Search results for: Unsupervised Classification.
549 Inverse Sets-based Recognition of Video Clips
Authors: Alexei M. Mikhailov
Abstract:
The paper discusses the mathematics of pattern indexing and its applications to recognition of visual patterns that are found in video clips. It is shown that (a) pattern indexes can be represented by collections of inverted patterns, (b) solutions to pattern classification problems can be found as intersections and histograms of inverted patterns and, thus, matching of original patterns avoided.Keywords: Artificial neural cortex, computational biology, data mining, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115548 CBIR Using Multi-Resolution Transform for Brain Tumour Detection and Stages Identification
Authors: H. Benjamin Fredrick David, R. Balasubramanian, A. Anbarasa Pandian
Abstract:
Image retrieval is the most interesting technique which is being used today in our digital world. CBIR, commonly expanded as Content Based Image Retrieval is an image processing technique which identifies the relevant images and retrieves them based on the patterns that are extracted from the digital images. In this paper, two research works have been presented using CBIR. The first work provides an automated and interactive approach to the analysis of CBIR techniques. CBIR works on the principle of supervised machine learning which involves feature selection followed by training and testing phase applied on a classifier in order to perform prediction. By using feature extraction, the image transforms such as Contourlet, Ridgelet and Shearlet could be utilized to retrieve the texture features from the images. The features extracted are used to train and build a classifier using the classification algorithms such as Naïve Bayes, K-Nearest Neighbour and Multi-class Support Vector Machine. Further the testing phase involves prediction which predicts the new input image using the trained classifier and label them from one of the four classes namely 1- Normal brain, 2- Benign tumour, 3- Malignant tumour and 4- Severe tumour. The second research work includes developing a tool which is used for tumour stage identification using the best feature extraction and classifier identified from the first work. Finally, the tool will be used to predict tumour stage and provide suggestions based on the stage of tumour identified by the system. This paper presents these two approaches which is a contribution to the medical field for giving better retrieval performance and for tumour stages identification.
Keywords: Brain tumour detection, content based image retrieval, classification of tumours, image retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774547 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration
Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith
Abstract:
Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.Keywords: Multimodal image registration, GAN, cycle consistency, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810546 A Bayesian Classification System for Facilitating an Institutional Risk Profile Definition
Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan
Abstract:
This paper presents an approach for easy creation and classification of institutional risk profiles supporting endangerment analysis of file formats. The main contribution of this work is the employment of data mining techniques to support set up of the most important risk factors. Subsequently, risk profiles employ risk factors classifier and associated configurations to support digital preservation experts with a semi-automatic estimation of endangerment group for file format risk profiles. Our goal is to make use of an expert knowledge base, accuired through a digital preservation survey in order to detect preservation risks for a particular institution. Another contribution is support for visualisation of risk factors for a requried dimension for analysis. Using the naive Bayes method, the decision support system recommends to an expert the matching risk profile group for the previously selected institutional risk profile. The proposed methods improve the visibility of risk factor values and the quality of a digital preservation process. The presented approach is designed to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and values of file format risk profiles. To facilitate decision-making, the aggregated information about the risk factors is presented as a multidimensional vector. The goal is to visualise particular dimensions of this vector for analysis by an expert and to define its profile group. The sample risk profile calculation and the visualisation of some risk factor dimensions is presented in the evaluation section.Keywords: linked open data, information integration, digital libraries, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 730545 Seismic Performance of Masonry Buildings in Algeria
Authors: F. Lazzali, S. Bedaoui
Abstract:
Structural performance and seismic vulnerability of masonry buildings in Algeria are investigated in this paper. Structural classification of such buildings is carried out regarding their structural elements. Seismicity of Algeria is briefly discussed. Then vulnerability of masonry buildings and their failure mechanisms in the Boumerdes earthquake (May, 2003) are examined.Keywords: Masonry building, seismic deficiencies, vulnerability classes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2363544 Data Oriented Model of Image: as a Framework for Image Processing
Authors: A. Habibizad Navin, A. Sadighi, M. Naghian Fesharaki, M. Mirnia, M. Teshnelab, R. Keshmiri
Abstract:
This paper presents a new data oriented model of image. Then a representation of it, ADBT, is introduced. The ability of ADBT is clustering, segmentation, measuring similarity of images etc, with desired precision and corresponding speed.
Keywords: Data oriented modelling, image, clustering, segmentation, classification, ADBT and image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799543 Using Data Clustering in Oral Medicine
Authors: Fahad Shahbaz Khan, Rao Muhammad Anwer, Olof Torgersson
Abstract:
The vast amount of information hidden in huge databases has created tremendous interests in the field of data mining. This paper examines the possibility of using data clustering techniques in oral medicine to identify functional relationships between different attributes and classification of similar patient examinations. Commonly used data clustering algorithms have been reviewed and as a result several interesting results have been gathered.Keywords: Oral Medicine, Cluto, Data Clustering, Data Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977542 Decision Algorithm for Smart Airbag Deployment Safety Issues
Authors: Aini Hussain, M A Hannan, Azah Mohamed, Hilmi Sanusi, Burhanuddin Yeop Majlis
Abstract:
Airbag deployment has been known to be responsible for huge death, incidental injuries and broken bones due to low crash severity and wrong deployment decisions. Therefore, the authorities and industries have been looking for more innovative and intelligent products to be realized for future enhancements in the vehicle safety systems (VSSs). Although the VSSs technologies have advanced considerably, they still face challenges such as how to avoid unnecessary and untimely airbag deployments that can be hazardous and fatal. Currently, most of the existing airbag systems deploy without regard to occupant size and position. As such, this paper will focus on the occupant and crash sensing performances due to frontal collisions for the new breed of so called smart airbag systems. It intends to provide a thorough discussion relating to the occupancy detection, occupant size classification, occupant off-position detection to determine safe distance zone for airbag deployment, crash-severity analysis and airbag decision algorithms via a computer modeling. The proposed system model consists of three main modules namely, occupant sensing, crash severity analysis and decision fusion. The occupant sensing system module utilizes the weight sensor to determine occupancy, classify the occupant size, and determine occupant off-position condition to compute safe distance for airbag deployment. The crash severity analysis module is used to generate relevant information pertinent to airbag deployment decision. Outputs from these two modules are fused to the decision module for correct and efficient airbag deployment action. Computer modeling work is carried out using Simulink, Stateflow, SimMechanics and Virtual Reality toolboxes.Keywords: Crash severity analysis, occupant size classification, smart airbag, vehicle safety system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4117541 Identification of Flexographic-printed Newspapers with NIR Spectral Imaging
Authors: Raimund Leitner, Susanne Rosskopf
Abstract:
Near-infrared (NIR) spectroscopy is a widely used method for material identification for laboratory and industrial applications. While standard spectrometers only allow measurements at one sampling point at a time, NIR Spectral Imaging techniques can measure, in real-time, both the size and shape of an object as well as identify the material the object is made of. The online classification and sorting of recovered paper with NIR Spectral Imaging (SI) is used with success in the paper recycling industry throughout Europe. Recently, the globalisation of the recycling material streams caused that water-based flexographic-printed newspapers mainly from UK and Italy appear also in central Europe. These flexo-printed newspapers are not sufficiently de-inkable with the standard de-inking process originally developed for offset-printed paper. This de-inking process removes the ink from recovered paper and is the fundamental processing step to produce high-quality paper from recovered paper. Thus, the flexo-printed newspapers are a growing problem for the recycling industry as they reduce the quality of the produced paper if their amount exceeds a certain limit within the recovered paper material. This paper presents the results of a research project for the development of an automated entry inspection system for recovered paper that was jointly conducted by CTR AG (Austria) and PTS Papiertechnische Stiftung (Germany). Within the project an NIR SI prototype for the identification of flexo-printed newspaper has been developed. The prototype can identify and sort out flexoprinted newspapers in real-time and achieves a detection accuracy for flexo-printed newspaper of over 95%. NIR SI, the technology the prototype is based on, allows the development of inspection systems for incoming goods in a paper production facility as well as industrial sorting systems for recovered paper in the recycling industry in the near future.Keywords: spectral imaging, imaging spectroscopy, NIR, waterbasedflexographic, flexo-printed, recovered paper, real-time classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545540 Ant Colony Optimization for Feature Subset Selection
Authors: Ahmed Al-Ani
Abstract:
The Ant Colony Optimization (ACO) is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It has recently attracted a lot of attention and has been successfully applied to a number of different optimization problems. Due to the importance of the feature selection problem and the potential of ACO, this paper presents a novel method that utilizes the ACO algorithm to implement a feature subset search procedure. Initial results obtained using the classification of speech segments are very promising.Keywords: Ant Colony Optimization, ant systems, feature selection, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3143539 Text Mining Technique for Data Mining Application
Authors: M. Govindarajan
Abstract:
Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In decision tree approach is most useful in classification problem. With this technique, tree is constructed to model the classification process. There are two basic steps in the technique: building the tree and applying the tree to the database. This paper describes a proposed C5.0 classifier that performs rulesets, cross validation and boosting for original C5.0 in order to reduce the optimization of error ratio. The feasibility and the benefits of the proposed approach are demonstrated by means of medial data set like hypothyroid. It is shown that, the performance of a classifier on the training cases from which it was constructed gives a poor estimate by sampling or using a separate test file, either way, the classifier is evaluated on cases that were not used to build and evaluate the classifier are both are large. If the cases in hypothyroid.data and hypothyroid.test were to be shuffled and divided into a new 2772 case training set and a 1000 case test set, C5.0 might construct a different classifier with a lower or higher error rate on the test cases. An important feature of see5 is its ability to classifiers called rulesets. The ruleset has an error rate 0.5 % on the test cases. The standard errors of the means provide an estimate of the variability of results. One way to get a more reliable estimate of predictive is by f-fold –cross- validation. The error rate of a classifier produced from all the cases is estimated as the ratio of the total number of errors on the hold-out cases to the total number of cases. The Boost option with x trials instructs See5 to construct up to x classifiers in this manner. Trials over numerous datasets, large and small, show that on average 10-classifier boosting reduces the error rate for test cases by about 25%.Keywords: C5.0, Error Ratio, text mining, training data, test data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2489538 Products in Early Development Phases: Ecological Classification and Evaluation Using an Interval Arithmetic Based Calculation Approach
Authors: Helen L. Hein, Joachim Schwarte
Abstract:
As a pillar of sustainable development, ecology has become an important milestone in research community, especially due to global challenges like climate change. The ecological performance of products can be scientifically conducted with life cycle assessments. In the construction sector, significant amounts of CO2 emissions are assigned to the energy used for building heating purposes. Therefore, sustainable construction materials for insulating purposes are substantial, whereby aerogels have been explored intensively in the last years due to their low thermal conductivity. Therefore, the WALL-ACE project aims to develop an aerogel-based thermal insulating plaster that would achieve minor thermal conductivities. But as in the early stage of development phases, a lot of information is still missing or not yet accessible, the ecological performance of innovative products bases increasingly on uncertain data that can lead to significant deviations in the results. To be able to predict realistically how meaningful the results are and how viable the developed products may be with regard to their corresponding respective market, these deviations however have to be considered. Therefore, a classification method is presented in this study, which may allow comparing the ecological performance of modern products with already established and competitive materials. In order to achieve this, an alternative calculation method was used that allows computing with lower and upper bounds to consider all possible values without precise data. The life cycle analysis of the considered products was conducted with an interval arithmetic based calculation method. The results lead to the conclusion that the interval solutions describing the possible environmental impacts are so wide that the result usability is limited. Nevertheless, a further optimization in reducing environmental impacts of aerogels seems to be needed to become more competitive in the future.
Keywords: Aerogel-based, insulating material, early develop¬ment phase, interval arithmetic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 615537 The Optimization of Decision Rules in Multimodal Decision-Level Fusion Scheme
Authors: Andrey V. Timofeev, Dmitry V. Egorov
Abstract:
This paper introduces an original method of parametric optimization of the structure for multimodal decisionlevel fusion scheme which combines the results of the partial solution of the classification task obtained from assembly of the mono-modal classifiers. As a result, a multimodal fusion classifier which has the minimum value of the total error rate has been obtained.
Keywords: Сlassification accuracy, fusion solution, total error rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975536 A Study on Intuitionistic Fuzzy h-ideal in Γ-Hemirings
Authors: S.K. Sardar, D. Mandal, R. Mukherjee
Abstract:
The notions of intuitionistic fuzzy h-ideal and normal intuitionistic fuzzy h-ideal in Γ-hemiring are introduced and some of the basic properties of these ideals are investigated. Cartesian product of intuitionistic fuzzy h-ideals is also defined. Finally a characterization of intuitionistic fuzzy h-ideals in terms of fuzzy relations is obtained.Keywords: Γ-hemiring, fuzzy h-ideal, normal, cartesian product.Mathematics Subject Classification[2000] :08A72, 16Y99
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4273535 Safety of Industrial Networks
Authors: P. Vazan, P. Tanuska, M. Kebisek, S. Duchovicova
Abstract:
The paper deals with communication standards for control and production system. The authors formulate the requirements for communication security protection. The paper is focused on application protocols of the industrial networks and their basic classification. The typical attacks are analysed and the safety protection, based on requirements for specific industrial network is suggested and defined in this paper.
Keywords: Application protocols, communication standards, industrial networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007534 A Optimal Subclass Detection Method for Credit Scoring
Authors: Luciano Nieddu, Giuseppe Manfredi, Salvatore D'Acunto, Katia La Regina
Abstract:
In this paper a non-parametric statistical pattern recognition algorithm for the problem of credit scoring will be presented. The proposed algorithm is based on a clustering k- means algorithm and allows for the determination of subclasses of homogenous elements in the data. The algorithm will be tested on two benchmark datasets and its performance compared with other well known pattern recognition algorithm for credit scoring.
Keywords: Constrained clustering, Credit scoring, Statistical pattern recognition, Supervised classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049533 Space Telemetry Anomaly Detection Based on Statistical PCA Algorithm
Authors: B. Nassar, W. Hussein, M. Mokhtar
Abstract:
The critical concern of satellite operations is to ensure the health and safety of satellites. The worst case in this perspective is probably the loss of a mission, but the more common interruption of satellite functionality can result in compromised mission objectives. All the data acquiring from the spacecraft are known as Telemetry (TM), which contains the wealth information related to the health of all its subsystems. Each single item of information is contained in a telemetry parameter, which represents a time-variant property (i.e. a status or a measurement) to be checked. As a consequence, there is a continuous improvement of TM monitoring systems to reduce the time required to respond to changes in a satellite's state of health. A fast conception of the current state of the satellite is thus very important to respond to occurring failures. Statistical multivariate latent techniques are one of the vital learning tools that are used to tackle the problem above coherently. Information extraction from such rich data sources using advanced statistical methodologies is a challenging task due to the massive volume of data. To solve this problem, in this paper, we present a proposed unsupervised learning algorithm based on Principle Component Analysis (PCA) technique. The algorithm is particularly applied on an actual remote sensing spacecraft. Data from the Attitude Determination and Control System (ADCS) was acquired under two operation conditions: normal and faulty states. The models were built and tested under these conditions, and the results show that the algorithm could successfully differentiate between these operations conditions. Furthermore, the algorithm provides competent information in prediction as well as adding more insight and physical interpretation to the ADCS operation.Keywords: Space telemetry monitoring, multivariate analysis, PCA algorithm, space operations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062532 A Supply Chain Perspective of RFID Systems
Authors: A. N. Nambiar
Abstract:
Radio Frequency Identification (RFID) initially introduced during WW-II, has revolutionized the world with its numerous benefits and plethora of implementations in diverse areas ranging from manufacturing to agriculture to healthcare to hotel management. This work reviews the current research in this area with emphasis on applications for supply chain management and to develop a taxonomic framework to classify literature which will enable swift and easy content analysis and also help identify areas for future research.Keywords: RFID, supply chain, applications, classification framework.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2305531 Advanced Technologies and Algorithms for Efficient Portfolio Selection
Authors: Konstantinos Liagkouras, Konstantinos Metaxiotis
Abstract:
In this paper we present a classification of the various technologies applied for the solution of the portfolio selection problem according to the discipline and the methodological framework followed. We provide a concise presentation of the emerged categories and we are trying to identify which methods considered obsolete and which lie at the heart of the debate. On top of that, we provide a comparative study of the different technologies applied for efficient portfolio construction and we suggest potential paths for future work that lie at the intersection of the presented techniques.
Keywords: Portfolio selection, optimization techniques, financial models, stochastics, heuristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751530 Analysis of Sonographic Images of Breast
Authors: M. Bastanfard, S. Jafari, B.Jalaeian
Abstract:
Ultrasound images are very useful diagnostic tool to distinguish benignant from malignant masses of the breast. However, there is a considerable overlap between benignancy and malignancy in ultrasonic images which makes it difficult to interpret. In this paper, a new noise removal algorithm was used to improve the images and classification process. The masses are classified by wavelet transform's coefficients, morphological and textural features as a novel feature set for this goal. The Bayesian estimation theory is used to classify the tissues in three classes according to their features.Keywords: Bayesian estimation theory, breast, ultrasound, wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446529 EEG Waves Classifier using Wavelet Transform and Fourier Transform
Authors: Maan M. Shaker
Abstract:
The electroencephalograph (EEG) signal is one of the most widely signal used in the bioinformatics field due to its rich information about human tasks. In this work EEG waves classification is achieved using the Discrete Wavelet Transform DWT with Fast Fourier Transform (FFT) by adopting the normalized EEG data. The DWT is used as a classifier of the EEG wave's frequencies, while FFT is implemented to visualize the EEG waves in multi-resolution of DWT. Several real EEG data sets (real EEG data for both normal and abnormal persons) have been tested and the results improve the validity of the proposed technique.Keywords: Bioinformatics, DWT, EEG waves, FFT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5557528 Improvement of the Q-System Using the Rock Engineering System: A Case Study of Water Conveyor Tunnel of Azad Dam
Authors: S. Golmohammadi, M. Noorian Bidgoli
Abstract:
Because the status and mechanical parameters of discontinuities in the rock mass are included in the calculations, various methods of rock engineering classification are often used as a starting point for the design of different types of structures. The Q-system is one of the most frequently used methods for stability analysis and determination of support systems of underground structures in rock, including tunnel. In this method, six main parameters of the rock mass, namely, the Rock Quality Designation (RQD), joint set number (Jn), joint roughness number (Jr), joint alteration number (Ja), joint water parameter (Jw) and Stress Reduction Factor (SRF) are required. In this regard, in order to achieve a reasonable and optimal design, identifying the effective parameters for the stability of the mentioned structures is one of the most important goals and the most necessary actions in rock engineering. Therefore, it is necessary to study the relationships between the parameters of a system and how they interact with each other and, ultimately, the whole system. In this research, it has been attempted to determine the most effective parameters (key parameters) from the six parameters of rock mass in the Q-system using the Rock Engineering System (RES) method to improve the relationships between the parameters in the calculation of the Q value. The RES system is, in fact, a method by which one can determine the degree of cause and effect of a system's parameters by making an interaction matrix. In this research, the geomechanical data collected from the water conveyor tunnel of Azad Dam were used to make the interaction matrix of the Q-system. For this purpose, instead of using the conventional methods that are always accompanied by defects such as uncertainty, the Q-system interaction matrix is coded using a technique that is actually a statistical analysis of the data and determining the correlation coefficient between them. So, the effect of each parameter on the system is evaluated with greater certainty. The results of this study show that the formed interaction matrix provides a reasonable estimate of the effective parameters in the Q-system. Among the six parameters of the Q-system, the SRF and Jr parameters have the maximum and minimum impact on the system, respectively, and also the RQD and Jw parameters have the maximum and minimum impact on the system, respectively. Therefore, by developing this method, we can obtain a more accurate relation to the rock mass classification by weighting the required parameters in the Q-system.
Keywords: Q-system, Rock Engineering System, statistical analysis, rock mass, tunnel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 295527 Research on Software Security Testing
Authors: Gu Tian-yang, Shi Yin-sheng, Fang You-yuan
Abstract:
Software security testing is an important means to ensure software security and trustiness. This paper first mainly discusses the definition and classification of software security testing, and investigates methods and tools of software security testing widely. Then it analyzes and concludes the advantages and disadvantages of various methods and the scope of application, presents a taxonomy of security testing tools. Finally, the paper points out future focus and development directions of software security testing technology.
Keywords: security testing, security functional testing, securityvulnerability testing, testing method, testing tool
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5134526 Rapid Monitoring of Earthquake Damages Using Optical and SAR Data
Authors: Saeid Gharechelou, Ryutaro Tateishi
Abstract:
Earthquake is an inevitable catastrophic natural disaster. The damages of buildings and man-made structures, where most of the human activities occur are the major cause of casualties from earthquakes. A comparison of optical and SAR data is presented in the case of Kathmandu valley which was hardly shaken by 2015-Nepal Earthquake. Though many existing researchers have conducted optical data based estimated or suggested combined use of optical and SAR data for improved accuracy, however finding cloud-free optical images when urgently needed are not assured. Therefore, this research is specializd in developing SAR based technique with the target of rapid and accurate geospatial reporting. Should considers that limited time available in post-disaster situation offering quick computation exclusively based on two pairs of pre-seismic and co-seismic single look complex (SLC) images. The InSAR coherence pre-seismic, co-seismic and post-seismic was used to detect the change in damaged area. In addition, the ground truth data from field applied to optical data by random forest classification for detection of damaged area. The ground truth data collected in the field were used to assess the accuracy of supervised classification approach. Though a higher accuracy obtained from the optical data then integration by optical-SAR data. Limitation of cloud-free images when urgently needed for earthquak evevent are and is not assured, thus further research on improving the SAR based damage detection is suggested. Availability of very accurate damage information is expected for channelling the rescue and emergency operations. It is expected that the quick reporting of the post-disaster damage situation quantified by the rapid earthquake assessment should assist in channeling the rescue and emergency operations, and in informing the public about the scale of damage.
Keywords: Sentinel-1A data, Landsat-8, earthquake damage, InSAR, rapid monitoring, 2015-Nepal earthquake.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056525 Clustered Signatures for Modeling and Recognizing 3D Rigid Objects
Authors: H. B. Darbandi, M. R. Ito, J. Little
Abstract:
This paper describes a probabilistic method for three-dimensional object recognition using a shared pool of surface signatures. This technique uses flatness, orientation, and convexity signatures that encode the surface of a free-form object into three discriminative vectors, and then creates a shared pool of data by clustering the signatures using a distance function. This method applies the Bayes-s rule for recognition process, and it is extensible to a large collection of three-dimensional objects.Keywords: Object recognition, modeling, classification, computer vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278524 Person Identification using Gait by Combined Features of Width and Shape of the Binary Silhouette
Authors: M.K. Bhuyan, Aragala Jagan.
Abstract:
Current image-based individual human recognition methods, such as fingerprints, face, or iris biometric modalities generally require a cooperative subject, views from certain aspects, and physical contact or close proximity. These methods cannot reliably recognize non-cooperating individuals at a distance in the real world under changing environmental conditions. Gait, which concerns recognizing individuals by the way they walk, is a relatively new biometric without these disadvantages. The inherent gait characteristic of an individual makes it irreplaceable and useful in visual surveillance. In this paper, an efficient gait recognition system for human identification by extracting two features namely width vector of the binary silhouette and the MPEG-7-based region-based shape descriptors is proposed. In the proposed method, foreground objects i.e., human and other moving objects are extracted by estimating background information by a Gaussian Mixture Model (GMM) and subsequently, median filtering operation is performed for removing noises in the background subtracted image. A moving target classification algorithm is used to separate human being (i.e., pedestrian) from other foreground objects (viz., vehicles). Shape and boundary information is used in the moving target classification algorithm. Subsequently, width vector of the outer contour of binary silhouette and the MPEG-7 Angular Radial Transform coefficients are taken as the feature vector. Next, the Principal Component Analysis (PCA) is applied to the selected feature vector to reduce its dimensionality. These extracted feature vectors are used to train an Hidden Markov Model (HMM) for identification of some individuals. The proposed system is evaluated using some gait sequences and the experimental results show the efficacy of the proposed algorithm.Keywords: Gait Recognition, Gaussian Mixture Model, PrincipalComponent Analysis, MPEG-7 Angular Radial Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911523 Balancing Tourism and Environment: The ETM Model
Authors: U.V Jose, Muhammed Nahar, Vijayakumar S., Sonia Jose
Abstract:
Environment both endowed and built are essential for tourism. However tourism and environment maintains a complex relationship, where in most cases environment is at the receiving end. Many tourism development activities have adverse environmental effects, mainly emanating from construction of general infrastructure and tourism facilities. These negative impacts of tourism can lead to the destruction of precious natural resources on which it depends. These effects vary between locations; and its effect on a hill destination is highly critical. This study aims at developing a Sustainable Tourism Planning Model for an environmentally sensitive tourism destination in Kerala, India. Being part of the Nilgiri mountain ranges, Munnar falls in the Western Ghats, one of the biological hotspots in the world. Endowed with a unique high altitude environment Munnar inherits highly significant ecological wealth. Giving prime importance to the protection of this ecological heritage, the study proposes a tourism planning model with resource conservation and sustainability as the paramount focus. Conceiving a novel approach towards sustainable tourism planning, the study proposes to assess tourism attractions using Ecological Sensitivity Index (ESI) and Tourism Attractiveness Index (TAI). Integration of these two indices will form the Ecology – Tourism Matrix (ETM), outlining the base for tourism planning in an environmentally sensitive destination. The ETM Matrix leads to a classification of tourism nodes according to its Conservation Significance and Tourism Significance. The spatial integration of such nodes based on the Hub & Spoke Principle constitutes sub – regions within the STZ. Ensuing analyses lead to specific guidelines for the STZ as a whole, specific tourism nodes, hubs and sub-regions. The study results in a multi – dimensional output, viz., (1) Classification system for tourism nodes in an environmentally sensitive region/ destination (2) Conservation / Tourism Development Strategies and Guidelines for the micro and macro regions and (3) A Sustainable Tourism Planning Tool particularly for Ecologically Sensitive Destinations, which can be adapted for other destinations as well.Keywords: Tourism, Environment, Spatial Planning, Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2809522 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.
Keywords: Machine learning, stock market trading, logistic principal component analysis, automated stock investment system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098521 Clustering for Detection of Population Groups at Risk from Anticholinergic Medication
Authors: Amirali Shirazibeheshti, Tarik Radwan, Alireza Ettefaghian, Farbod Khanizadeh, George Wilson, Cristina Luca
Abstract:
Anticholinergic medication has been associated with events such as falls, delirium, and cognitive impairment in older patients. To further assess this, anticholinergic burden scores have been developed to quantify risk. A risk model based on clustering was deployed in a healthcare management system to cluster patients into multiple risk groups according to anticholinergic burden scores of multiple medicines prescribed to patients to facilitate clinical decision-making. To do so, anticholinergic burden scores of drugs were extracted from the literature which categorizes the risk on a scale of 1 to 3. Given the patients’ prescription data on the healthcare database, a weighted anticholinergic risk score was derived per patient based on the prescription of multiple anticholinergic drugs. This study was conducted on 300,000 records of patients currently registered with a major regional UK-based healthcare provider. The weighted risk scores were used as inputs to an unsupervised learning algorithm (mean-shift clustering) that groups patients into clusters that represent different levels of anticholinergic risk. This work evaluates the association between the average risk score and measures of socioeconomic status (index of multiple deprivation) and health (index of health and disability). The clustering identifies a group of 15 patients at the highest risk from multiple anticholinergic medication. Our findings show that this group of patients is located within more deprived areas of London compared to the population of other risk groups. Furthermore, the prescription of anticholinergic medicines is more skewed to female than male patients, suggesting that females are more at risk from this kind of multiple medication. The risk may be monitored and controlled in a healthcare management system that is well-equipped with tools implementing appropriate techniques of artificial intelligence.
Keywords: Anticholinergic medication, socioeconomic status, deprivation, clustering, risk analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1070520 Solving of the Fourth Order Differential Equations with the Neumann Problem
Authors: Marziyeh Halimi, Roushanak Lotfikar, Simin Mansouri Borojeni
Abstract:
In this paper we considered the Neumann problem for the fourth order differential equation. First we define the weighted Sobolev space 2 Wα and generalized solution for this equation. Then we consider the existence and uniqueness of the generalized solution, as well as give the description of the spectrum and of the domain of definition of the corresponding operator.Keywords: Neumann problem, weighted Sobolev spaces, generalized solution, spectrum of linear operators.2000 mathematic subject classification: 34A05, 34A30.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427