Search results for: machine defect frequency
2344 Least-Squares Support Vector Machine for Characterization of Clusters of Microcalcifications
Authors: Baljit Singh Khehra, Amar Partap Singh Pharwaha
Abstract:
Clusters of Microcalcifications (MCCs) are most frequent symptoms of Ductal Carcinoma in Situ (DCIS) recognized by mammography. Least-Square Support Vector Machine (LS-SVM) is a variant of the standard SVM. In the paper, LS-SVM is proposed as a classifier for classifying MCCs as benign or malignant based on relevant extracted features from enhanced mammogram. To establish the credibility of LS-SVM classifier for classifying MCCs, a comparative evaluation of the relative performance of LS-SVM classifier for different kernel functions is made. For comparative evaluation, confusion matrix and ROC analysis are used. Experiments are performed on data extracted from mammogram images of DDSM database. A total of 380 suspicious areas are collected, which contain 235 malignant and 145 benign samples, from mammogram images of DDSM database. A set of 50 features is calculated for each suspicious area. After this, an optimal subset of 23 most suitable features is selected from 50 features by Particle Swarm Optimization (PSO). The results of proposed study are quite promising.
Keywords: Clusters of Microcalcifications, Ductal Carcinoma in Situ, Least-Square Support Vector Machine, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18122343 AGHAZ : An Expert System Based approach for the Translation of English to Urdu
Authors: Uzair Muhammad, Kashif Bilal, Atif Khan, M. Nasir Khan
Abstract:
Machine Translation (MT 3) of English text to its Urdu equivalent is a difficult challenge. Lot of attempts has been made, but a few limited solutions are provided till now. We present a direct approach, using an expert system to translate English text into its equivalent Urdu, using The Unicode Standard, Version 4.0 (ISBN 0-321-18578-1) Range: 0600–06FF. The expert system works with a knowledge base that contains grammatical patterns of English and Urdu, as well as a tense and gender-aware dictionary of Urdu words (with their English equivalents).
Keywords: Machine Translation, Multiword Expressions, Urdulanguage processing, POS12 Tagging for Urdu, Expert Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23532342 Detection of Oxidative Stress Induced by Mobile Phone Radiation in Tissues of Mice using 8-Oxo-7, 8-Dihydro-2'-Deoxyguanosine as a Biomarker
Authors: Ahmad M. Khalil, Ahmad M. Alshamali, Marwan H. Gagaa
Abstract:
We investigated oxidative DNA damage caused by radio frequency radiation using 8-oxo-7, 8-dihydro-2'- deoxyguanosine (8-oxodG) generated in mice tissues after exposure to 900 MHz mobile phone radio frequency in three independent experiments. The RF was generated by a Global System for Mobile Communication (GSM) signal generator. The radio frequency field was adjusted to 25 V/m. The whole body specific absorption rate (SAR) was 1.0 W/kg. Animals were exposed to this field for 30 min daily for 30 days. 24 h post-exposure, blood serum, brain and spleen were removed and DNA was isolated. Enzyme-linked immunosorbent assay (ELISA) was used to measure 8-oxodG concentration. All animals survived the whole experimental period. The body weight of animals did not change significantly at the end of the experiment. No statistically significant differences observed in the levels of oxidative stress. Our results are not in favor of the hypothesis that 900 MHz RF induces oxidative damage.Keywords: Mice, Mobile phone radiation, oxidative stress, 8-oxo-7, 8-dihydro-2'-deoxyguanosine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20512341 Analysis of Effects of Magnetic Slot Wedges on Characteristics of Permanent Magnet Synchronous Machine
Authors: B. Ladghem Chikouche
Abstract:
The influence of slot wedges permeability on the electromagnetic performance of three-phase permanent magnet synchronous machine is investigated in this paper. It is shown that the back-EMF waveform, electromagnetic torque and electromagnetic torque ripple are all significantly affected by slot wedges permeability. The paper presents an accurate analytical subdomain model and confirmed by finite-element analyses.Keywords: Exact analytical calculation, finite-element method, magnetic field distribution, permanent magnet machines performance, stator slot wedges permeability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20052340 Achieving Shear Wave Elastography by a Three-element Probe for Wearable Human-machine Interface
Authors: Jipeng Yan, Xingchen Yang, Xiaowei Zhou, Mengxing Tang, Honghai Liu
Abstract:
Shear elastic modulus of skeletal muscles can be obtained by shear wave elastography (SWE) and has been linearly related to muscle force. However, SWE is currently implemented using array probes. Price and volumes of these probes and their driving equipment prevent SWE from being used in wearable human-machine interfaces (HMI). Moreover, beamforming processing for array probes reduces the real-time performance. To achieve SWE by wearable HMIs, a customized three-element probe is adopted in this work, with one element for acoustic radiation force generation and the others for shear wave tracking. In-phase quadrature demodulation and 2D autocorrelation are adopted to estimate velocities of tissues on the sound beams of the latter two elements. Shear wave speeds are calculated by phase shift between the tissue velocities. Three agar phantoms with different elasticities were made by changing the weights of agar. Values of the shear elastic modulus of the phantoms were measured as 8.98, 23.06 and 36.74 kPa at a depth of 7.5 mm respectively. This work verifies the feasibility of measuring shear elastic modulus by wearable devices.Keywords: Shear elastic modulus, skeletal muscle, ultrasound, wearable human-machine interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7912339 Vibroacoustic Modulation of Wideband Vibrations and Its Possible Application for Windmill Blade Diagnostics
Authors: Abdullah Alnutayfat, Alexander Sutin, Dong Liu
Abstract:
Wind turbine has become one of the most popular energy production methods. However, failure of blades and maintenance costs evolve into significant issues in the wind power industry, so it is essential to detect the initial blade defects to avoid the collapse of the blades and structure. This paper aims to apply modulation of high-frequency blade vibrations by low-frequency blade rotation, which is close to the known Vibro-Acoustic Modulation (VAM) method. The high-frequency wideband blade vibration is produced by the interaction of the surface blades with the environment air turbulence, and the low-frequency modulation is produced by alternating bending stress due to gravity. The low-frequency load of rotational wind turbine blades ranges between 0.2-0.4 Hz and can reach up to 2 Hz for strong wind. The main difference between this study and previous ones on VAM methods is the use of a wideband vibration signal from the blade's natural vibrations. Different features of the VAM are considered using a simple model of breathing crack. This model considers the simple mechanical oscillator, where the parameters of the oscillator are varied due to low-frequency blade rotation. During the blade's operation, the internal stress caused by the weight of the blade modifies the crack's elasticity and damping. The laboratory experiment using steel samples demonstrates the possibility of VAM using a probe wideband noise signal. A cycle load with a small amplitude was used as a pump wave to damage the tested sample, and a small transducer generated a wideband probe wave. The received signal demodulation was conducted using the Detecting of Envelope Modulation on Noise (DEMON) approach. In addition, the experimental results were compared with the modulation index (MI) technique regarding the harmonic pump wave. The wideband and traditional VAM methods demonstrated similar sensitivity for earlier detection of invisible cracks. Importantly, employing a wideband probe signal with the DEMON approach speeds up and simplifies testing since it eliminates the need to conduct tests repeatedly for various harmonic probe frequencies and to adjust the probe frequency.
Keywords: Damage detection, turbine blades, Vibro-Acoustic Structural Health Monitoring, SHM, Detecting of Envelope Modulation on Noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4502338 Early Installation Effect on the Vibration Generated by Machines
Authors: Maitham Al-Safwani
Abstract:
Motor vibration issues were analyzed and correlated to poor equipment installation. We had a water injection pump tested in the factory and exceeded the pump vibration limit. Once the pump was brought to the site, its half-size shim plates were replaced with full-size shims plate that drastically reduced the vibration. In this study, vibration data were recorded for several and similar motors run at the same and different speeds. The vibration values were recorded — for two and a half hours — and the vibration readings analyzed to determine when the readings become consistent. This was as well supported by recording the audio noises produced by some machines seeking a relationship between changes in machine noises and machine abnormalities, such as vibration.
Keywords: Vibration, noise, shaft unbalance, shaft misalignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4352337 Fault Zone Detection on Advanced Series Compensated Transmission Line using Discrete Wavelet Transform and SVM
Authors: Renju Gangadharan, G. N. Pillai, Indra Gupta
Abstract:
In this paper a novel method for finding the fault zone on a Thyristor Controlled Series Capacitor (TCSC) incorporated transmission line is presented. The method makes use of the Support Vector Machine (SVM), used in the classification mode to distinguish between the zones, before or after the TCSC. The use of Discrete Wavelet Transform is made to prepare the features which would be given as the input to the SVM. This method was tested on a 400 kV, 50 Hz, 300 Km transmission line and the results were highly accurate.Keywords: Flexible ac transmission system (FACTS), thyristorcontrolled series-capacitor (TCSC), discrete wavelet transforms(DWT), support vector machine (SVM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17322336 The Effect of Dynamic Eccentricity on Induction Machine Stator Currents (Part A)
Authors: Saleh S. Hamad Elawgali
Abstract:
Current spectrums of a high power induction machine was calculated for the cases of full symmetry, static and dynamic eccentricity. The calculations involve integration of 93 electrical plus four mechanical ordinary differential equations. Electrical equations account for variable inductances affected by slotting and eccentricities. The calculations were followed by Fourier analysis of the stator currents in steady state operation. The paper presents the stator current spectrums in full symmetry, static and dynamic eccentricity cases, and demonstrates the harmonics present in each case. The effect of dynamic eccentricity is demonstrating via comparing the current spectrums related to dynamic eccentricity cases with the full symmetry one. The paper includes one case study, refers to dynamic eccentricity, to present the spectrum of the measured current and demonstrate the existence of the harmonics related to dynamic eccentricity. The zooms of current spectrums around the main slot harmonic zone are included to simplify the comparison and prove the existence of the dynamic eccentricity harmonics in both calculated and measured current spectrums.
Keywords: Current spectrum, diagnostics, harmonics, Induction machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22962335 Tibyan Automated Arabic Correction Using Machine-Learning in Detecting Syntactical Mistakes
Authors: Ashwag O. Maghraby, Nida N. Khan, Hosnia A. Ahmed, Ghufran N. Brohi, Hind F. Assouli, Jawaher S. Melibari
Abstract:
The Arabic language is one of the most important languages. Learning it is so important for many people around the world because of its religious and economic importance and the real challenge lies in practicing it without grammatical or syntactical mistakes. This research focused on detecting and correcting the syntactic mistakes of Arabic syntax according to their position in the sentence and focused on two of the main syntactical rules in Arabic: Dual and Plural. It analyzes each sentence in the text, using Stanford CoreNLP morphological analyzer and machine-learning approach in order to detect the syntactical mistakes and then correct it. A prototype of the proposed system was implemented and evaluated. It uses support vector machine (SVM) algorithm to detect Arabic grammatical errors and correct them using the rule-based approach. The prototype system has a far accuracy 81%. In general, it shows a set of useful grammatical suggestions that the user may forget about while writing due to lack of familiarity with grammar or as a result of the speed of writing such as alerting the user when using a plural term to indicate one person.
Keywords: Arabic Language acquisition and learning, natural language processing, morphological analyzer, part-of-speech.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10462334 Investigation of Self-Similarity Solution for Wake Flow of a Cylinder
Authors: A. B. Khoshnevis, F. Zeydabadi, F. Sokhanvar
Abstract:
The data measurement of mean velocity has been taken for the wake of single circular cylinder with three different diameters for two different velocities. The effects of change in diameter and in velocity are studied in self-similar coordinate system. The spatial variations of velocity defect and that of the half-width have been investigated. The results are compared with those published by H.Schlichting. In the normalized coordinates, it is also observed that all cases except for the first station are self-similar. By attention to self-similarity profiles of mean velocity, it is observed for all the cases at the each station curves tend to zero at a same point.Keywords: Self-similarity, wake of single circular cylinder
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23972333 Design of a Novel CPW Fed Fractal Antenna for UWB
Authors: A. El Hamdouni, J. Zbitou, A. Tajmouati, L. El Abdellaoui, A. Errkik, A. Tribak, M. Latrach
Abstract:
This paper presents a novel fractal antenna structure proposed for UWB (Ultra – Wideband) applications. The frequency band 3.1-10.6GHz released by FCC (Federal Communication Commission) as the commercial operation of UWB has been chosen as frequency range for this antenna based on coplanar waveguide (CPW) feed and circular shapes fulfilled according to fractal geometry. The proposed antenna is validated and designed by using an FR4 substrate with overall area of 34x43 mm2. The simulated results performed by CST-Microwave Studio and compared by ADS (Advanced Design System) show good matching input impedance with return loss less than -10dB between 2.9 GHz and 11 GHz.
Keywords: Fractal antenna, Fractal Geometry, CPW Feed, UWB, FCC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22422332 Application of Granular Computing Paradigm in Knowledge Induction
Authors: Iftikhar U. Sikder
Abstract:
This paper illustrates an application of granular computing approach, namely rough set theory in data mining. The paper outlines the formalism of granular computing and elucidates the mathematical underpinning of rough set theory, which has been widely used by the data mining and the machine learning community. A real-world application is illustrated, and the classification performance is compared with other contending machine learning algorithms. The predictive performance of the rough set rule induction model shows comparative success with respect to other contending algorithms.
Keywords: Concept approximation, granular computing, reducts, rough set theory, rule induction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8342331 Multiband CPW-Fed Slot Antenna with L-slot Bowtie Tuning Stub
Authors: Prapoch Jirasakulporn
Abstract:
This paper presents a multiband CPW-fed slot antenna with L-slot bowtie tuning stub. The proposed antenna has been designed for PCS 1900, UMTS, WLAN 802.11 a/b/g and bluetooth applications, with a cost-effective FR4 substrate. The proposed antenna still radiate as omni-directional in azimuth plane and sufficient bandwidth for all above mentions. The proposed antenna works as dual-wideband, bandwidth at low frequency band and high frequency are about 45.49 % and 22.39 % respectively. The experimental results of the constructed prototype are presented and also compared with simulation results using a commercial software tool.Keywords: multiband antenna, slot antenna, CPW-fed, L-slotbowtie stub
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21722330 A Robust Audio Fingerprinting Algorithm in MP3 Compressed Domain
Authors: Ruili Zhou, Yuesheng Zhu
Abstract:
In this paper, a new robust audio fingerprinting algorithm in MP3 compressed domain is proposed with high robustness to time scale modification (TSM). Instead of simply employing short-term information of the MP3 stream, the new algorithm extracts the long-term features in MP3 compressed domain by using the modulation frequency analysis. Our experiment has demonstrated that the proposed method can achieve a hit rate of above 95% in audio retrieval and resist the attack of 20% TSM. It has lower bit error rate (BER) performance compared to the other algorithms. The proposed algorithm can also be used in other compressed domains, such as AAC.Keywords: Audio Fingerprinting, MP3, Modulation Frequency, TSM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21962329 A Genetic Algorithm to Schedule the Flow Shop Problem under Preventive Maintenance Activities
Authors: J. Kaabi, Y. Harrath
Abstract:
This paper studied the flow shop scheduling problem under machine availability constraints. The machines are subject to flexible preventive maintenance activities. The nonresumable scenario for the jobs was considered. That is, when a job is interrupted by an unavailability period of a machine it should be restarted from the beginning. The objective is to minimize the total tardiness time for the jobs and the advance/tardiness for the maintenance activities. To solve the problem, a genetic algorithm was developed and successfully tested and validated on many problem instances. The computational results showed that the new genetic algorithm outperforms another earlier proposed algorithm.
Keywords: Flow shop scheduling, maintenance, genetic algorithm, priority rules.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19222328 Effects of Ground Motion Characteristics on Damage of RC Buildings: A Detailed Investigation
Authors: M. Elassaly
Abstract:
Damage status of RC buildings is greatly influenced by the characteristics of the imposed ground motion. Peak Ground Acceleration and frequency contents are considered the main two factors that affect ground motion characteristics; hence, affecting the seismic response of RC structures and consequently their damage state. A detailed investigation on the combined effects of these two factors on damage assessment of RC buildings is carried out. Twenty one earthquake records are analyzed and arranged into three groups, according to their frequency contents. These records are used in an investigation to define the expected damage state that would be attained by RC buildings, if subjected to varying ground motion characteristics. The damage assessment is conducted through examining drift ratios and damage indices of the overall structure and the significant structural components of RC building. Base and story shear of RC building model, are also investigated, for cases when the model is subjected to the chosen twenty one earthquake records. Nonlinear dynamic analyses are performed on a 2-dimensional model of a 12-story RC building.Keywords: Damage, frequency content, ground motion, PGA, RC building, seismic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20962327 Comparison of Machine Learning Techniques for Single Imputation on Audiograms
Authors: Sarah Beaver, Renee Bryce
Abstract:
Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125 Hz to 8000 Hz. The data contain patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R2 values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R2 values for the best models for KNN ranges from .89 to .95. The best imputation models received R2 between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our imputation models versus constant imputations by a two percent increase.
Keywords: Machine Learning, audiograms, data imputations, single imputations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612326 A New Recognition Scheme for Machine- Printed Arabic Texts based on Neural Networks
Authors: Z. Shaaban
Abstract:
This paper presents a new approach to tackle the problem of recognizing machine-printed Arabic texts. Because of the difficulty of recognizing cursive Arabic words, the text has to be normalized and segmented to be ready for the recognition stage. The new scheme for recognizing Arabic characters depends on multiple parallel neural networks classifier. The classifier has two phases. The first phase categories the input character into one of eight groups. The second phase classifies the character into one of the Arabic character classes in the group. The system achieved high recognition rate.
Keywords: Neural Networks, character recognition, feature extraction, multiple networks, Arabic text.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14772325 Improved Computational Efficiency of Machine Learning Algorithms Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK
Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick
Abstract:
The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning (ML) archetypal that could forecast the COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID-19 cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organization (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data are split into 8:2 ratio for training and testing purposes to forecast future new COVID-19 cases. Support Vector Machine (SVM), Random Forest (RF), and linear regression (LR) algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID-19 cases is evaluated. RF outperformed the other two ML algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n = 30. The mean square error obtained for RF is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis, RF algorithm can perform more effectively and efficiently in predicting the new COVID-19 cases, which could help the health sector to take relevant control measures for the spread of the virus.
Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722324 Real-time Network Anomaly Detection Systems Based on Machine-Learning Algorithms
Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez
Abstract:
This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.
Keywords: Cyber-security, Intrusion Detection Systems, Temporal Graph Network, Anomaly Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5052323 Lean Production to Increase Reproducibility and Work Safety in the Laser Beam Melting Process Chain
Authors: C. Bay, A. Mahr, H. Groneberg, F. Döpper
Abstract:
Additive Manufacturing processes are becoming increasingly established in the industry for the economic production of complex prototypes and functional components. Laser beam melting (LBM), the most frequently used Additive Manufacturing technology for metal parts, has been gaining in industrial importance for several years. The LBM process chain – from material storage to machine set-up and component post-processing – requires many manual operations. These steps often depend on the manufactured component and are therefore not standardized. These operations are often not performed in a standardized manner, but depend on the experience of the machine operator, e.g., levelling of the build plate and adjusting the first powder layer in the LBM machine. This lack of standardization limits the reproducibility of the component quality. When processing metal powders with inhalable and alveolar particle fractions, the machine operator is at high risk due to the high reactivity and the toxic (e.g., carcinogenic) effect of the various metal powders. Faulty execution of the operation or unintentional omission of safety-relevant steps can impair the health of the machine operator. In this paper, all the steps of the LBM process chain are first analysed in terms of their influence on the two aforementioned challenges: reproducibility and work safety. Standardization to avoid errors increases the reproducibility of component quality as well as the adherence to and correct execution of safety-relevant operations. The corresponding lean method 5S will therefore be applied, in order to develop approaches in the form of recommended actions that standardize the work processes. These approaches will then be evaluated in terms of ease of implementation and their potential for improving reproducibility and work safety. The analysis and evaluation showed that sorting tools and spare parts as well as standardizing the workflow are likely to increase reproducibility. Organizing the operational steps and production environment decreases the hazards of material handling and consequently improves work safety.
Keywords: Additive manufacturing, lean production, reproducibility, work safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8462322 Characterization of Pure Nickel Coatings Fabricated under Pulse Current Conditions
Authors: M. Sajjadnejad, H. Omidvar, M. Javanbakht, A. Mozafari
Abstract:
Pure nickel coatings have been successfully electrodeposited on copper substrates by the pulse plating technique. The influence of current density, duty cycle and pulse frequency on the surface morphology, crystal orientation, and microhardness was determined. It was found that the crystallite size of the deposit increases with increasing current density and duty cycle. The crystal orientation progressively changed from a random texture at 1 A/dm2 to (200) texture at 10 A/dm2. Increasing pulse frequency resulted in increased texture coefficient and peak intensity of (111) reflection. An increase in duty cycle resulted in considerable increase in texture coefficient and peak intensity of (311) reflection. Coatings obtained at high current densities and duty cycle present a mixed morphology of small and large grains. Maximum microhardness of 193 Hv was achieved at 4 A/dm2, 10 Hz and duty cycle of 50%. Nickel coatings with (200) texture are ductile while (111) texture improves the microhardness of the coatings.Keywords: Current density, Duty cycle, Microstructure, Nickel, Pulse frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22462321 Crude Oil Price Prediction Using LSTM Networks
Authors: Varun Gupta, Ankit Pandey
Abstract:
Crude oil market is an immensely complex and dynamic environment and thus the task of predicting changes in such an environment becomes challenging with regards to its accuracy. A number of approaches have been adopted to take on that challenge and machine learning has been at the core in many of them. There are plenty of examples of algorithms based on machine learning yielding satisfactory results for such type of prediction. In this paper, we have tried to predict crude oil prices using Long Short-Term Memory (LSTM) based recurrent neural networks. We have tried to experiment with different types of models using different epochs, lookbacks and other tuning methods. The results obtained are promising and presented a reasonably accurate prediction for the price of crude oil in near future.
Keywords: Crude oil price prediction, deep learning, LSTM, recurrent neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37122320 Power Reduction by Automatic Monitoring and Control System in Active Mode
Authors: Somaye Abdollahi Pour, Mohsen Saneei
Abstract:
This paper describes a novel monitoring scheme to minimize total active power in digital circuits depend on the demand frequency, by adjusting automatically both supply voltage and threshold voltages based on circuit operating conditions such as temperature, process variations, and desirable frequency. The delay monitoring results, will be control and apply so as to be maintained at the minimum value at which the chip is able to operate for a given clock frequency. Design details of power monitor are examined using simulation framework in 32nm BTPM model CMOS process. Experimental results show the overhead of proposed circuit in terms of its power consumption is about 40 μW for 32nm technology; moreover the results show that our proposed circuit design is not far sensitive to the temperature variations and also process variations. Besides, uses the simple blocks which offer good sensitivity, high speed, the continuously feedback loop. This design provides up to 40% reduction in power consumption in active mode.Keywords: active mode, delay monitor, body biasing, VDD scaling, low power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18502319 Conditions for Fault Recovery of Interconnected Asynchronous Sequential Machines with State Feedback
Authors: Jung–Min Yang
Abstract:
In this paper, fault recovery for parallel interconnected asynchronous sequential machines is studied. An adversarial input can infiltrate into one of two submachines comprising parallel composition of the considered asynchronous sequential machine, causing an unauthorized state transition. The control objective is to elucidate the condition for the existence of a corrective controller that makes the closed-loop system immune against any occurrence of adversarial inputs. In particular, an efficient existence condition is presented that does not need the complete modeling of the interconnected asynchronous sequential machine.Keywords: Asynchronous sequential machines, parallel composition, corrective control, fault tolerance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8392318 Adaptive Distributed Genetic Algorithms and Its VLSI Design
Authors: Kazutaka Kobayashi, Norihiko Yoshida, Shuji Narazaki
Abstract:
This paper presents a dynamic adaptation scheme for the frequency of inter-deme migration in distributed genetic algorithms (GA), and its VLSI hardware design. Distributed GA, or multi-deme-based GA, uses multiple populations which evolve concurrently. The purpose of dynamic adaptation is to improve convergence performance so as to obtain better solutions. Through simulation experiments, we proved that our scheme achieves better performance than fixed frequency migration schemes.Keywords: Genetic algorithms, dynamic adaptation, VLSI hardware.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16692317 Double Clustering as an Unsupervised Approach for Order Picking of Distributed Warehouses
Authors: Hsin-Yi Huang, Ming-Sheng Liu, Jiun-Yan Shiau
Abstract:
Planning the order picking lists for warehouses to achieve some operational performances is a significant challenge when the costs associated with logistics are relatively high, and it is especially important in e-commerce era. Nowadays, many order planning techniques employ supervised machine learning algorithms. However, to define features for supervised machine learning algorithms is not a simple task. Against this background, we consider whether unsupervised algorithms can enhance the planning of order-picking lists. A double zone picking approach, which is based on using clustering algorithms twice, is developed. A simplified example is given to demonstrate the merit of our approach.
Keywords: order picking, warehouse, clustering, unsupervised learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5202316 Design and Manufacturing of a Propeller for Axial-Flow Fan
Authors: D. Almazo, M. Toledo, C. Rodríguez
Abstract:
This work presents a methodology for the design and manufacture of propellers oriented to the experimental verification of theoretical results based on the combined model. The design process begins by using algorithms in Matlab which output data contain the coordinates of the points that define the blade airfoils, in this case the NACA 6512 airfoil was used. The modeling for the propeller blade was made in NX7, through the imported files in Matlab and with the help of surfaces. Later, the hub and the clamps were also modeled. Finally, NX 7 also made possible to create post-processed files to the required machine. It is possible to find the block of numbers with G & M codes about the type of driver on the machine. The file extension is .ptp. These files made possible to manufacture the blade, and the hub of the propeller.Keywords: Airfoil, CAM, manufacturing, mathematical algorithm, numeric control, propeller design, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38712315 Fast Accurate Detection of Frequency Jumps Using Kalman Filter with Non Linear Improvements
Authors: Mahmoud E. Mohamed, Ahmed F. Shalash, Hanan A. Kamal
Abstract:
In communication systems, frequency jump is a serious problem caused by the oscillators used. Kalman filters are used to detect that jump, despite the tradeoff between the noise level and the speed of the detection. In this paper, an improvement is introduced in the Kalman filter, through a nonlinear change in the bandwidth of the filter. Simulation results show a considerable improvement in the filter speed with a very low noise level. Additionally, the effect on the response to false alarms is also presented and false alarm rate show improvement.
Keywords: Kalman Filter, Innovation, False Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226