomenon that often can be model by an underlying stochastic process. The big time-series data collected by the sensors must be analyzed to detect change in the stochastic process as quickly as possible with tolerable false alarm rate. However, sensors may have different accuracy and sensitivity range, and they decay along time. As a result, the big time-series data collected by the sensors will contain uncertainties and sometimes they are conflicting. In this study, we present a framework to take advantage of Evidence Theory (a.k.a. Dempster-Shafer and Dezert-Smarandache Theories) capabilities of representing and managing uncertainty and conflict to fast change detection and effectively deal with complementary hypotheses. Specifically, Kullback-Leibler divergence is used as the similarity metric to calculate the distances between the estimated current distribution with the pre- and post-change distributions. Then mass functions are calculated and related combination rules are applied to combine the mass values among all sensors. Furthermore, we applied the method to estimate the minimum number of sensors needed to combine, so computational efficiency could be improved. Cumulative sum test is then applied on the ratio of pignistic probability to detect and declare the change for decision making purpose. Simulation results using both synthetic data and real data from experimental setup demonstrate the effectiveness of the presented schemes.Keywords: CUSUM, evidence theory, KL divergence, quickest change detection, time series data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9941256 Trainer Aircraft Selection Using Preference Analysis for Reference Ideal Solution (PARIS)
Authors: C. Ardil
Abstract:
This article presents a multiple criteria evaluation for a trainer aircraft selection problem using "preference analysis for reference ideal solution (PARIS)” approach. The available relevant literature points to the use of multiple criteria decision making analysis (MCDMA) methods for the problem of trainer aircraft selection, which often involves conflicting multiple criteria. Therefore, this MCDMA study aims to propose a robust systematic integrated framework focusing on the trainer aircraft selection problem. For this purpose, an integrated preference analysis approach based the mean weight and entropy weight procedures with PARIS, and TOPSIS was used for a MCDMA compensating solution. In this study, six trainer aircraft alternatives were evaluated according to six technical decision criteria, and data were collected from the current relevant literature. As a result, the King Air C90GTi alternative was identified as the most suitable trainer aircraft alternative. In order to verify the stability and accuracy of the results obtained, comparisons were made with existing MCDMA methods during the sensitivity and validity analysis process.The results of the application were further validated by applying the comparative analysis-based PARIS, and TOPSIS method. The proposed integrated MCDMA systematic structure is also expected to address the issues encountered in the aircraft selection process. Finally, the analysis results obtained show that the proposed MCDMA method is an effective and accurate tool that can help analysts make better decisions.
Keywords: aircraft, trainer aircraft selection, multiple criteria decision making, multiple criteria decision making analysis, mean weight, entropy weight, MCDMA, PARIS, TOPSIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4301255 A High Accuracy Measurement Circuit for Soil Moisture Detection
Authors: Sheroz Khan, A. H. M. Zahirul Alam, Othman O. Khalifa, Mohd Rafiqul Islam, Zuraidah Zainudin, Muzna S. Khan, Nurul Iman Muhamad Pauzi
Abstract:
The study of soil for agriculture purposes has remained the main focus of research since the beginning of civilization as humans- food related requirements remained closely linked with the soil. The study of soil has generated an interest among the researchers for very similar other reasons including transmission, reflection and refraction of signals for deploying wireless underground sensor networks or for the monitoring of objects on (or in ) soil in the form of better understanding of soil electromagnetic characteristics properties. The moisture content has been very instrumental in such studies as it decides on the resistance of the soil, and hence the attenuation on signals traveling through soil or the attenuation the signals may suffer upon their impact on soil. This work is related testing and characterizing a measurement circuit meant for the detection of moisture level content in soil.Keywords: Analog–digital Conversion, Bridge Circuits, Intelligent sensors, Pulse Time Modulation, Relaxation Oscillator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40241254 Control of Commutation of SR Motor Using Its Magnetic Characteristics and Back-of-Core Saturation Effects
Authors: Dr. N.H. Mvungi
Abstract:
The control of commutation of switched reluctance (SR) motor has nominally depended on a physical position detector. The physical rotor position sensor limits robustness and increases size and inertia of the SR drive system. The paper describes a method to overcome these limitations by using magnetization characteristics of the motor to indicate rotor and stator teeth overlap status. The method is using active current probing pulses of same magnitude that is used to simulate flux linkage in the winding being probed. A microprocessor is used for processing magnetization data to deduce rotor-stator teeth overlap status and hence rotor position. However, the back-of-core saturation and mutual coupling introduces overlap detection errors, hence that of commutation control. This paper presents the concept of the detection scheme and the effects of backof core saturation.Keywords: Microprocessor control, rotor position, sensorless, switched reluctance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12841253 A New Color Image Database for Benchmarking of Automatic Face Detection and Human Skin Segmentation Techniques
Authors: Abdallah S. Abdallah, Mohamad A bou El-Nasr, A. Lynn Abbott
Abstract:
This paper presents a new color face image database for benchmarking of automatic face detection algorithms and human skin segmentation techniques. It is named the VT-AAST image database, and is divided into four parts. Part one is a set of 286 color photographs that include a total of 1027 faces in the original format given by our digital cameras, offering a wide range of difference in orientation, pose, environment, illumination, facial expression and race. Part two contains the same set in a different file format. The third part is a set of corresponding image files that contain human colored skin regions resulting from a manual segmentation procedure. The fourth part of the database has the same regions converted into grayscale. The database is available on-line for noncommercial use. In this paper, descriptions of the database development, organization, format as well as information needed for benchmarking of algorithms are depicted in detail.Keywords: Image database, color image analysis, facedetection, skin segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25881252 Multiple Targets Classification and Fuzzy Logic Decision Fusion in Wireless Sensor Networks
Authors: Ahmad Aljaafreh
Abstract:
This paper proposes a hierarchical hidden Markov model (HHMM) to model the detection of M vehicles in a wireless sensor network (WSN). The HHMM model contains an extra level of hidden Markov model to model the temporal transitions of each state of the first HMM. By modeling the temporal transitions, only those hypothesis with nonzero transition probabilities needs to be tested. Thus, this method efficiently reduces the computation load, which is preferable in WSN applications.This paper integrates several techniques to optimize the detection performance. The output of the states of the first HMM is modeled as Gaussian Mixture Model (GMM), where the number of states and the number of Gaussians are experimentally determined, while the other parameters are estimated using Expectation Maximization (EM). HHMM is used to model the sequence of the local decisions which are based on multiple hypothesis testing with maximum likelihood approach. The states in the HHMM represent various combinations of vehicles of different types. Due to the statistical advantages of multisensor data fusion, we propose a heuristic based on fuzzy weighted majority voting to enhance cooperative classification of moving vehicles within a region that is monitored by a wireless sensor network. A fuzzy inference system weighs each local decision based on the signal to noise ratio of the acoustic signal for target detection and the signal to noise ratio of the radio signal for sensor communication. The spatial correlation among the observations of neighboring sensor nodes is efficiently utilized as well as the temporal correlation. Simulation results demonstrate the efficiency of this scheme.
Keywords: Classification, decision fusion, fuzzy logic, hidden Markov model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62491251 Capacitive Air Bubble Detector Operated at Different Frequencies for Application in Hemodialysis
Authors: Mawahib Gafare Abdalrahman Ahmed, Abdallah Belal Adam, John Ojur Dennis
Abstract:
Air bubbles have been detected in human circulation of end-stage renal disease patients who are treated by hemodialysis. The consequence of air embolism, air bubbles, is under recognized and usually overlooked in daily practice. This paper shows results of a capacitor based detection method that capable of detecting the presence of air bubbles in the blood stream in different frequencies. The method is based on a parallel plates capacitor made of platinum with an area of 1.5 cm2 and a distance between the two plates is 1cm. The dielectric material used in this capacitor is Dextran70 solution which mimics blood rheology. Simulations were carried out using RC circuit at two frequencies 30Hz and 3 kHz and results compared with experiments and theory. It is observed that by injecting air bubbles of different diameters into the device, there were significant changes in the capacitance of the capacitor. Furthermore, it is observed that the output voltage from the circuit increased with increasing air bubble diameter. These results demonstrate the feasibility of this approach in improving air bubble detection in Hemodialysis.Keywords: Air bubbles, Hemodialysis, Capacitor, Dextran70, Air bubbles diameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32461250 Improving E-Government Services for Non- English Speaking Background (NESB) Communities in Australia
Authors: M. Mohammad, Y-C Lan
Abstract:
Australian government agencies have a natural desire to provide migrants a wide range of opportunities. Consequently, government online services should be equally available to migrants with a non-English speaking background (NESB). Despite the commendable efforts of governments and local agencies in Australia to provide such services, in reality, many NESB communities are not taking advantage of these services. This article–based on an extensive case study regarding the use of online government services by the Arabic NESB community in Australia–reports on the possible reasons for this issue, as well as suggestions for improvement. The conclusion is that Australia should implement ICT-based or e-government policies, programmes, and services that more accurately reflect migrant cultures and languages so that migrant integration can be more fully accomplished. Specifically, this article presents an NESB Model that adopts the value of usercentricity or a more individual-focused approach to government online services in Australia.Keywords: Barriers to use, e-government, ICT, NESB community, online services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16381249 Artificial Neural Network Model for a Low Cost Failure Sensor: Performance Assessment in Pipeline Distribution
Authors: Asar Khan, Peter D. Widdop, Andrew J. Day, Aliaster S. Wood, Steve, R. Mounce, John Machell
Abstract:
This paper describes an automated event detection and location system for water distribution pipelines which is based upon low-cost sensor technology and signature analysis by an Artificial Neural Network (ANN). The development of a low cost failure sensor which measures the opacity or cloudiness of the local water flow has been designed, developed and validated, and an ANN based system is then described which uses time series data produced by sensors to construct an empirical model for time series prediction and classification of events. These two components have been installed, tested and verified in an experimental site in a UK water distribution system. Verification of the system has been achieved from a series of simulated burst trials which have provided real data sets. It is concluded that the system has potential in water distribution network management.Keywords: Detection, leakage, neural networks, sensors, water distribution networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17461248 Grating Scale Thermal Expansion Error Compensation for Large Machine Tools Based on Multiple Temperature Detection
Authors: Wenlong Feng, Zhenchun Du, Jianguo Yang
Abstract:
To decrease the grating scale thermal expansion error, a novel method which based on multiple temperature detection is proposed. Several temperature sensors are installed on the grating scale and the temperatures of these sensors are recorded. The temperatures of every point on the grating scale are calculated by interpolating between adjacent sensors. According to the thermal expansion principle, the grating scale thermal expansion error model can be established by doing the integral for the variations of position and temperature. A novel compensation method is proposed in this paper. By applying the established error model, the grating scale thermal expansion error is decreased by 90% compared with no compensation. The residual positioning error of the grating scale is less than 15μm/10m and the accuracy of the machine tool is significant improved.Keywords: Thermal expansion error of grating scale, error compensation, machine tools, integral method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19611247 Comparative Analysis of Machine Learning Tools: A Review
Authors: S. Sarumathi, M. Vaishnavi, S. Geetha, P. Ranjetha
Abstract:
Machine learning is a new and exciting area of artificial intelligence nowadays. Machine learning is the most valuable, time, supervised, and cost-effective approach. It is not a narrow learning approach; it also includes a wide range of methods and techniques that can be applied to a wide range of complex realworld problems and time domains. Biological image classification, adaptive testing, computer vision, natural language processing, object detection, cancer detection, face recognition, handwriting recognition, speech recognition, and many other applications of machine learning are widely used in research, industry, and government. Every day, more data are generated, and conventional machine learning techniques are becoming obsolete as users move to distributed and real-time operations. By providing fundamental knowledge of machine learning tools and research opportunities in the field, the aim of this article is to serve as both a comprehensive overview and a guide. A diverse set of machine learning resources is demonstrated and contrasted with the key features in this survey.Keywords: Artificial intelligence, machine learning, deep learning, machine learning algorithms, machine learning tools.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18491246 An Effective Noise Resistant FM Continuous-Wave Radar Vital Sign Signal Detection Method
Authors: Lu Yang, Meiyang Song, Xiang Yu, Wenhao Zhou, Chuntao Feng
Abstract:
To address the problem that the FM continuous-wave (FMCW) radar extracts human vital sign signals which are susceptible to noise interference and low reconstruction accuracy, a detection scheme for the sign signals is proposed. Firstly, an improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) algorithm is applied to decompose the radar-extracted thoracic signals to obtain several intrinsic modal functions (IMF) with different spatial scales, and then the IMF components are optimized by a backpropagation (BP) neural network improved by immune genetic algorithm (IGA). The simulation results show that this scheme can effectively separate the noise, accurately extract the respiratory and heartbeat signals and improve the reconstruction accuracy and signal to-noise ratio of the sign signals.
Keywords: Frequency modulated continuous wave radar, ICEEMDAN, BP Neural Network, vital signs signal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4791245 A Hybrid Method for Eyes Detection in Facial Images
Authors: Muhammad Shafi, Paul W. H. Chung
Abstract:
This paper proposes a hybrid method for eyes localization in facial images. The novelty is in combining techniques that utilise colour, edge and illumination cues to improve accuracy. The method is based on the observation that eye regions have dark colour, high density of edges and low illumination as compared to other parts of face. The first step in the method is to extract connected regions from facial images using colour, edge density and illumination cues separately. Some of the regions are then removed by applying rules that are based on the general geometry and shape of eyes. The remaining connected regions obtained through these three cues are then combined in a systematic way to enhance the identification of the candidate regions for the eyes. The geometry and shape based rules are then applied again to further remove the false eye regions. The proposed method was tested using images from the PICS facial images database. The proposed method has 93.7% and 87% accuracies for initial blobs extraction and final eye detection respectively.Keywords: Erosion, dilation, Edge-density
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20501244 A Subtractive Clustering Based Approach for Early Prediction of Fault Proneness in Software Modules
Authors: Ramandeep S. Sidhu, Sunil Khullar, Parvinder S. Sandhu, R. P. S. Bedi, Kiranbir Kaur
Abstract:
In this paper, subtractive clustering based fuzzy inference system approach is used for early detection of faults in the function oriented software systems. This approach has been tested with real time defect datasets of NASA software projects named as PC1 and CM1. Both the code based model and joined model (combination of the requirement and code based metrics) of the datasets are used for training and testing of the proposed approach. The performance of the models is recorded in terms of Accuracy, MAE and RMSE values. The performance of the proposed approach is better in case of Joined Model. As evidenced from the results obtained it can be concluded that Clustering and fuzzy logic together provide a simple yet powerful means to model the earlier detection of faults in the function oriented software systems.
Keywords: Subtractive clustering, fuzzy inference system, fault proneness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25811243 LiDAR Based Real Time Multiple Vehicle Detection and Tracking
Authors: Zhongzhen Luo, Saeid Habibi, Martin v. Mohrenschildt
Abstract:
Self-driving vehicle require a high level of situational awareness in order to maneuver safely when driving in real world condition. This paper presents a LiDAR based real time perception system that is able to process sensor raw data for multiple target detection and tracking in dynamic environment. The proposed algorithm is nonparametric and deterministic that is no assumptions and priori knowledge are needed from the input data and no initializations are required. Additionally, the proposed method is working on the three-dimensional data directly generated by LiDAR while not scarifying the rich information contained in the domain of 3D. Moreover, a fast and efficient for real time clustering algorithm is applied based on a radially bounded nearest neighbor (RBNN). Hungarian algorithm procedure and adaptive Kalman filtering are used for data association and tracking algorithm. The proposed algorithm is able to run in real time with average run time of 70ms per frame.Keywords: LiDAR, real-time system, clustering, tracking, data association.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46701242 An Advanced Time-Frequency Domain Method for PD Extraction with Non-Intrusive Measurement
Authors: Guomin Luo, Daming Zhang, Yong Kwee Koh, Kim Teck Ng, Helmi Kurniawan, Weng Hoe Leong
Abstract:
Partial discharge (PD) detection is an important method to evaluate the insulation condition of metal-clad apparatus. Non-intrusive sensors which are easy to install and have no interruptions on operation are preferred in onsite PD detection. However, it often lacks of accuracy due to the interferences in PD signals. In this paper a novel PD extraction method that uses frequency analysis and entropy based time-frequency (TF) analysis is introduced. The repetitive pulses from convertor are first removed via frequency analysis. Then, the relative entropy and relative peak-frequency of each pulse (i.e. time-indexed vector TF spectrum) are calculated and all pulses with similar parameters are grouped. According to the characteristics of non-intrusive sensor and the frequency distribution of PDs, the pulses of PD and interferences are separated. Finally the PD signal and interferences are recovered via inverse TF transform. The de-noised result of noisy PD data demonstrates that the combination of frequency and time-frequency techniques can discriminate PDs from interferences with various frequency distributions.Keywords: Entropy, Fourier analysis, non-intrusive measurement, time-frequency analysis, partial discharge
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15901241 Fuzzy based Security Threshold Determining for the Statistical En-Route Filtering in Sensor Networks
Authors: Hae Young Lee, Tae Ho Cho
Abstract:
In many sensor network applications, sensor nodes are deployed in open environments, and hence are vulnerable to physical attacks, potentially compromising the node's cryptographic keys. False sensing report can be injected through compromised nodes, which can lead to not only false alarms but also the depletion of limited energy resource in battery powered networks. Ye et al. proposed a statistical en-route filtering scheme (SEF) to detect such false reports during the forwarding process. In this scheme, the choice of a security threshold value is important since it trades off detection power and overhead. In this paper, we propose a fuzzy logic for determining a security threshold value in the SEF based sensor networks. The fuzzy logic determines a security threshold by considering the number of partitions in a global key pool, the number of compromised partitions, and the energy level of nodes. The fuzzy based threshold value can conserve energy, while it provides sufficient detection power.
Keywords: Fuzzy logic, security, sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15811240 Land Use Change Detection Using Remote Sensing and GIS
Authors: Naser Ahmadi Sani, Karim Solaimani, Lida Razaghnia, Jalal Zandi
Abstract:
In recent decades, rapid and incorrect changes in land-use have been associated with consequences such as natural resources degradation and environmental pollution. Detecting changes in land-use is one of the tools for natural resource management and assessment of changes in ecosystems. The target of this research is studying the land-use changes in Haraz basin with an area of 677000 hectares in a 15 years period (1996 to 2011) using LANDSAT data. Therefore, the quality of the images was first evaluated. Various enhancement methods for creating synthetic bonds were used in the analysis. Separate training sites were selected for each image. Then the images of each period were classified in 9 classes using supervised classification method and the maximum likelihood algorithm. Finally, the changes were extracted in GIS environment. The results showed that these changes are an alarm for the HARAZ basin status in future. The reason is that 27% of the area has been changed, which is related to changing the range lands to bare land and dry farming and also changing the dense forest to sparse forest, horticulture, farming land and residential area.
Keywords: HARAZ Basin, Change Detection, Land-use, Satellite Data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23251239 High Perfomance Communication Protocol for Wireless Ad-Hoc Sensor Networks
Authors: Toshihiko Sasama, Takahide Yanaka, Kazunori Sugahara, Hiroshi Masuyama
Abstract:
In order to monitor for traffic traversal, sensors can be deployed to perform collaborative target detection. Such a sensor network achieves a certain level of detection performance with the associated costs of deployment and routing protocol. This paper addresses these two points of sensor deployment and routing algorithm in the situation where the absolute quantity of sensors or total energy becomes insufficient. This discussion on the best deployment system concluded that two kinds of deployments; Normal and Power law distributions, show 6 and 3 times longer than Random distribution in the duration of coverage, respectively. The other discussion on routing algorithm to achieve good performance in each deployment system was also addressed. This discussion concluded that, in place of the traditional algorithm, a new algorithm can extend the time of coverage duration by 4 times in a Normal distribution, and in the circumstance where every deployed sensor operates as a binary model.Keywords: binary sensor, coverage rate, power energy consumption, routing algorithm, sensor deployment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13761238 Determining Cluster Boundaries Using Particle Swarm Optimization
Authors: Anurag Sharma, Christian W. Omlin
Abstract:
Self-organizing map (SOM) is a well known data reduction technique used in data mining. Data visualization can reveal structure in data sets that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOMs, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of a generic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOMs. The application of our method to unlabeled call data for a mobile phone operator demonstrates its feasibility. PSO algorithm utilizes U-matrix of SOMs to determine cluster boundaries; the results of this novel automatic method correspond well to boundary detection through visual inspection of code vectors and k-means algorithm.
Keywords: Particle swarm optimization, self-organizing maps, clustering, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17201237 UDCA: An Energy Efficient Clustering Algorithm for Wireless Sensor Network
Authors: Boregowda S.B., Hemanth Kumar A.R. Babu N.V, Puttamadappa C., And H.S Mruthyunjaya
Abstract:
In the past few years, the use of wireless sensor networks (WSNs) potentially increased in applications such as intrusion detection, forest fire detection, disaster management and battle field. Sensor nodes are generally battery operated low cost devices. The key challenge in the design and operation of WSNs is to prolong the network life time by reducing the energy consumption among sensor nodes. Node clustering is one of the most promising techniques for energy conservation. This paper presents a novel clustering algorithm which maximizes the network lifetime by reducing the number of communication among sensor nodes. This approach also includes new distributed cluster formation technique that enables self-organization of large number of nodes, algorithm for maintaining constant number of clusters by prior selection of cluster head and rotating the role of cluster head to evenly distribute the energy load among all sensor nodes.
Keywords: Clustering algorithms, Cluster head, Energy consumption, Sensor nodes, and Wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23901236 A Multilanguage Source Code Retrieval System Using Structural-Semantic Fingerprints
Authors: Mohamed Amine Ouddan, Hassane Essafi
Abstract:
Source code retrieval is of immense importance in the software engineering field. The complex tasks of retrieving and extracting information from source code documents is vital in the development cycle of the large software systems. The two main subtasks which result from these activities are code duplication prevention and plagiarism detection. In this paper, we propose a Mohamed Amine Ouddan, and Hassane Essafi source code retrieval system based on two-level fingerprint representation, respectively the structural and the semantic information within a source code. A sequence alignment technique is applied on these fingerprints in order to quantify the similarity between source code portions. The specific purpose of the system is to detect plagiarism and duplicated code between programs written in different programming languages belonging to the same class, such as C, Cµ, Java and CSharp. These four languages are supported by the actual version of the system which is designed such that it may be easily adapted for any programming language.Keywords: Source code retrieval, plagiarism detection, clonedetection, sequence alignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17931235 Medical Image Segmentation and Detection of MR Images Based on Spatial Multiple-Kernel Fuzzy C-Means Algorithm
Authors: J. Mehena, M. C. Adhikary
Abstract:
In this paper, a spatial multiple-kernel fuzzy C-means (SMKFCM) algorithm is introduced for segmentation problem. A linear combination of multiples kernels with spatial information is used in the kernel FCM (KFCM) and the updating rules for the linear coefficients of the composite kernels are derived as well. Fuzzy cmeans (FCM) based techniques have been widely used in medical image segmentation problem due to their simplicity and fast convergence. The proposed SMKFCM algorithm provides us a new flexible vehicle to fuse different pixel information in medical image segmentation and detection of MR images. To evaluate the robustness of the proposed segmentation algorithm in noisy environment, we add noise in medical brain tumor MR images and calculated the success rate and segmentation accuracy. From the experimental results it is clear that the proposed algorithm has better performance than those of other FCM based techniques for noisy medical MR images.Keywords: Clustering, fuzzy C-means, image segmentation, MR images, multiple kernels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21291234 Object Detection Based on Plane Segmentation and Features Matching for a Service Robot
Authors: António J. R. Neves, Rui Garcia, Paulo Dias, Alina Trifan
Abstract:
With the aging of the world population and the continuous growth in technology, service robots are more and more explored nowadays as alternatives to healthcare givers or personal assistants for the elderly or disabled people. Any service robot should be capable of interacting with the human companion, receive commands, navigate through the environment, either known or unknown, and recognize objects. This paper proposes an approach for object recognition based on the use of depth information and color images for a service robot. We present a study on two of the most used methods for object detection, where 3D data is used to detect the position of objects to classify that are found on horizontal surfaces. Since most of the objects of interest accessible for service robots are on these surfaces, the proposed 3D segmentation reduces the processing time and simplifies the scene for object recognition. The first approach for object recognition is based on color histograms, while the second is based on the use of the SIFT and SURF feature descriptors. We present comparative experimental results obtained with a real service robot.Keywords: Service Robot, Object Recognition, 3D Sensors, Plane Segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16741233 Fault Localization and Alarm Correlation in Optical WDM Networks
Authors: G. Ramesh, S. Sundara Vadivelu
Abstract:
For several high speed networks, providing resilience against failures is an essential requirement. The main feature for designing next generation optical networks is protecting and restoring high capacity WDM networks from the failures. Quick detection, identification and restoration make networks more strong and consistent even though the failures cannot be avoided. Hence, it is necessary to develop fast, efficient and dependable fault localization or detection mechanisms. In this paper we propose a new fault localization algorithm for WDM networks which can identify the location of a failure on a failed lightpath. Our algorithm detects the failed connection and then attempts to reroute data stream through an alternate path. In addition to this, we develop an algorithm to analyze the information of the alarms generated by the components of an optical network, in the presence of a fault. It uses the alarm correlation in order to reduce the list of suspected components shown to the network operators. By our simulation results, we show that our proposed algorithms achieve less blocking probability and delay while getting higher throughput.
Keywords: Alarm correlation, blocking probability, delay, fault localization, WDM networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20681232 An Intelligent System for Phish Detection, using Dynamic Analysis and Template Matching
Authors: Chinmay Soman, Hrishikesh Pathak, Vishal Shah, Aniket Padhye, Amey Inamdar
Abstract:
Phishing, or stealing of sensitive information on the web, has dealt a major blow to Internet Security in recent times. Most of the existing anti-phishing solutions fail to handle the fuzziness involved in phish detection, thus leading to a large number of false positives. This fuzziness is attributed to the use of highly flexible and at the same time, highly ambiguous HTML language. We introduce a new perspective against phishing, that tries to systematically prove, whether a given page is phished or not, using the corresponding original page as the basis of the comparison. It analyzes the layout of the pages under consideration to determine the percentage distortion between them, indicative of any form of malicious alteration. The system design represents an intelligent system, employing dynamic assessment which accurately identifies brand new phishing attacks and will prove effective in reducing the number of false positives. This framework could potentially be used as a knowledge base, in educating the internet users against phishing.Keywords: World Wide Web, Phishing, Internet security, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18331231 Degraded Document Analysis and Extraction of Original Text Document: An Approach without Optical Character Recognition
Authors: L. Hamsaveni, Navya Prakash, Suresha
Abstract:
Document Image Analysis recognizes text and graphics in documents acquired as images. An approach without Optical Character Recognition (OCR) for degraded document image analysis has been adopted in this paper. The technique involves document imaging methods such as Image Fusing and Speeded Up Robust Features (SURF) Detection to identify and extract the degraded regions from a set of document images to obtain an original document with complete information. In case, degraded document image captured is skewed, it has to be straightened (deskew) to perform further process. A special format of image storing known as YCbCr is used as a tool to convert the Grayscale image to RGB image format. The presented algorithm is tested on various types of degraded documents such as printed documents, handwritten documents, old script documents and handwritten image sketches in documents. The purpose of this research is to obtain an original document for a given set of degraded documents of the same source.Keywords: Grayscale image format, image fusing, SURF detection, YCbCr image format.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11551230 Performance Analysis of Expert Systems Incorporating Neural Network for Fault Detection of an Electric Motor
Authors: M. Khatami Rad, N. Jamali, M. Torabizadeh, A. Noshadi
Abstract:
In this paper, an artificial neural network simulator is employed to carry out diagnosis and prognosis on electric motor as rotating machinery based on predictive maintenance. Vibration data of the primary failed motor including unbalance, misalignment and bearing fault were collected for training the neural network. Neural network training was performed for a variety of inputs and the motor condition was used as the expert training information. The main purpose of applying the neural network as an expert system was to detect the type of failure and applying preventive maintenance. The advantage of this study is for machinery Industries by providing appropriate maintenance that has an essential activity to keep the production process going at all processes in the machinery industry. Proper maintenance is pivotal in order to prevent the possible failures in operating system and increase the availability and effectiveness of a system by analyzing vibration monitoring and developing expert system.Keywords: Condition based monitoring, expert system, neural network, fault detection, vibration monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990