Search results for: Renewable Energy Technology.
4546 Retrofitting Measures for Existing Housing Stock in Kazakhstan
Authors: S. Yessengabulov, A. Uyzbayeva
Abstract:
Residential buildings fund of Kazakhstan was built in the Soviet time about 35-60 years ago without considering energy efficiency measures. Currently, most of these buildings are in a rundown condition and fail to meet the minimum of hygienic, sanitary and comfortable living requirements. The paper aims to examine the reports of recent building energy survey activities in the country and provide a possible solution for retrofitting existing housing stock built before 1989 which could be applicable for building envelope in cold climate. Methodology also includes two-dimensional modeling of possible practical solutions and further recommendations.
Keywords: Energy audit, energy efficient buildings in Kazakhstan, retrofit, two-dimensional conduction heat transfer analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15614545 Piezoelectric Approach on Harvesting Acoustic Energy
Authors: Khin Fai Chen, Jee-Hou Ho, Eng Hwa Yap
Abstract:
An Acoustic Micro-Energy Harvester (AMEH) is developed to convert wasted acoustical energy into useful electrical energy. AMEH is mathematically modeled using Lumped Element Modelling (LEM) and Euler-Bernoulli beam (EBB) modelling. An experiment is designed to validate the mathematical model and assess the feasibility of AMEH. Comparison of theoretical and experimental data on critical parameter value such as Mm, Cms, dm and Ceb showed the variances are within 1% to 6%, which is reasonably acceptable. Then, AMEH undergoes bandwidth tuning for performance optimization. The AMEH successfully produces 0.9V/(m/s^2) and 1.79μW/(m^2/s^4) at 60Hz and 400kΩ resistive load which only show variances about 7% compared to theoretical data. At 1g and 60Hz resonance frequency, the averaged power output is about 2.2mW which fulfilled a range of wireless sensors and communication peripherals power requirements. Finally, the design for AMEH is assessed, validated and deemed as a feasible design.Keywords: Piezoelectric, acoustic, energy harvester, thermoacoustic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32734544 Efficient Use of Energy through Incorporation of a Gas Turbine in Methanol Plant
Authors: M. Azadi, N. Tahouni, M. H. Panjeshahi
Abstract:
A techno-economic evaluation for efficient use of energy in a large scale industrial plant of methanol is carried out. This assessment is based on integration of a gas turbine with an existing plant of methanol in which the outlet gas products of exothermic reactor is expanded to power generation. Also, it is decided that methanol production rate is constant through addition of power generation system to the existing methanol plant. Having incorporated a gas turbine with the existing plant, the economic results showed total investment of MUSD 16.9, energy saving of 3.6 MUSD/yr with payback period of approximately 4.7 years.
Keywords: Energy saving, Gas turbine, Methanol, Power generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21374543 Two-Photon Ionization of Silver Clusters
Authors: V. Paployan, K. Madoyan, A. Melikyan, H. Minassian
Abstract:
In this paper, we calculate the two-photon ionization (TPI) cross-section for pump-probe scheme in Ag neutral cluster. The pump photon energy is assumed to be close to the surface plasmon (SP) energy of cluster in dielectric media. Due to this choice, the pump wave excites collective oscillations of electrons-SP and the probe wave causes ionization of the cluster. Since the interband transition energy in Ag exceeds the SP resonance energy, the main contribution into the TPI comes from the latter. The advantage of Ag clusters as compared to the other noble metals is that the SP resonance in silver cluster is much sharper because of peculiarities of its dielectric function. The calculations are performed by separating the coordinates of electrons corresponding to the collective oscillations and the individual motion that allows taking into account the resonance contribution of excited SP oscillations. It is shown that the ionization cross section increases by two orders of magnitude if the energy of the pump photon matches the surface plasmon energy in the cluster.
Keywords: Resonance enhancement, silver clusters, surface plasmon, two-photon ionization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14704542 Development of Energy Management System Based on Internet of Things Technique
Authors: Wen-Jye Shyr, Chia-Ming Lin, Hung-Yun Feng
Abstract:
The purpose of this study was to develop an energy management system for university campuses based on the Internet of Things (IoT) technique. The proposed IoT technique based on WebAccess is used via network browser Internet Explore and applies TCP/IP protocol. The case study of IoT for lighting energy usage management system was proposed. Structure of proposed IoT technique included perception layer, equipment layer, control layer, application layer and network layer.
Keywords: Energy management, IoT technique, Sensor, WebAccess
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11374541 Microbial Fuel Cells and Their Applications in Electricity Generating and Wastewater Treatment
Authors: Shima Fasahat
Abstract:
This research is an experimental research which was done about microbial fuel cells in order to study them for electricity generating and wastewater treatment. These days, it is very important to find new, clean and sustainable ways for energy supplying. Because of this reason there are many researchers around the world who are studying about new and sustainable energies. There are different ways to produce these kind of energies like: solar cells, wind turbines, geothermal energy, fuel cells and many other ways. Fuel cells have different types one of these types is microbial fuel cell. In this research, an MFC was built in order to study how it can be used for electricity generating and wastewater treatment. The microbial fuel cell which was used in this research is a reactor that has two tanks with a catalyst solution. The chemical reaction in microbial fuel cells is a redox reaction. The microbial fuel cell in this research is a two chamber MFC. Anode chamber is an anaerobic one (ABR reactor) and the other chamber is a cathode chamber. Anode chamber consists of stabilized sludge which is the source of microorganisms that do redox reaction. The main microorganisms here are: Propionibacterium and Clostridium. The electrodes of anode chamber are graphite pages. Cathode chamber consists of graphite page electrodes and catalysts like: O2, KMnO4 and C6N6FeK4. The membrane which separates the chambers is Nafion117. The reason of choosing this membrane is explained in the complete paper. The main goal of this research is to generate electricity and treating wastewater. It was found that when you use electron receptor compounds like: O2, MnO4, C6N6FeK4 the velocity of electron receiving speeds up and in a less time more current will be achieved. It was found that the best compounds for this purpose are compounds which have iron in their chemical formula. It is also important to pay attention to the amount of nutrients which enters to bacteria chamber. By adding extra nutrients in some cases the result will be reverse. By using ABR the amount of chemical oxidation demand reduces per day till it arrives to a stable amount.
Keywords: Anaerobic baffled reactor, bioenergy, electrode, energy efficient, microbial fuel cell, renewable chemicals, sustainable.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13894540 Influence of Jerusalem Artichoke Powder on the Nutritional Value of Pastry Products
Authors: I. Gedrovica, D. Karklina
Abstract:
From year to year, the incidence of different diseases is increasing in humans, and the cause is inadequate intake of dietary fibre, vitamins, and minerals. One of the possibilities to take care of your health preventively is including in the diet products with increased dietary fibre, vitamin, and mineral content.Jerusalem artichoke powder (JAP) made from Jerusalem artichoke (Helianthus tuberosus L) roots is a valuable product. By adding it to pastry goods, we can obtain a fibre-rich food that could be healthier and an excellent alternative to the classical pastry products of this kind.Experiments were carried out at the Faculty of Food Technology of Latvia University of Agriculture (LLU). Results of experiments showed that addition of Jerusalem artichoke powder has significant impact on all the studied pastry products nutritional value (p<0.05). With increasing concentration of Jerusalem artichoke powder in pastry products increase it nutritional value and decrease energy value.
Keywords: Biscuits, cakes, Jerusalem artichoke powder, nutritional and energy value
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27384539 Model of High-Speed Train Energy Consumption
Authors: Romain Bosquet, Pierre-Olivier Vandanjon, Alex Coiret, Tristan Lorino
Abstract:
In the hardening energy context, the transport sector which constitutes a large worldwide energy demand has to be improving for decrease energy demand and global warming impacts. In a controversial situation where subsists an increasing demand for long-distance and high-speed travels, high-speed trains offer many advantages, as consuming significantly less energy than road or air transports. At the project phase of new rail infrastructures, it is nowadays important to characterize accurately the energy that will be induced by its operation phase, in addition to other more classical criteria as construction costs and travel time. Current literature consumption models used to estimate railways operation phase are obsolete or not enough accurate for taking into account the newest train or railways technologies. In this paper, an updated model of consumption for high-speed is proposed, based on experimental data obtained from full-scale tests performed on a new high-speed line. The assessment of the model is achieved by identifying train parameters and measured power consumptions for more than one hundred train routes. Perspectives are then discussed to use this updated model for accurately assess the energy impact of future railway infrastructures.Keywords: High-speed train, energy, model, track profile, infrastructure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52084538 Use of Detectors Technology for Gamma Ray Issued from Radioactive Isotopes and its Impact on Knowledge of Behavior of the Stationary Case of Solid Phase Holdup
Authors: Abbas Ali Mahmood Karwi
Abstract:
For gamma radiation detection, assemblies having scintillation crystals and a photomultiplier tube, also there is a preamplifier connected to the detector because the signals from photomultiplier tube are of small amplitude. After pre-amplification the signals are sent to the amplifier and then to the multichannel analyser. The multichannel analyser sorts all incoming electrical signals according to their amplitudes and sorts the detected photons in channels covering small energy intervals. The energy range of each channel depends on the gain settings of the multichannel analyser and the high voltage across the photomultiplier tube. The exit spectrum data of the two main isotopes studied ,putting data in biomass program ,process it by Matlab program to get the solid holdup image (solid spherical nuclear fuel)Keywords: Multichannel analyzer, Spectrum, Energies, Fluids holdup, Image
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17324537 Direct Power Control Applied on 5-Level Diode Clamped Inverter Powered by a Renewable Energy Source
Authors: A. Elnady
Abstract:
This paper presents an improved Direct Power Control (DPC) scheme applied to the multilevel inverter that forms a Distributed Generation Unit (DGU). This paper demonstrates the performance of active and reactive power injected by the DGU to the smart grid. The DPC is traditionally operated by the hysteresis controller with the Space Vector Modulation (SVM) which is applied on the 2-level inverters or 3-level inverters. In this paper, the DPC is operated by the PI controller with the Phase-Disposition Pulse Width Modulation (PD-PWM) applied to the 5-level diode clamped inverter. The new combination of the DPC, PI controller, PD-PWM and multilevel inverter proves that its performance is much better than the conventional hysteresis-SVM based DPC. Simulations results have been presented to validate the performance of the suggested control scheme in the grid-connected mode.
Keywords: Direct power control, PI controller, PD-PWM, and power control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8564536 The Environmental Conservation Behavior of the Applied Health Science Students of Green and Clean University
Authors: Nareelux Suwannobol, Plernpit Promrak, Kiattisak Batsungnoen
Abstract:
The aim of this study was to investigate the environmental conservation behavior of the Applied Health Science students of Suranaree University of Technology, a green and clean university. The sample group was 184 Applied Health Science students (medical, nursing, and public health). A questionnaire was used to collect information. The result of the study found that the students had more negative than positive behaviors towards energy, water, and forest conservation. This result can be used as basic information for designing long-term behavior modification activities or research projects on environmental conservation. Thus Applied Health Science students will be encouraged to be conscious and also be a good example of environmental conservation behavior.Keywords: Energy conservation behavior, Water conservationbehavior, Forest conservation behavior, Green and clean University.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17554535 Behaviours of Energy Spectrum at Low Reynolds Numbers in Grid Turbulence
Authors: Md. Kamruzzaman, L. Djenidi, R. A. Antonia
Abstract:
This paper reports an experimental investigation of the energy spectrum of turbulent velocity fields at low Reynolds numbers in grid turbulence. Hot wire measurements are carried out in grid turbulence with subjected to a 1.36:1 contraction of the wind tunnel. Three different grids are used: (i) large square perforated grid (mesh size 43.75mm), (ii) small square perforated grid (mesh size 14. and (iii) woven mesh grid (mesh size 5mm). The results indicate that the energy spectrum at small Reynolds numbers does not follow Kolmogorov’s universal scaling. It is further found that the critical Reynolds number, below which the scaling breaks down, is around 25.
Keywords: Decay exponent, Energy spectrum, Taylor microscale Reynolds number, Taylor microscale, Turbulent kinetic energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24064534 Triple Intercell Bar for Electrometallurgical Processes: A Design to Increase PV Energy Utilization
Authors: Eduardo P. Wiechmann, Jorge A. Henríquez, Pablo E. Aqueveque, Luis G. Muñoz
Abstract:
PV energy prices are declining rapidly. To take advantage of the benefits of those prices and lower the carbon footprint, operational practices must be modified. Undoubtedly, it challenges the electrowinning practice to operate at constant current throughout the day. This work presents a technology that contributes in providing modulation capacity to the electrode current distribution system. This is to raise the day time dc current and lower it at night. The system is a triple intercell bar that operates in current-source mode. The design is a capping board free dogbone type of bar that ensures an operation free of short circuits, hot swapability repairs and improved current balance. This current-source system eliminates the resetting currents circulating in equipotential bars. Twin auxiliary connectors are added to the main connectors providing secure current paths to bypass faulty or impaired contacts. All system conductive elements are positioned over a baseboard offering a large heat sink area to the ventilation of a facility. The system works with lower temperature than a conventional busbar. Of these attributes, the cathode current balance property stands out and is paramount for day/night modulation and the use of photovoltaic energy. A design based on a 3D finite element method model predicting electric and thermal performance under various industrial scenarios is presented. Preliminary results obtained in an electrowinning facility with industrial prototypes are included.
Keywords: Electrowinning, intercell bars, PV energy, current modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6234533 Robust & Energy Efficient Universal Gates for High Performance Computer Networks at 22nm Process Technology
Authors: M. Geetha Priya, K. Baskaran, S. Srinivasan
Abstract:
Digital systems are said to be constructed using basic logic gates. These gates are the NOR, NAND, AND, OR, EXOR & EXNOR gates. This paper presents a robust three transistors (3T) based NAND and NOR gates with precise output logic levels, yet maintaining equivalent performance than the existing logic structures. This new set of 3T logic gates are based on CMOS inverter and Pass Transistor Logic (PTL). The new universal logic gates are characterized by better speed and lower power dissipation which can be straightforwardly fabricated as memory ICs for high performance computer networks. The simulation tests were performed using standard BPTM 22nm process technology using SYNOPSYS HSPICE. The 3T NAND gate is evaluated using C17 benchmark circuit and 3T NOR is gate evaluated using a D-Latch. According to HSPICE simulation in 22 nm CMOS BPTM process technology under given conditions and at room temperature, the proposed 3T gates shows an improvement of 88% less power consumption on an average over conventional CMOS logic gates. The devices designed with 3T gates will make longer battery life by ensuring extremely low power consumption.
Keywords: Low power, CMOS, pass-transistor, flash memory, logic gates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24364532 Lateral Crushing of Square and Rectangular Metallic Tubes under Different Quasi-Static Conditions
Authors: Sajjad Dehghanpour, Ali Yousefi
Abstract:
Impact is one of very important subjects which always have been considered in mechanical science. Nature of impact is such that which makes its control a hard task. Therefore it is required to present the transfer of impact to other vulnerable part of a structure, when it is necessary, one of the best method of absorbing energy of impact, is by using Thin-walled tubes these tubes collapses under impact and with absorption of energy, it prevents the damage to other parts.Purpose of recent study is to survey the deformation and energy absorption of tubes with different type of cross section (rectangular or square) and with similar volumes, height, mean cross section thickness, and material under loading with different speeds. Lateral loading of tubes are quasi-static type and beside as numerical analysis, also experimental experiences has been performed to evaluate the accuracy of the results. Results from the surveys is indicates that in a same conditions which mentioned above, samples with square cross section ,absorb more energy compare to rectangular cross section, and also by increscent in speed of loading, energy absorption would be more.
Keywords: absorbed energy, lateral loading, quasi-static.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29064531 Energy Retrofitting Application Research to Achieve Energy Efficiency in Hot-Arid Climates in Residential Buildings: A Case Study of Saudi Arabia
Authors: A. Felimban, A. Prieto, U. Knaack, T. Klein
Abstract:
This study aims to present an overview of recent research in building energy-retrofitting strategy applications and analyzing them within the context of hot arid climate regions which is in this case study represented by the Kingdom of Saudi Arabia. The main goal of this research is to do an analytical study of recent research approaches to show where the primary gap in knowledge exists and outline which possible strategies are available that can be applied in future research. Also, the paper focuses on energy retrofitting strategies at a building envelop level. The study is limited to specific measures within the hot arid climate region. Scientific articles were carefully chosen as they met the expression criteria, such as retrofitting, energy-retrofitting, hot-arid, energy efficiency, residential buildings, which helped narrow the research scope. Then the papers were explored through descriptive analysis and justified results within the Saudi context in order to draw an overview of future opportunities from the field of study for the last two decades. The conclusions of the analysis of the recent research confirmed that the field of study had a research shortage on investigating actual applications and testing of newly introduced energy efficiency applications, lack of energy cost feasibility studies and there was also a lack of public awareness. In terms of research methods, it was found that simulation software was a major instrument used in energy retrofitting application research. The main knowledge gaps that were identified included the need for certain research regarding actual application testing; energy retrofitting strategies application feasibility; the lack of research on the importance of how strategies apply first followed by the user acceptance of developed scenarios.
Keywords: Energy efficiency, energy retrofitting, hot arid climate, Saudi Arabia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7324530 Optimizing usage of ICTs and Outsourcing Strategic in Business Models and Customer Satisfaction
Authors: Saeed Rahmani Bagha, Mohammad Mirzahosseinian, Sonatkhatoon Kashanimotlagh
Abstract:
Nowadays, under developed countries for progress in science and technology and decreasing the technologic gap with developed countries, increasing the capacities and technology transfer from developed countries. To remain competitive, industry is continually searching for new methods to evolve their products. Business model is one of the latest buzzwords in the Internet and electronic business world. To be successful, organizations must look into the needs and wants of their customers. This research attempts to identify a specific feature of the company with a strong competitive advantage by analyzing the cause of Customer satisfaction. Due to the rapid development of knowledge and information technology, business environments have become much more complicated. Information technology can help a firm aiming to gain a competitive advantage. This study explores the role and effect of Information Communication Technology in Business Models and Customer satisfaction on firms and also relationships between ICTs and Outsourcing strategic.Keywords: Information Communication Technology, Outsourcing, Customer Satisfaction, Business Plan
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16954529 Loss Analysis by Loading Conditions of Distribution Transformers
Authors: A. Bozkurt, C. Kocatepe, R. Yumurtaci, İ. C. Tastan, G. Tulun
Abstract:
Efficient use of energy, the increase in demand of energy and also with the reduction of natural energy sources, has improved its importance in recent years. Most of the losses in the system from electricity produced until the point of consumption is mostly composed by the energy distribution system. In this study, analysis of the resulting loss in power distribution transformer and distribution power cable is realized which are most of the losses in the distribution system. Transformer losses in the real distribution system are analyzed by CYME Power Engineering Software program. These losses are disclosed for different voltage levels and different loading conditions.Keywords: Distribution system, distribution transformer, power cable, technical losses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27114528 Windphil Poetic in Architecture: Energy Efficient Strategies in Modern Buildings of Iran
Authors: Sepideh Samadzadehyazdi, Mohammad Javad Khalili, Sarvenaz Samadzadehyazdi, Mohammad Javad Mahdavinejad
Abstract:
The term ‘Windphil Architecture’ refers to the building that facilitates natural ventilation by architectural elements. Natural ventilation uses the natural forces of wind pressure and stacks effect to direct the movement of air through buildings. Natural ventilation is increasingly being used in contemporary buildings to minimize the consumption of non-renewable energy and it is an effective way to improve indoor air quality. The main objective of this paper is to identify the strategies of using natural ventilation in Iranian modern buildings. In this regard, the research method is ‘descriptive-analytical’ that is based on comparative techniques. To simulate wind flow in the interior spaces of case studies, FLUENT software has been used. Research achievements show that it is possible to use natural ventilation to create a thermally comfortable indoor environment. The natural ventilation strategies could be classified into two groups of environmental characteristics such as public space structure, and architectural characteristics including building form and orientation, openings, central courtyards, wind catchers, roof, wall wings, semi-open spaces and the heat capacity of materials. Having investigated modern buildings of Iran, innovative elements like wind catchers and wall wings are less used than the traditional architecture. Instead, passive ventilation strategies have been more considered in the building design as for the roof structure and openings.
Keywords: Natural ventilation strategies, wind catchers, wind flow, Iranian modern buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10464527 Energy Consumption and GHG Production in Railway and Road Passenger Regional Transport
Authors: Martin Kendra, Tomas Skrucany, Jozef Gnap, Jan Ponicky
Abstract:
Paper deals with the modeling and simulation of energy consumption and GHG production of two different modes of regional passenger transport – road and railway. These two transport modes use the same type of fuel – diesel. Modeling and simulation of the energy consumption in transport is often used due to calculation satisfactory accuracy and cost efficiency. Paper deals with the calculation based on EN standards and information collected from technical information from vehicle producers and characteristics of tracks. Calculation included maximal theoretical capacity of bus and train and real passenger’s measurement from operation. Final energy consumption and GHG production is calculated by using software simulation. In evaluation of the simulation is used system “well to wheel”.
Keywords: Bus, energy consumption, GHG, production, simulation, train.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15664526 Energy and Exergy Analysis of Dual Purpose Solar Collector
Authors: I. Jafari, A. Ershadi, E. Najafpour, N. Hedayat
Abstract:
Energy and exergy study of air-water combined solar collector which is called dual purpose solar collector (DPSC) is investigated. The method of ε - NTU is used. Analysis is performed for triangle channels. Parameters like the air flow rate and water inlet temperature are studied. Results are shown that DPSC has better energy and exergy efficiency than single collector. In addition, the triangle passage with water inlet temperature of 60O C has shown better exergy and energy efficiency.
Keywords: Efficiency, Exergy, Irreversibility, Solar collector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26324525 Quantification of Technology Innovation Usinga Risk-Based Framework
Authors: Gerard E. Sleefe
Abstract:
There is significant interest in achieving technology innovation through new product development activities. It is recognized, however, that traditional project management practices focused only on performance, cost, and schedule attributes, can often lead to risk mitigation strategies that limit new technology innovation. In this paper, a new approach is proposed for formally managing and quantifying technology innovation. This approach uses a risk-based framework that simultaneously optimizes innovation attributes along with traditional project management and system engineering attributes. To demonstrate the efficacy of the new riskbased approach, a comprehensive product development experiment was conducted. This experiment simultaneously managed the innovation risks and the product delivery risks through the proposed risk-based framework. Quantitative metrics for technology innovation were tracked and the experimental results indicate that the risk-based approach can simultaneously achieve both project deliverable and innovation objectives.Keywords: innovation, risk assessment, product development, technology management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15994524 Embodied Energy in Concrete and Structural Masonry on Typical Brazilian Buildings
Authors: Marco A. S. González, Marlova P. Kulakowski, Luciano G. Breitenbach, Felipe Kirch
Abstract:
The AEC sector has an expressive environmental responsibility. Actually, most building materials have severe environmental impacts along their production cycle. Professionals enrolled in building design may choice the materials and techniques with less impact among the viable options. This work presents a study about embodied energy in materials of two typical Brazilian constructive alternatives. The construction options considered are reinforced concrete structure and structural masonry. The study was developed for the region of São Leopoldo, southern Brazil. Results indicated that the energy embodied in these two constructive systems is approximately 1.72 GJ·m-2 and 1.26 GJ·m-2, respectively. It may be concluded that the embodied energy is lower in the structural masonry system, with a reduction around to 1/4 in relation to the traditional option. The results can be used to help design decisions.
Keywords: Civil construction, sustainability, embodied energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27544523 Energy Benefits of Urban Platooning with Self-Driving Vehicles
Authors: Eduardo F. Mello, Peter H. Bauer
Abstract:
The primary focus of this paper is the generation of energy-optimal speed trajectories for heterogeneous electric vehicle platoons in urban driving conditions. Optimal speed trajectories are generated for individual vehicles and for an entire platoon under the assumption that they can be executed without errors, as would be the case for self-driving vehicles. It is then shown that the optimization for the “average vehicle in the platoon” generates similar transportation energy savings to optimizing speed trajectories for each vehicle individually. The introduced approach only requires the lead vehicle to run the optimization software while the remaining vehicles are only required to have adaptive cruise control capability. The achieved energy savings are typically between 30% and 50% for stop-to-stop segments in cities. The prime motivation of urban platooning comes from the fact that urban platoons efficiently utilize the available space and the minimization of transportation energy in cities is important for many reasons, i.e., for environmental, power, and range considerations.Keywords: Electric vehicles, energy efficiency, optimization, platooning, self-driving vehicles, urban traffic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12524522 Fixture Layout Optimization Using Element Strain Energy and Genetic Algorithm
Authors: Zeshan Ahmad, Matteo Zoppi, Rezia Molfino
Abstract:
The stiffness of the workpiece is very important to reduce the errors in manufacturing process. The high stiffness of the workpiece can be achieved by optimal positioning of fixture elements in the fixture. The minimization of the sum of the nodal deflection normal to the surface is used as objective function in previous research. The deflection in other direction has been neglected. The 3-2-1 fixturing principle is not valid for metal sheets due to its flexible nature. We propose a new fixture layout optimization method N-3-2-1 for metal sheets that uses the strain energy of the finite elements. This method combines the genetic algorithm and finite element analysis. The objective function in this method is to minimize the sum of all the element strain energy. By using the concept of element strain energy, the deformations in all the directions have been considered. Strain energy and stiffness are inversely proportional to each other. So, lower the value of strain energy, higher will be the stiffness. Two different kinds of case studies are presented. The case studies are solved for both objective functions; element strain energy and nodal deflection. The result are compared to verify the propose method.
Keywords: Fixture layout, optimization, fixturing element, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25644521 Energy Production Potential from Co-Digestion between Frozen Seafood Wastewater and Decanter Cake in Thailand
Authors: Thaniya Kaosol, Narumol Sohgrathok
Abstract:
In this paper, a Biochemical Methane Potential (BMP) test provides a measure of the energy production potential from codigestion between the frozen seafood wastewater and the decanter cake. The experiments were conducted in laboratory-scale. The suitable ratio of the frozen seafood wastewater and the decanter cake was observed in the BMP test. The ratio of the co-digestion between the frozen seafood wastewater and the decanter cake has impacts on the biogas production and energy production potential. The best performance for energy production potential using BMP test observed from the 180 ml of the frozen seafood wastewater and 10 g of the decanter cake ratio. This ratio provided the maximum methane production at 0.351 l CH4/g TCODremoval. The removal efficiencies are 76.18%, 83.55%, 43.16% and 56.76% at TCOD, SCOD, TS and VS, respectively. The result can be concluded that the decanter cake can improve the energy production potential of the frozen seafood wastewater. The energy provides from co-digestion between frozen seafood wastewater and decanter cake approximately 19x109 MJ/year in Thailand.
Keywords: Frozen seafood wastewater, decanter cake, biogas, methane, BMP test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22704520 Energy-Aware Scheduling in Real-Time Systems: An Analysis of Fair Share Scheduling and Priority-Driven Preemptive Scheduling
Authors: Su Xiaohan, Jin Chicheng, Liu Yijing, Burra Venkata Durga Kumar
Abstract:
Energy-aware scheduling in real-time systems aims to minimize energy consumption, but issues related to resource reservation and timing constraints remain challenges. This study focuses on analyzing two scheduling algorithms, Fair-Share Scheduling (FFS) and Priority-Driven Preemptive Scheduling (PDPS), for solving these issues and energy-aware scheduling in real-time systems. Based on research on both algorithms and the processes of solving two problems, it can be found that FFS ensures fair allocation of resources but needs to improve with an imbalanced system load. And PDPS prioritizes tasks based on criticality to meet timing constraints through preemption but relies heavily on task prioritization and may not be energy efficient. Therefore, improvements to both algorithms with energy-aware features will be proposed. Future work should focus on developing hybrid scheduling techniques that minimize energy consumption through intelligent task prioritization, resource allocation, and meeting time constraints.
Keywords: Energy-aware scheduling, fair-share scheduling, priority-driven preemptive scheduling, real-time systems, optimization, resource reservation, timing constraints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204519 Model of Continuous Cheese Whey Fermentation by Candida Pseudotropicalis
Authors: Rudy Agustriyanto, Akbarningrum Fatmawati
Abstract:
The utilization of cheese whey as a fermentation substrate to produce bio-ethanol is an effort to supply bio-ethanol demand as a renewable energy. Like other process systems, modeling is also required for fermentation process design, optimization and plant operation. This research aims to study the fermentation process of cheese whey by applying mathematics and fundamental concept in chemical engineering, and to investigate the characteristic of the cheese whey fermentation process. Steady state simulation results for inlet substrate concentration of 50, 100 and 150 g/l, and various values of hydraulic retention time, showed that the ethanol productivity maximum values were 0.1091, 0.3163 and 0.5639 g/l.h respectively. Those values were achieved at hydraulic retention time of 20 hours, which was the minimum value used in this modeling. This showed that operating reactor at low hydraulic retention time was favorable. Model of bio-ethanol production from cheese whey will enhance the understanding of what really happen in the fermentation process.Keywords: Cheese whey, ethanol, fermentation, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18184518 Dynamic Programming Based Algorithm for the Unit Commitment of the Transmission-Constrained Multi-Site Combined Heat and Power System
Authors: A. Rong, P. B. Luh, R. Lahdelma
Abstract:
High penetration of intermittent renewable energy sources (RES) such as solar power and wind power into the energy system has caused temporal and spatial imbalance between electric power supply and demand for some countries and regions. This brings about the critical need for coordinating power production and power exchange for different regions. As compared with the power-only systems, the combined heat and power (CHP) systems can provide additional flexibility of utilizing RES by exploiting the interdependence of power and heat production in the CHP plant. In the CHP system, power production can be influenced by adjusting heat production level and electric power can be used to satisfy heat demand by electric boiler or heat pump in conjunction with heat storage, which is much cheaper than electric storage. This paper addresses multi-site CHP systems without considering RES, which lay foundation for handling penetration of RES. The problem under study is the unit commitment (UC) of the transmission-constrained multi-site CHP systems. We solve the problem by combining linear relaxation of ON/OFF states and sequential dynamic programming (DP) techniques, where relaxed states are used to reduce the dimension of the UC problem and DP for improving the solution quality. Numerical results for daily scheduling with realistic models and data show that DP-based algorithm is from a few to a few hundred times faster than CPLEX (standard commercial optimization software) with good solution accuracy (less than 1% relative gap from the optimal solution on the average).Keywords: Dynamic programming, multi-site combined heat and power system, relaxed states, transmission-constrained generation unit commitment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16854517 Aeration Optimization in an Activated Sludge Wastewater Treatment Plant Based on CFD Method: A Case Study
Authors: Seyed Sina Khamesi, Rana Rafiei
Abstract:
The extensive aeration process is widely used for wastewater treatment. However, due to the high energy consumption of this process, which is closely related to the issues of environmental sustainability and global climate change, this article presents a simple solution to reduce energy consumption in this process. The amount of required energy is one of the critical considerations for various wastewater treatment techniques. For this purpose, an industrial wastewater treatment plant and all energy-consumer equipment in terms of energy consumption have been analyzed. The investigations and measurements revealed that the aeration unit has the highest energy consumption rate. To address this, an innovative approach is proposed to reduce energy consumption in the identified high-consumer unit. The proposed solution involves introducing baffles to divide the tank into multiple parts and using a tank with a small width and long length to enhance the mixing process. This approach reduces the need for additional equipment and significantly lowers energy consumption. To thoroughly scrutinize the proposed solution and analyze the behavior of the multi-phase fluid inside the tank, the sewage flow has been modeled using the computational fluid dynamics (CFD) method. The study presents an optimal design for the aeration unit based on these findings. The results indicate that implementing the technique suggested in this article can decrease total energy consumption by 33.15% and can be applied to all types of biological treatment plants.
Keywords: Wastewater treatment, aeration, energy consumption, Computational Fluid Dynamics, activated sludge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 315