Search results for: Root canal length
633 Regionalization of IDF Curves with L-Moments for Storm Events
Authors: Noratiqah Mohd Ariff, Abdul Aziz Jemain, Mohd Aftar Abu Bakar
Abstract:
The construction of Intensity-Duration-Frequency (IDF) curves is one of the most common and useful tools in order to design hydraulic structures and to provide a mathematical relationship between rainfall characteristics. IDF curves, especially those in Peninsular Malaysia, are often built using moving windows of rainfalls. However, these windows do not represent the actual rainfall events since the duration of rainfalls is usually prefixed. Hence, instead of using moving windows, this study aims to find regionalized distributions for IDF curves of extreme rainfalls based on storm events. Homogeneity test is performed on annual maximum of storm intensities to identify homogeneous regions of storms in Peninsular Malaysia. The L-moment method is then used to regionalized Generalized Extreme Value (GEV) distribution of these annual maximums and subsequently. IDF curves are constructed using the regional distributions. The differences between the IDF curves obtained and IDF curves found using at-site GEV distributions are observed through the computation of the coefficient of variation of root mean square error, mean percentage difference and the coefficient of determination. The small differences implied that the construction of IDF curves could be simplified by finding a general probability distribution of each region. This will also help in constructing IDF curves for sites with no rainfall station.
Keywords: IDF curves, L-moments, regionalization, storm events.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714632 Optical Signal-To-Noise Ratio Monitoring Based on Delay Tap Sampling Using Artificial Neural Network
Authors: Feng Wang, Shencheng Ni, Shuying Han, Shanhong You
Abstract:
With the development of optical communication, optical performance monitoring (OPM) has received more and more attentions. Since optical signal-to-noise ratio (OSNR) is directly related to bit error rate (BER), it is one of the important parameters in optical networks. Recently, artificial neural network (ANN) has been greatly developed. ANN has strong learning and generalization ability. In this paper, a method of OSNR monitoring based on delay-tap sampling (DTS) and ANN has been proposed. DTS technique is used to extract the eigenvalues of the signal. Then, the eigenvalues are input into the ANN to realize the OSNR monitoring. The experiments of 10 Gb/s non-return-to-zero (NRZ) on–off keying (OOK), 20 Gb/s pulse amplitude modulation (PAM4) and 20 Gb/s return-to-zero (RZ) differential phase-shift keying (DPSK) systems are demonstrated for the OSNR monitoring based on the proposed method. The experimental results show that the range of OSNR monitoring is from 15 to 30 dB and the root-mean-square errors (RMSEs) for 10 Gb/s NRZ-OOK, 20 Gb/s PAM4 and 20 Gb/s RZ-DPSK systems are 0.36 dB, 0.45 dB and 0.48 dB respectively. The impact of chromatic dispersion (CD) on the accuracy of OSNR monitoring is also investigated in the three experimental systems mentioned above.
Keywords: Artificial neural network, ANN, chromatic dispersion, delay-tap sampling, optical signal-to-noise ratio, OSNR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 712631 Mechanical Properties of Die-Cast Nonflammable Mg Alloy
Authors: Myoung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha
Abstract:
Tensile specimens of nonflammable AZ91D Mg alloy were fabricated in this study via cold chamber die-casting process. Dimensions of tensile specimens were 25mm in length, 4mm in width, and 0.8 or 3.0mm in thickness. Microstructure observation was conducted before and after tensile tests at room temperature. In the die casting process, various injection distances from 150 to 260mm were employed to obtain optimum process conditions. Distribution of Al12Mg17 phase was the key factor to determine the mechanical properties of die-cast Mg alloy. Specimens with 3mm of thickness showed superior mechanical properties to those with 0.8mm of thickness. Closed networking of Al12Mg17 phase along grain boundary was found to be detrimental to mechanical properties of die-cast Mg alloy.
Keywords: Non-flammable magnesium alloy, AZ91D, die-casting, microstructure, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2567630 Design of Permanent Sensor Fault Tolerance Algorithms by Sliding Mode Observer for Smart Hybrid Powerpack
Authors: Sungsik Jo, Hyeonwoo Kim, Iksu Choi, Hunmo Kim
Abstract:
In the SHP, LVDT sensor is for detecting the length changes of the EHA output, and the thrust of the EHA is controlled by the pressure sensor. Sensor is possible to cause hardware fault by internal problem or external disturbance. The EHA of SHP is able to be uncontrollable due to control by feedback from uncertain information, on this paper; the sliding mode observer algorithm estimates the original sensor output information in permanent sensor fault. The proposed algorithm shows performance to recovery fault of disconnection and short circuit basically, also the algorithm detect various of sensor fault mode.Keywords: Smart Hybrid Powerpack (SHP), Electro Hydraulic Actuator (EHA), Permanent Sensor fault tolerance, Sliding mode observer (SMO), Graphic User Interface (GUI).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491629 Vegetation Index-Deduced Crop Coefficient of Wheat (Triticum aestivum) Using Remote Sensing: Case Study on Four Basins of Golestan Province, Iran
Authors: Hoda Zolfagharnejad, Behnam Kamkar, Omid Abdi
Abstract:
Crop coefficient (Kc) is an important factor contributing to estimation of evapotranspiration, and is also used to determine the irrigation schedule. This study investigated and determined the monthly Kc of winter wheat (Triticum aestivum L.) using five vegetation indices (VIs): Normalized Difference Vegetation Index (NDVI), Difference Vegetation Index (DVI), Soil Adjusted Vegetation Index (SAVI), Infrared Percentage Vegetation Index (IPVI), and Ratio Vegetation Index (RVI) of four basins in Golestan province, Iran. 14 Landsat-8 images according to crop growth stage were used to estimate monthly Kc of wheat. VIs were calculated based on infrared and near infrared bands of Landsat 8 images using Geographical Information System (GIS) software. The best VIs were chosen after establishing a regression relationship among these VIs with FAO Kc and Kc that was modified for the study area by the previous research based on R² and Root Mean Square Error (RMSE). The result showed that local modified SAVI with R²= 0.767 and RMSE= 0.174 was the best index to produce monthly wheat Kc maps.
Keywords: Crop coefficient, remote sensing, vegetation indices, wheat.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 951628 The Anti-Noise and Anti-Wear Systems for Railways
Authors: Brigita Altenbaher
Abstract:
In recent years there has been a continuous increase of axle loads, tonnage, train speed and train length which has increased both the productivity in the rail sector and the risk of rail breaks and derailments. On the other hand, the environmental requirements (e.g. noise reduction) for railway operations will become tighter in the future. In our research we developed a new composite material which does not change braking properties, is capable of taking extremely high pressure loads, reduces noise and is environmentally friendly. Part of our research was also the development of technology which will be able to apply this material to the rail. The result of our research was the system which reduces the wear out significantly and almost completely eliminates the squealing noise at the same time, and by using only one special material.Keywords: Active protection, composite material, lubrication, noise reduction, reduction at source, railway.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2252627 The Hardware Implementation of a Novel Genetic Algorithm
Authors: Zhenhuan Zhu, David Mulvaney, Vassilios Chouliaras
Abstract:
This paper presents a novel genetic algorithm, termed the Optimum Individual Monogenetic Algorithm (OIMGA) and describes its hardware implementation. As the monogenetic strategy retains only the optimum individual, the memory requirement is dramatically reduced and no crossover circuitry is needed, thereby ensuring the requisite silicon area is kept to a minimum. Consequently, depending on application requirements, OIMGA allows the investigation of solutions that warrant either larger GA populations or individuals of greater length. The results given in this paper demonstrate that both the performance of OIMGA and its convergence time are superior to those of existing hardware GA implementations. Local convergence is achieved in OIMGA by retaining elite individuals, while population diversity is ensured by continually searching for the best individuals in fresh regions of the search space.Keywords: Genetic algorithms, hardware-based machinelearning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640626 Bifurcation Analysis of a Delayed Predator-prey Fishery Model with Prey Reserve in Frequency Domain
Authors: Changjin Xu
Abstract:
In this paper, applying frequency domain approach, a delayed predator-prey fishery model with prey reserve is investigated. By choosing the delay τ as a bifurcation parameter, It is found that Hopf bifurcation occurs as the bifurcation parameter τ passes a sequence of critical values. That is, a family of periodic solutions bifurcate from the equilibrium when the bifurcation parameter exceeds a critical value. The length of delay which preserves the stability of the positive equilibrium is calculated. Some numerical simulations are included to justify the theoretical analysis results. Finally, main conclusions are given.
Keywords: Predator-prey model, stability, Hopf bifurcation, frequency domain, Nyquist criterion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404625 Predicting the Impact of the Defect on the Overall Environment in Function Based Systems
Authors: Parvinder S. Sandhu, Urvashi Malhotra, E. Ardil
Abstract:
There is lot of work done in prediction of the fault proneness of the software systems. But, it is the severity of the faults that is more important than number of faults existing in the developed system as the major faults matters most for a developer and those major faults needs immediate attention. In this paper, we tried to predict the level of impact of the existing faults in software systems. Neuro-Fuzzy based predictor models is applied NASA-s public domain defect dataset coded in C programming language. As Correlation-based Feature Selection (CFS) evaluates the worth of a subset of attributes by considering the individual predictive ability of each feature along with the degree of redundancy between them. So, CFS is used for the selecting the best metrics that have highly correlated with level of severity of faults. The results are compared with the prediction results of Logistic Models (LMT) that was earlier quoted as the best technique in [17]. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results show that Neuro-fuzzy based model provide a relatively better prediction accuracy as compared to other models and hence, can be used for the modeling of the level of impact of faults in function based systems.Keywords: Software Metrics, Fuzzy, Neuro-Fuzzy, Software Faults, Accuracy, MAE, RMSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1356624 Comparison of Machine Learning Techniques for Single Imputation on Audiograms
Authors: Sarah Beaver, Renee Bryce
Abstract:
Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125 Hz to 8000 Hz. The data contain patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R2 values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R2 values for the best models for KNN ranges from .89 to .95. The best imputation models received R2 between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our imputation models versus constant imputations by a two percent increase.
Keywords: Machine Learning, audiograms, data imputations, single imputations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 160623 Temperature Distribution Enhancement in a Conical Diffuser Fitted with Helical Screw-Tape with and without Center-Rod
Authors: Ehan Sabah Shukri, Wirachman Wisnoe
Abstract:
Temperature distribution investigation in a conical diffuser fitted with helical screw-tape with and without center-rod is studied numerically. A helical screw-tape is inserted in the diffuser to create swirl flow that helps to enhance the temperature distribution rate with inlet Reynolds number 4.3 x 104. Three pitch lengths ratios (Y/L = 0.153, 0.23 and 0.307) for the helical screw-tape with and without center-rod are simulated and compared. The geometry of the conical diffuser and the inlet condition for both arrangements are kept constant. Numerical findings show that the helical screw-tape inserts without center-rod perform significantly better than the helical tape inserts with center-rod in the conical diffuser.Keywords: Diffuser, temperature distribution, CFD, pitch length ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680622 Sustainable Control of Taro Beetles via Scoliid Wasps and Metarhizium anisopliae
Authors: F. O. Faithpraise, J. Idung, C. R. Chatwin, R. C. D. Young, P. Birch, H. Lu
Abstract:
Taro Scarab beetles (Papuana uninodis, Coleoptera: Scarabaeidae) inflict severe damage on important root crops and plants such as Taro or Cocoyam, yam, sweet potatoes, oil palm and coffee tea plants across Africa and Asia resulting in economic hardship and starvation in some nations. Scoliid wasps and Metarhizium anisopliae fungus - bio-control agents; are shown to be able to control the population of Scarab beetle adults and larvae using a newly created simulation model based on non-linear ordinary differential equations that track the populations of the beetle life cycle stages: egg, larva, pupa, adult and the population of the scoliid parasitoid wasps, which attack beetle larvae. In spite of the challenge driven by the longevity of the scarab beetles, the combined effect of the larval wasps and the fungal bio-control agent is able to control and drive down the population of both the adult and the beetle eggs below the environmental carrying capacity within an interval of 120 days, offering the long term prospect of a stable and eco-friendly environment; where the population of scarab beetles is: regulated by parasitoid wasps and beneficial soil saprophytes.
Keywords: Metarhizium anisopliae, Scoliid wasps, Sustainable control, Taro beetles, parasitoids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289621 An Agent Based Dynamic Resource Scheduling Model with FCFS-Job Grouping Strategy in Grid Computing
Authors: Raksha Sharma, Vishnu Kant Soni, Manoj Kumar Mishra, Prachet Bhuyan, Utpal Chandra Dey
Abstract:
Grid computing is a group of clusters connected over high-speed networks that involves coordinating and sharing computational power, data storage and network resources operating across dynamic and geographically dispersed locations. Resource management and job scheduling are critical tasks in grid computing. Resource selection becomes challenging due to heterogeneity and dynamic availability of resources. Job scheduling is a NP-complete problem and different heuristics may be used to reach an optimal or near optimal solution. This paper proposes a model for resource and job scheduling in dynamic grid environment. The main focus is to maximize the resource utilization and minimize processing time of jobs. Grid resource selection strategy is based on Max Heap Tree (MHT) that best suits for large scale application and root node of MHT is selected for job submission. Job grouping concept is used to maximize resource utilization for scheduling of jobs in grid computing. Proposed resource selection model and job grouping concept are used to enhance scalability, robustness, efficiency and load balancing ability of the grid.Keywords: Agent, Grid Computing, Job Grouping, Max Heap Tree (MHT), Resource Scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090620 An Assessment of the Hip Muscular Imbalance for Patients with Rheumatism
Authors: Anthony Bawa, Konstantinos Banitsas
Abstract:
Rheumatism is a muscular disorder that affects the muscles of the upper and lower limbs. This condition could potentially progress to impair the movement of patients. This study aims to investigate the hip muscular imbalance in patients with chronic rheumatism. A clinical trial involving a total of 15 participants, made up of 10 patients and five control subjects, took place in KATH Hospital between August and September. Participants recruited for the study were of age 54 ± 8 years, weight 65 ± 8 kg, and height 176 ± 8 cm. Muscle signals were recorded from the rectus femoris, and vastus lateralis on the right and left hip of participants. The parameters used in determining the hip muscular imbalances were the maximum voluntary contraction (MVC%), the mean difference, and hip muscle fatigue levels. The mean signals were compared using a t-test, and the metrics for muscle fatigue assessment were based on the root mean square (RMS), mean absolute value (MAV) and mean frequency (MEF), which were computed between the hip muscles of participants. The results indicated that there were significant imbalances in the muscle coactivity between the right and left hip muscles of patients. The patients’ MVC values were observed to be above 10% when compared with control subjects. Furthermore, the mean difference was seen to be higher with p > 0.002 among patients, which indicated clear differences in the hip muscle contraction activities. The findings indicate significant hip muscular imbalances for patients with rheumatism compared with control subjects. Information about the imbalances among patients will be useful for clinicians in designing therapeutic muscle-strengthening exercises.
Keywords: Muscular, imbalances, rheumatism, hip.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163619 Surface Flattening based on Linear-Elastic Finite Element Method
Authors: Wen-liang Chen, Peng Wei, Yidong Bao
Abstract:
This paper presents a linear-elastic finite element method based flattening algorithm for three dimensional triangular surfaces. First, an intrinsic characteristic preserving method is used to obtain the initial developing graph, which preserves the angles and length ratios between two adjacent edges. Then, an iterative equation is established based on linear-elastic finite element method and the flattening result with an equilibrium state of internal force is obtained by solving this iterative equation. The results show that complex surfaces can be dealt with this proposed method, which is an efficient tool for the applications in computer aided design, such as mould design.
Keywords: Triangular mesh, surface flattening, finite elementmethod, linear-elastic deformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3163618 A Numerical Modeling of Piping Phenomenon in Earth Dams
Authors: N. Zaki Alamdari, M. Banihashemi, A. Mirghasemi
Abstract:
To estimate the risks of dam failure phenomenon, it is necessary to understand this phenomenon and the involved governing factors. Overtopping and piping are the two main reasons of earthdam failures. In the piping context, the piping is determined as a phenomenon which is occurred between two phases, the water liquid and the solid soil. In this investigation, the onset of piping and its development, as well as the movement of water in soil, are numerically approached. In this regard, a one-dimensional numerical model based on the mass-conserving finite-volume method is developed and applied in order to simulate the piping phenomenon in a continuous circular tunnel of given initial length and radius, located between upstream and downstream. The simulation result includes the time-variations of radius along the tunnel until the radius value reaches its critical and the piping phenomenon converts to overtopping.
Keywords: Earth dam, dam break, piping, internal erosion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2779617 Modeling Oxygen-transfer by Multiple Plunging Jets using Support Vector Machines and Gaussian Process Regression Techniques
Authors: Surinder Deswal
Abstract:
The paper investigates the potential of support vector machines and Gaussian process based regression approaches to model the oxygen–transfer capacity from experimental data of multiple plunging jets oxygenation systems. The results suggest the utility of both the modeling techniques in the prediction of the overall volumetric oxygen transfer coefficient (KLa) from operational parameters of multiple plunging jets oxygenation system. The correlation coefficient root mean square error and coefficient of determination values of 0.971, 0.002 and 0.945 respectively were achieved by support vector machine in comparison to values of 0.960, 0.002 and 0.920 respectively achieved by Gaussian process regression. Further, the performances of both these regression approaches in predicting the overall volumetric oxygen transfer coefficient was compared with the empirical relationship for multiple plunging jets. A comparison of results suggests that support vector machines approach works well in comparison to both empirical relationship and Gaussian process approaches, and could successfully be employed in modeling oxygen-transfer.Keywords: Oxygen-transfer, multiple plunging jets, support vector machines, Gaussian process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639616 Low-Cost Inertial Sensors Modeling Using Allan Variance
Authors: A. A. Hussen, I. N. Jleta
Abstract:
Micro-electromechanical system (MEMS) accelerometers and gyroscopes are suitable for the inertial navigation system (INS) of many applications due to low price, small dimensions and light weight. The main disadvantage in a comparison with classic sensors is a worse long term stability. The estimation accuracy is mostly affected by the time-dependent growth of inertial sensor errors, especially the stochastic errors. In order to eliminate negative effects of these random errors, they must be accurately modeled. In this paper, the Allan variance technique will be used in modeling the stochastic errors of the inertial sensors. By performing a simple operation on the entire length of data, a characteristic curve is obtained whose inspection provides a systematic characterization of various random errors contained in the inertial-sensor output data.Keywords: Allan variance, accelerometer, gyroscope, stochastic errors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5277615 Asymmetric Tukey’s Control Chart Robust to Skew and Non-Skew Process Observation
Authors: S. Sukparungsee
Abstract:
In reality, the process observations are away from the assumption that are normal distributed. The observations could be skew distributions which should use an asymmetric chart rather than symmetric chart. Consequently, this research aim to study the robustness of the asymmetric Tukey’s control chart for skew and non-skew distributions as Lognormal and Laplace distributions. Furthermore, the performances in detecting of a change in parameter of asymmetric and symmetric Tukey’s control charts are compared by Average ARL (AARL). The results found that the asymmetric performs better than symmetric Tukey’s control chart for both cases of skew and non-skew process observation.
Keywords: Asymmetric control limit, average of average run length, Tukey’s control chart and skew distributions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2489614 Design and Implementation of Real-Time Automatic Censoring System on Chip for Radar Detection
Authors: Imron Rosyadi, Ridha A. Djemal, Saleh A. Alshebeili
Abstract:
Design and implementation of a novel B-ACOSD CFAR algorithm is presented in this paper. It is proposed for detecting radar target in log-normal distribution environment. The BACOSD detector is capable to detect automatically the number interference target in the reference cells and detect the real target by an adaptive threshold. The detector is implemented as a System on Chip on FPGA Altera Stratix II using parallelism and pipelining technique. For a reference window of length 16 cells, the experimental results showed that the processor works properly with a processing speed up to 115.13MHz and processing time0.29 ┬Ás, thus meets real-time requirement for a typical radar system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3112613 Optimization of Electrospinning Parameter by Employing Genetic Algorithm in order to Produce Desired Nanofiber Diameter
Authors: S. Saehana, F. Iskandar, M. Abdullah, Khairurrijal
Abstract:
A numerical simulation of optimization all of electrospinning processing parameters to obtain smallest nanofiber diameter have been performed by employing genetic algorithm (GA). Fitness function in genetic algorithm methods, which was different for each parameter, was determined by simulation approach based on the Reneker’s model. Moreover, others genetic algorithm parameter, namely length of population, crossover and mutation were applied to get the optimum electrospinning processing parameters. In addition, minimum fiber diameter, 32 nm, was achieved from a simulation by applied the optimum parameters of electrospinning. This finding may be useful for process control and prediction of electrospun fiber production. In this paper, it is also compared between predicted parameters with some experimental results.
Keywords: Diameter, Electrospinning, GA, Nanofiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2955612 Conceptual Design of an Airfoil with Temperature-Responsive Polymer
Authors: Mohammed Niyasdeen Nejaamtheen
Abstract:
The accelerated growth in aircraft industries desire effectual schemes, programs, innovative designs of advanced systems and facilities to accomplish the augmenting need for home-free air transportation. In this paper, a contemporary conceptual design of a cambered airfoil has been proposed in order to providing augmented effective lift force relative to the airplane, and to eliminating drawbacks and limitations of an airfoil in a commercial airplane by using a kind of smart materials. This invention of an unsymmetrical airfoil structure utilizes the amplified air momentum around the airfoil and increased camber length to providing improved aircraft performance and assist to enhancing the reliability of the aircraft components. Moreover, this conjectured design helps to reducing airplane weight and total drag.
Keywords: Collector electrode, corona electrode, Temperatureresponsive polymer and ultra-faims microchip.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124611 Reversible Watermarking for H.264/AVC Videos
Authors: Yih-Chuan Lin, Jung-Hong Li
Abstract:
In this paper, we propose a reversible watermarking scheme based on histogram shifting (HS) to embed watermark bits into the H.264/AVC standard videos by modifying the last nonzero level in the context adaptive variable length coding (CAVLC) domain. The proposed method collects all of the last nonzero coefficients (or called last level coefficient) of 4×4 sub-macro blocks in a macro block and utilizes predictions for the current last level from the neighbor block-s last levels to embed watermark bits. The feature of the proposed method is low computational and has the ability of reversible recovery. The experimental results have demonstrated that our proposed scheme has acceptable degradation on video quality and output bit-rate for most test videos.Keywords: Reversible data hiding, H.264/AVC standard, CAVLC, Histogram shifting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031610 Model of the Increasing the Capacity of the Train and Railway Track by Using the New Type of Wagon
Authors: Martin Kendra, Jaroslav Mašek, Juraj Čamaj, Martin Búda
Abstract:
The paper deals with possibilities of increase train capacity by using a new type of railway wagon. In the first part is created a mathematical model to calculate the capacity of the train. The model is based on the main limiting parameters of the train - maximum number of axles per train, maximum gross weight of train, maximum length of train and number of TEUs per one wagon. In the second part is the model applied to four different model trains with different composition of the train set and three different average weights of TEU and a train consisting of a new type of wagons. The result is to identify where the carrying capacity of the original trains is higher, respectively less than a capacity of train consisting of a new type of wagons.Keywords: Loading units, theoretical capacity model, train capacity, wagon for intermodal transport.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2407609 Despeckling of Synthetic Aperture Radar Images Using Inner Product Spaces in Undecimated Wavelet Domain
Authors: Syed Musharaf Ali, Muhammad Younus Javed, Naveed Sarfraz Khattak, Athar Mohsin, UmarFarooq
Abstract:
This paper introduces the effective speckle reduction of synthetic aperture radar (SAR) images using inner product spaces in undecimated wavelet domain. There are two major areas in projection onto span algorithm where improvement can be made. First is the use of undecimated wavelet transformation instead of discrete wavelet transformation. And second area is the use of smoothing filter namely directional smoothing filter which is an additional step. Proposed method does not need any noise estimation and thresholding technique. More over proposed method gives good results on both single polarimetric and fully polarimetric SAR images.Keywords: Directional Smoothing, Inner product, Length ofvector, Undecimated wavelet transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611608 An Alternative Method for Generating Almost Infinite Sequence of Gaussian Variables
Authors: Nyah C. Temaneh, F. A. Phiri, E. Ruhunga
Abstract:
Most of the well known methods for generating Gaussian variables require at least one standard uniform distributed value, for each Gaussian variable generated. The length of the random number generator therefore, limits the number of independent Gaussian distributed variables that can be generated meanwhile the statistical solution of complex systems requires a large number of random numbers for their statistical analysis. We propose an alternative simple method of generating almost infinite number of Gaussian distributed variables using a limited number of standard uniform distributed random numbers.Keywords: Gaussian variable, statistical analysis, simulation ofCommunication Network, Random numbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472607 Application of Extreme Learning Machine Method for Time Series Analysis
Authors: Rampal Singh, S. Balasundaram
Abstract:
In this paper, we study the application of Extreme Learning Machine (ELM) algorithm for single layered feedforward neural networks to non-linear chaotic time series problems. In this algorithm the input weights and the hidden layer bias are randomly chosen. The ELM formulation leads to solving a system of linear equations in terms of the unknown weights connecting the hidden layer to the output layer. The solution of this general system of linear equations will be obtained using Moore-Penrose generalized pseudo inverse. For the study of the application of the method we consider the time series generated by the Mackey Glass delay differential equation with different time delays, Santa Fe A and UCR heart beat rate ECG time series. For the choice of sigmoid, sin and hardlim activation functions the optimal values for the memory order and the number of hidden neurons which give the best prediction performance in terms of root mean square error are determined. It is observed that the results obtained are in close agreement with the exact solution of the problems considered which clearly shows that ELM is a very promising alternative method for time series prediction.Keywords: Chaotic time series, Extreme learning machine, Generalization performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3519606 Forecasting 24-Hour Ahead Electricity Load Using Time Series Models
Authors: Ramin Vafadary, Maryam Khanbaghi
Abstract:
Forecasting electricity load is important for various purposes like planning, operation and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria namely, the Mean Absolute Error and Root Mean Square Error. The National Renewable Energy Laboratory (NREL) residential energy consumption data are used to train the models. The results of this study show that SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts we can improve the robustness of the models for 24 hour ahead electricity load forecasting.
Keywords: Bagging, Fbprophet, Holt-Winters, LSTM, Load Forecast, SARIMA, tensorflow probability, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 483605 Natural and Mixed Convection Heat Transfer Cooling of Discrete Heat Sources Placed Near the Bottom on a PCB
Authors: Tapano Kumar Hotta, S P Venkateshan
Abstract:
Steady state experiments have been conducted for natural and mixed convection heat transfer, from five different sized protruding discrete heat sources, placed at the bottom position on a PCB and mounted on a vertical channel. The characteristic length ( Lh ) of heat sources vary from 0.005 to 0.011 m. The study has been done for different range of Reynolds number and modified Grashof number. From the experiment, the surface temperature distribution and the Nusselt number of discrete heat sources have been obtained and the effects of Reynold number and Richardson number on them have been discussed. The objective is to find the rate of heat dissipation from heat sources, by placing them at the bottom position on a PCB and to compare both modes of cooling of heat sources.Keywords: Discrete heat source, mixed convection, natural convection, vertical channel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062604 Energy Density Increasing in the Channel of Super-High Pressure Megaampere Discharge due to Resonance of Different Type Oscillations of the Channel
Authors: Ph. G. Rutberg, A. V. Budin, M. E. Pinchuk, A. A. Bogomaz, A. G. Leks, S. Yu. Losev, andA. A. Pozubenkov
Abstract:
Discharges in hydrogen, ignited by wire explosion, with current amplitude up to 1.5 MA were investigated. Channel diameter oscillations were observed on the photostreaks. Voltage and current curves correlated with the photostreaks. At initial gas pressure of 5-35 MPa the oscillation period was proportional to square root of atomic number of the initiating wire material. These oscillations were associated with aligned magnetic and gas-kinetic pressures. At initial pressure of 80-160 MPa acoustic pressure fluctuations on the discharge chamber wall were increased up to 150 MPa and there were the growth of voltage fluctuations on the discharge gap up to 3 kV simultaneously with it. In some experiments it was observed abrupt increase in the oscillation amplitude, which can be caused by the resonance of the acoustic oscillations in discharge chamber volume and the oscillations connected with alignment of the gaskinetic pressure and the magnetic pressure, as far as frequencies of these oscillations are close to each other in accordance with the estimates and the experimental data. Resonance of different type oscillations can produce energy density increasing in the discharge channel. Thus, the appropriate initial conditions in the experiment allow to increase the energy density in the discharge channel
Keywords: High-current gas discharges, high pressure hydrogen, discharge channel oscillations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441