Search results for: network coverage
2241 A Study about the Distribution of the Spanning Ratios of Yao Graphs
Authors: Maryam Hsaini, Mostafa Nouri-Baygi
Abstract:
A critical problem in wireless sensor networks is limited battery and memory of nodes. Therefore, each node in the network could maintain only a subset of its neighbors to communicate with. This will increase the battery usage in the network because each packet should take more hops to reach its destination. In order to tackle these problems, spanner graphs are defined. Since each node has a small degree in a spanner graph and the distance in the graph is not much greater than its actual geographical distance, spanner graphs are suitable candidates to be used for the topology of a wireless sensor network. In this paper, we study Yao graphs and their behavior for a randomly selected set of points. We generate several random point sets and compare the properties of their Yao graphs with the complete graph. Based on our data sets, we obtain several charts demonstrating how Yao graphs behave for a set of randomly chosen point set. As the results show, the stretch factor of a Yao graph follows a normal distribution. Furthermore, the stretch factor is in average far less than the worst case stretch factor proved for Yao graphs in previous results. Furthermore, we use Yao graph for a realistic point set and study its stretch factor in real world.
Keywords: Wireless sensor network, spanner graph, Yao Graph.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5972240 Prediction the Limiting Drawing Ratio in Deep Drawing Process by Back Propagation Artificial Neural Network
Authors: H.Mohammadi Majd, M.Jalali Azizpour, M. Goodarzi
Abstract:
In this paper back-propagation artificial neural network (BPANN) with Levenberg–Marquardt algorithm is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.Keywords: BPANN, deep drawing, prediction, limiting drawingratio (LDR), Levenberg–Marquardt algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18542239 Off-Policy Q-learning Technique for Intrusion Response in Network Security
Authors: Zheni S. Stefanova, Kandethody M. Ramachandran
Abstract:
With the increasing dependency on our computer devices, we face the necessity of adequate, efficient and effective mechanisms, for protecting our network. There are two main problems that Intrusion Detection Systems (IDS) attempt to solve. 1) To detect the attack, by analyzing the incoming traffic and inspect the network (intrusion detection). 2) To produce a prompt response when the attack occurs (intrusion prevention). It is critical creating an Intrusion detection model that will detect a breach in the system on time and also challenging making it provide an automatic and with an acceptable delay response at every single stage of the monitoring process. We cannot afford to adopt security measures with a high exploiting computational power, and we are not able to accept a mechanism that will react with a delay. In this paper, we will propose an intrusion response mechanism that is based on artificial intelligence, and more precisely, reinforcement learning techniques (RLT). The RLT will help us to create a decision agent, who will control the process of interacting with the undetermined environment. The goal is to find an optimal policy, which will represent the intrusion response, therefore, to solve the Reinforcement learning problem, using a Q-learning approach. Our agent will produce an optimal immediate response, in the process of evaluating the network traffic.This Q-learning approach will establish the balance between exploration and exploitation and provide a unique, self-learning and strategic artificial intelligence response mechanism for IDS.Keywords: Intrusion prevention, network security, optimal policy, Q-learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10222238 A Hybrid Classification Method using Artificial Neural Network Based Decision Tree for Automatic Sleep Scoring
Authors: Haoyu Ma, Bin Hu, Mike Jackson, Jingzhi Yan, Wen Zhao
Abstract:
In this paper we propose a new classification method for automatic sleep scoring using an artificial neural network based decision tree. It attempts to treat sleep scoring progress as a series of two-class problems and solves them with a decision tree made up of a group of neural network classifiers, each of which uses a special feature set and is aimed at only one specific sleep stage in order to maximize the classification effect. A single electroencephalogram (EEG) signal is used for our analysis rather than depending on multiple biological signals, which makes greatly simplifies the data acquisition process. Experimental results demonstrate that the average epoch by epoch agreement between the visual and the proposed method in separating 30s wakefulness+S1, REM, S2 and SWS epochs was 88.83%. This study shows that the proposed method performed well in all the four stages, and can effectively limit error propagation at the same time. It could, therefore, be an efficient method for automatic sleep scoring. Additionally, since it requires only a small volume of data it could be suited to pervasive applications.
Keywords: Sleep, Sleep stage, Automatic sleep scoring, Electroencephalography, Decision tree, Artificial neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20712237 A Model of Network Security with Prevention Capability by Using Decoy Technique
Authors: Supachai Tangwongsan, Labhidhorn Pangphuthipong
Abstract:
This research work proposes a model of network security systems aiming to prevent production system in a data center from being attacked by intrusions. Conceptually, we introduce a decoy system as a part of the security system for luring intrusions, and apply network intrusion detection (NIDS), coupled with the decoy system to perform intrusion prevention. When NIDS detects an activity of intrusions, it will signal a redirection module to redirect all malicious traffics to attack the decoy system instead, and hence the production system is protected and safe. However, in a normal situation, traffic will be simply forwarded to the production system as usual. Furthermore, we assess the performance of the model with various bandwidths, packet sizes and inter-attack intervals (attacking frequencies).
Keywords: Intrusion detection, Decoy, Snort, Intrusion prevention.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17472236 Cooperative Sensing for Wireless Sensor Networks
Authors: Julien Romieux, Fabio Verdicchio
Abstract:
Wireless Sensor Networks (WSNs), which sense environmental data with battery-powered nodes, require multi-hop communication. This power-demanding task adds an extra workload that is unfairly distributed across the network. As a result, nodes run out of battery at different times: this requires an impractical individual node maintenance scheme. Therefore we investigate a new Cooperative Sensing approach that extends the WSN operational life and allows a more practical network maintenance scheme (where all nodes deplete their batteries almost at the same time). We propose a novel cooperative algorithm that derives a piecewise representation of the sensed signal while controlling approximation accuracy. Simulations show that our algorithm increases WSN operational life and spreads communication workload evenly. Results convey a counterintuitive conclusion: distributing workload fairly amongst nodes may not decrease the network power consumption and yet extend the WSN operational life. This is achieved as our cooperative approach decreases the workload of the most burdened cluster in the network.Keywords: Cooperative signal processing, power management, signal representation, signal approximation, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17862235 Cooperative Cross Layer Topology for Concurrent Transmission Scheduling Scheme in Broadband Wireless Networks
Authors: Gunasekaran Raja, Ramkumar Jayaraman
Abstract:
In this paper, we consider CCL-N (Cooperative Cross Layer Network) topology based on the cross layer (both centralized and distributed) environment to form network communities. Various performance metrics related to the IEEE 802.16 networks are discussed to design CCL-N Topology. In CCL-N topology, nodes are classified as master nodes (Master Base Station [MBS]) and serving nodes (Relay Station [RS]). Nodes communities are organized based on the networking terminologies. Based on CCL-N Topology, various simulation analyses for both transparent and non-transparent relays are tabulated and throughput efficiency is calculated. Weighted load balancing problem plays a challenging role in IEEE 802.16 network. CoTS (Concurrent Transmission Scheduling) Scheme is formulated in terms of three aspects – transmission mechanism based on identical communities, different communities and identical node communities. CoTS scheme helps in identifying the weighted load balancing problem. Based on the analytical results, modularity value is inversely proportional to that of the error value. The modularity value plays a key role in solving the CoTS problem based on hop count. The transmission mechanism for identical node community has no impact since modularity value is same for all the network groups. In this paper three aspects of communities based on the modularity value which helps in solving the problem of weighted load balancing and CoTS are discussed.
Keywords: Cross layer network topology, concurrent scheduling, modularity value, network communities and weighted load balancing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14342234 A Novel Technique for Ferroresonance Identification in Distribution Networks
Authors: G. Mokryani, M. R. Haghifam, J. Esmaeilpoor
Abstract:
Happening of Ferroresonance phenomenon is one of the reasons of consuming and ruining transformers, so recognition of Ferroresonance phenomenon has a special importance. A novel method for classification of Ferroresonance presented in this paper. Using this method Ferroresonance can be discriminate from other transients such as capacitor switching, load switching, transformer switching. Wavelet transform is used for decomposition of signals and Competitive Neural Network used for classification. Ferroresonance data and other transients was obtained by simulation using EMTP program. Using Daubechies wavelet transform signals has been decomposed till six levels. The energy of six detailed signals that obtained by wavelet transform are used for training and trailing Competitive Neural Network. Results show that the proposed procedure is efficient in identifying Ferroresonance from other events.
Keywords: Competitive Neural Network, Ferroresonance, EMTP program, Wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14242233 A Remote Sensing Approach to Calculate Population Using Roads Network Data in Lebanon
Authors: Kamel Allaw, Jocelyne Adjizian Gerard, Makram Chehayeb, Nada Badaro Saliba
Abstract:
In developing countries, such as Lebanon, the demographic data are hardly available due to the absence of the mechanization of population system. The aim of this study is to evaluate, using only remote sensing data, the correlations between the number of population and the characteristics of roads network (length of primary roads, length of secondary roads, total length of roads, density and percentage of roads and the number of intersections). In order to find the influence of the different factors on the demographic data, we studied the degree of correlation between each factor and the number of population. The results of this study have shown a strong correlation between the number of population and the density of roads and the number of intersections.
Keywords: Population, road network, statistical correlations, remote sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9962232 Protecting the Privacy and Trust of VIP Users on Social Network Sites
Authors: Nidal F. Shilbayeh, Sameh T. Khuffash, Mohammad H. Allymoun, Reem Al-Saidi
Abstract:
There is a real threat on the VIPs personal pages on the Social Network Sites (SNS). The real threats to these pages is violation of privacy and theft of identity through creating fake pages that exploit their names and pictures to attract the victims and spread of lies. In this paper, we propose a new secure architecture that improves the trusting and finds an effective solution to reduce fake pages and possibility of recognizing VIP pages on SNS. The proposed architecture works as a third party that is added to Facebook to provide the trust service to personal pages for VIPs. Through this mechanism, it works to ensure the real identity of the applicant through the electronic authentication of personal information by storing this information within content of their website. As a result, the significance of the proposed architecture is that it secures and provides trust to the VIPs personal pages. Furthermore, it can help to discover fake page, protect the privacy, reduce crimes of personality-theft, and increase the sense of trust and satisfaction by friends and admirers in interacting with SNS.
Keywords: Social Network Sites, Online Social Network, Privacy, Trust, Security and Authentication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37802231 Comparative Performance Analysis of Fiber Delay Line Based Buffer Architectures for Contention Resolution in Optical WDM Networks
Authors: Manoj Kumar Dutta
Abstract:
Wavelength Division Multiplexing (WDM) technology is the most promising technology for the proper utilization of huge raw bandwidth provided by an optical fiber. One of the key problems in implementing the all-optical WDM network is the packet contention. This problem can be solved by several different techniques. In time domain approach the packet contention can be reduced by incorporating Fiber Delay Lines (FDLs) as optical buffer in the switch architecture. Different types of buffering architectures are reported in literatures. In the present paper a comparative performance analysis of three most popular FDL architectures are presented in order to obtain the best contention resolution performance. The analysis is further extended to consider the effect of different fiber non-linearities on the network performance.Keywords: WDM network, contention resolution, optical buffering, non-linearity, throughput.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17882230 Machine Learning Methods for Network Intrusion Detection
Authors: Mouhammad Alkasassbeh, Mohammad Almseidin
Abstract:
Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE.
Keywords: IDS, DDoS, MLP, KDD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7272229 Neural Network Implementation Using FPGA: Issues and Application
Authors: A. Muthuramalingam, S. Himavathi, E. Srinivasan
Abstract:
.Hardware realization of a Neural Network (NN), to a large extent depends on the efficient implementation of a single neuron. FPGA-based reconfigurable computing architectures are suitable for hardware implementation of neural networks. FPGA realization of ANNs with a large number of neurons is still a challenging task. This paper discusses the issues involved in implementation of a multi-input neuron with linear/nonlinear excitation functions using FPGA. Implementation method with resource/speed tradeoff is proposed to handle signed decimal numbers. The VHDL coding developed is tested using Xilinx XC V50hq240 Chip. To improve the speed of operation a lookup table method is used. The problems involved in using a lookup table (LUT) for a nonlinear function is discussed. The percentage saving in resource and the improvement in speed with an LUT for a neuron is reported. An attempt is also made to derive a generalized formula for a multi-input neuron that facilitates to estimate approximately the total resource requirement and speed achievable for a given multilayer neural network. This facilitates the designer to choose the FPGA capacity for a given application. Using the proposed method of implementation a neural network based application, namely, a Space vector modulator for a vector-controlled drive is presented
Keywords: FPGA implementation, multi-input neuron, neural network, nn based space vector modulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44242228 Adaptive PID Controller based on Reinforcement Learning for Wind Turbine Control
Authors: M. Sedighizadeh, A. Rezazadeh
Abstract:
A self tuning PID control strategy using reinforcement learning is proposed in this paper to deal with the control of wind energy conversion systems (WECS). Actor-Critic learning is used to tune PID parameters in an adaptive way by taking advantage of the model-free and on-line learning properties of reinforcement learning effectively. In order to reduce the demand of storage space and to improve the learning efficiency, a single RBF neural network is used to approximate the policy function of Actor and the value function of Critic simultaneously. The inputs of RBF network are the system error, as well as the first and the second-order differences of error. The Actor can realize the mapping from the system state to PID parameters, while the Critic evaluates the outputs of the Actor and produces TD error. Based on TD error performance index and gradient descent method, the updating rules of RBF kernel function and network weights were given. Simulation results show that the proposed controller is efficient for WECS and it is perfectly adaptable and strongly robust, which is better than that of a conventional PID controller.Keywords: Wind energy conversion systems, reinforcementlearning; Actor-Critic learning; adaptive PID control; RBF network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49362227 Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area
Authors: JaeHwan Yang, Da-Woon Jeong, Seung-Young Kho, Dong-Kyu Kim
Abstract:
In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data.Keywords: Data Estimation, link data, machine learning, road network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15042226 Scaling up Detection Rates and Reducing False Positives in Intrusion Detection using NBTree
Authors: Dewan Md. Farid, Nguyen Huu Hoa, Jerome Darmont, Nouria Harbi, Mohammad Zahidur Rahman
Abstract:
In this paper, we present a new learning algorithm for anomaly based network intrusion detection using improved self adaptive naïve Bayesian tree (NBTree), which induces a hybrid of decision tree and naïve Bayesian classifier. The proposed approach scales up the balance detections for different attack types and keeps the false positives at acceptable level in intrusion detection. In complex and dynamic large intrusion detection dataset, the detection accuracy of naïve Bayesian classifier does not scale up as well as decision tree. It has been successfully tested in other problem domains that naïve Bayesian tree improves the classification rates in large dataset. In naïve Bayesian tree nodes contain and split as regular decision-trees, but the leaves contain naïve Bayesian classifiers. The experimental results on KDD99 benchmark network intrusion detection dataset demonstrate that this new approach scales up the detection rates for different attack types and reduces false positives in network intrusion detection.Keywords: Detection rates, false positives, network intrusiondetection, naïve Bayesian tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22812225 Secure and Efficient Transmission of Aggregated Data for Mobile Wireless Sensor Networks
Authors: A. Krishna Veni, R.Geetha
Abstract:
Wireless Sensor Networks (WSNs) are suitable for many scenarios in the real world. The retrieval of data is made efficient by the data aggregation techniques. Many techniques for the data aggregation are offered and most of the existing schemes are not energy efficient and secure. However, the existing techniques use the traditional clustering approach where there is a delay during the packet transmission since there is no proper scheduling. The presented system uses the Velocity Energy-efficient and Link-aware Cluster-Tree (VELCT) scheme in which there is a Data Collection Tree (DCT) which improves the lifetime of the network. The VELCT scheme and the construction of DCT reduce the delay and traffic. The network lifetime can be increased by avoiding the frequent change in cluster topology. Secure and Efficient Transmission of Aggregated data (SETA) improves the security of the data transmission via the trust value of the nodes prior the aggregation of data. Since SETA considers the data only from the trustworthy nodes for aggregation, it is more secure in transmitting the data thereby improving the accuracy of aggregated data.
Keywords: Aggregation, lifetime, network security, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12172224 Reconfiguration of Deregulated Distribution Network for Minimizing Energy Supply Cost by using Multi-Objective BGA
Authors: H. Kazemi Karegar, S. Jalilzadeh, V. Nabaei, A. Shabani
Abstract:
In this paper, the problem of finding the optimal topological configuration of a deregulated distribution network is considered. The new features of this paper are proposing a multiobjective function and its application on deregulated distribution networks for finding the optimal configuration. The multi-objective function will be defined for minimizing total Energy Supply Costs (ESC) and energy losses subject to load flow constraints. The optimal configuration will be obtained by using Binary Genetic Algorithm (BGA).The proposed method has been tested to analyze a sample and a practical distribution networks.Keywords: Binary Genetic Algorithm, Deregulated Distribution Network, Minimizing Cost, Reconfiguration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14122223 Wear Measuring and Wear Modelling Based On Archard, ASTM, and Neural Network Models
Authors: A. Shebani, C. Pislaru
Abstract:
The wear measuring and wear modelling are fundamental issues in the industrial field, mainly correlated to the economy and safety. Therefore, there is a need to study the wear measurements and wear estimation. Pin-on-disc test is the most common test which is used to study the wear behaviour. In this paper, the pin-on-disc (AEROTECH UNIDEX 11) is used for the investigation of the effects of normal load and hardness of material on the wear under dry and sliding conditions. In the pin-on-disc rig, two specimens were used; one, a pin is made of steel with a tip, positioned perpendicular to the disc, where the disc is made of aluminium. The pin wear and disc wear were measured by using the following instruments: The Talysurf instrument, a digital microscope, and the alicona instrument. The Talysurf profilometer was used to measure the pin/disc wear scar depth, digital microscope was used to measure the diameter and width of wear scar, and the alicona was used to measure the pin wear and disc wear. After that, the Archard model, American Society for Testing and Materials model (ASTM), and neural network model were used for pin/disc wear modelling. Simulation results were implemented by using the Matlab program. This paper focuses on how the alicona can be used for wear measurements and how the neural network can be used for wear estimation.
Keywords: Wear measuring, Wear modelling, Neural Network, Alicona.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42782222 Fault Classification of a Doubly FED Induction Machine Using Neural Network
Authors: A. Ourici
Abstract:
Rapid progress in process automation and tightening quality standards result in a growing demand being placed on fault detection and diagnostics methods to provide both speed and reliability of motor quality testing. Doubly fed induction generators are used mainly for wind energy conversion in MW power plants. This paper presents a detection of an inter turn stator and an open phase faults, in a doubly fed induction machine whose stator and rotor are supplied by two pulse width modulation (PWM) inverters. The method used in this article to detect these faults, is based on Park-s Vector Approach, using a neural network.Keywords: Doubly fed induction machine, inter turn stator fault, neural network, open phase fault, Park's vector approach, PWMinverter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16462221 Hybrid Intelligent Intrusion Detection System
Authors: Norbik Bashah, Idris Bharanidharan Shanmugam, Abdul Manan Ahmed
Abstract:
Intrusion Detection Systems are increasingly a key part of systems defense. Various approaches to Intrusion Detection are currently being used, but they are relatively ineffective. Artificial Intelligence plays a driving role in security services. This paper proposes a dynamic model Intelligent Intrusion Detection System, based on specific AI approach for intrusion detection. The techniques that are being investigated includes neural networks and fuzzy logic with network profiling, that uses simple data mining techniques to process the network data. The proposed system is a hybrid system that combines anomaly, misuse and host based detection. Simple Fuzzy rules allow us to construct if-then rules that reflect common ways of describing security attacks. For host based intrusion detection we use neural-networks along with self organizing maps. Suspicious intrusions can be traced back to its original source path and any traffic from that particular source will be redirected back to them in future. Both network traffic and system audit data are used as inputs for both.Keywords: Intrusion Detection, Network Security, Data mining, Fuzzy Logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21312220 Corporate Governance in Network Marketing Organizations: The Role of Ethics and CSR
Authors: Venugopal Kummamuru
Abstract:
Corporate Governance (CG) is of utmost importance for running a company ethically. It is essential for the growth and success of the corporation. It is intended to increase the accountability of an organization to the larger context of the business environment. The general principles of CG include and are related to Shareholder recognition, Stakeholder interests, and focus on Corporate Social Responsibility (CSR), Clear Board responsibilities, Ethical behavior, and Business transparency. Network Marketing Organizations (NMOs) focus on marketing through direct-sales using people who are associated with the organization but are not their employees. This paper tries to study the importance of Ethics and CSR in an NMO and suggest a basic guideline for CG in NMO(s). This paper could be used as a basis or starting point for conducting an in-depth research to understand the difference in CG practices between NMO(s) and other organizations and define a standard set of guidelines for CG practice.
Keywords: Corporate governance, corporate responsibility, direct selling, network marketing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20782219 Neural Network Tuned Fuzzy Controller for MIMO System
Authors: Seema Chopra, R. Mitra, Vijay Kumar
Abstract:
In this paper, a neural network tuned fuzzy controller is proposed for controlling Multi-Input Multi-Output (MIMO) systems. For the convenience of analysis, the structure of MIMO fuzzy controller is divided into single input single-output (SISO) controllers for controlling each degree of freedom. Secondly, according to the characteristics of the system-s dynamics coupling, an appropriate coupling fuzzy controller is incorporated to improve the performance. The simulation analysis on a two-level mass–spring MIMO vibration system is carried out and results show the effectiveness of the proposed fuzzy controller. The performance though improved, the computational time and memory used is comparatively higher, because it has four fuzzy reasoning blocks and number may increase in case of other MIMO system. Then a fuzzy neural network is designed from a set of input-output training data to reduce the computing burden during implementation. This control strategy can not only simplify the implementation problem of fuzzy control, but also reduce computational time and consume less memory.Keywords: Fuzzy Control, Neural Network, MIMO System, Optimization of Membership functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32102218 Hybrid Multipath Congestion Control
Authors: Akshit Singhal, Xuan Wang, Zhijun Wang, Hao Che, Hong Jiang
Abstract:
Multiple Path Transmission Control Protocols (MPTCPs) allow flows to explore path diversity to improve the throughput, reliability and network resource utilization. However, the existing solutions may discourage users to adopt the solutions in the face of multipath scenario where different paths are charged based on different pricing structures, e.g., WiFi vs. cellular connections, widely available for mobile phones. In this paper, we propose a Hybrid MPTCP (H-MPTCP) with a built-in mechanism to incentivize users to use multiple paths with different pricing structures. In the meantime, H-MPTCP preserves the nice properties enjoyed by the state-of-the-art MPTCP solutions. Extensive real Linux implementation results verify that H-MPTCP can indeed achieve the design objectives.
Keywords: Congestion control, Network Utility Maximization, Multipath TCP, network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3822217 A Distributed Mobile Agent Based on Intrusion Detection System for MANET
Authors: Maad Kamal Al-Anni
Abstract:
This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).
Keywords: Mobile ad hoc network, MANET, intrusion detection system, back propagation algorithm, neural networks, traffic table, multilayer perceptron, feed-forward back-propagation, network simulator 2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9282216 Dependability Tools in Multi-Agent Support for Failures Analysis of Computer Networks
Authors: Myriam Noureddine
Abstract:
During their activity, all systems must be operational without failures and in this context, the dependability concept is essential avoiding disruption of their function. As computer networks are systems with the same requirements of dependability, this article deals with an analysis of failures for a computer network. The proposed approach integrates specific tools of the plat-form KB3, usually applied in dependability studies of industrial systems. The methodology is supported by a multi-agent system formed by six agents grouped in three meta agents, dealing with two levels. The first level concerns a modeling step through a conceptual agent and a generating agent. The conceptual agent is dedicated to the building of the knowledge base from the system specifications written in the FIGARO language. The generating agent allows producing automatically both the structural model and a dependability model of the system. The second level, the simulation, shows the effects of the failures of the system through a simulation agent. The approach validation is obtained by its application on a specific computer network, giving an analysis of failures through their effects for the considered network.
Keywords: Computer network, dependability, KB3 plat-form, multi-agent system, failure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6402215 Adaptive Pulse Coupled Neural Network Parameters for Image Segmentation
Authors: Thejaswi H. Raya, Vineetha Bettaiah, Heggere S. Ranganath
Abstract:
For over a decade, the Pulse Coupled Neural Network (PCNN) based algorithms have been successfully used in image interpretation applications including image segmentation. There are several versions of the PCNN based image segmentation methods, and the segmentation accuracy of all of them is very sensitive to the values of the network parameters. Most methods treat PCNN parameters like linking coefficient and primary firing threshold as global parameters, and determine them by trial-and-error. The automatic determination of appropriate values for linking coefficient, and primary firing threshold is a challenging problem and deserves further research. This paper presents a method for obtaining global as well as local values for the linking coefficient and the primary firing threshold for neurons directly from the image statistics. Extensive simulation results show that the proposed approach achieves excellent segmentation accuracy comparable to the best accuracy obtainable by trial-and-error for a variety of images.Keywords: Automatic Selection of PCNN Parameters, Image Segmentation, Neural Networks, Pulse Coupled Neural Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22872214 Smart Technology for Hygrothermal Performance of Low Carbon Material Using an Artificial Neural Network Model
Authors: Manal Bouasria, Mohammed-Hichem Benzaama, Valérie Pralong, Yassine El Mendili
Abstract:
Reducing the quantity of cement in cementitious composites can help to reduce the environmental effect of construction materials. Byproducts such as ferronickel slags (FNS), fly ash (FA), and waste as Crepidula fornicata shells (CR) are promising options for cement replacement. In this work, we investigated the relevance of substituting cement with FNS-CR and FA-CR on the mechanical properties of mortar and on the thermal properties of concrete. Foraging intervals ranging from 2 days to 28 days, the mechanical properties are obtained by 3-point bending and compression tests. The chosen mix is used to construct a prototype in order to study the material’s hygrothermal performance. The data collected by the sensors placed on the prototype were utilized to build an artificial neural network.
Keywords: Artificial neural network, cement, circular economy, concrete, byproducts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3522213 Earth Station Neural Network Control Methodology and Simulation
Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah
Abstract:
Renewable energy resources are inexhaustible, clean as compared with conventional resources. Also, it is used to supply regions with no grid, no telephone lines, and often with difficult accessibility by common transport. Satellite earth stations which located in remote areas are the most important application of renewable energy. Neural control is a branch of the general field of intelligent control, which is based on the concept of artificial intelligence. This paper presents the mathematical modeling of satellite earth station power system which is required for simulating the system.Aswan is selected to be the site under consideration because it is a rich region with solar energy. The complete power system is simulated using MATLAB–SIMULINK.An artificial neural network (ANN) based model has been developed for the optimum operation of earth station power system. An ANN is trained using a back propagation with Levenberg–Marquardt algorithm. The best validation performance is obtained for minimum mean square error. The regression between the network output and the corresponding target is equal to 96% which means a high accuracy. Neural network controller architecture gives satisfactory results with small number of neurons, hence better in terms of memory and time are required for NNC implementation. The results indicate that the proposed control unit using ANN can be successfully used for controlling the satellite earth station power system.
Keywords: Satellite, neural network, MATLAB, power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18682212 Enhancing the Connectedness in Ad–hoc Mesh Networks using the Terranet Technology
Authors: Obeidat I., Bsoul M., Khasawneh A., Kilani Y.
Abstract:
This paper simulates the ad-hoc mesh network in rural areas, where such networks receive great attention due to their cost, since installing the infrastructure for regular networks in these areas is not possible due to the high cost. The distance between the communicating nodes is the most obstacles that the ad-hoc mesh network will face. For example, in Terranet technology, two nodes can communicate if they are only one kilometer far from each other. However, if the distance between them is more than one kilometer, then each node in the ad-hoc mesh networks has to act as a router that forwards the data it receives to other nodes. In this paper, we try to find the critical number of nodes which makes the network fully connected in a particular area, and then propose a method to enhance the intermediate node to accept to be a router to forward the data from the sender to the receiver. Much work was done on technological changes on peer to peer networks, but the focus of this paper will be on another feature which is to find the minimum number of nodes needed for a particular area to be fully connected and then to enhance the users to switch on their phones and accept to work as a router for other nodes. Our method raises the successful calls to 81.5% out of 100% attempt calls.
Keywords: Adjacency matrix, Ad-hoc mesh network, Connectedness, Terranet technology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618