Search results for: Growth performance
812 The Robust Clustering with Reduction Dimension
Authors: Dyah E. Herwindiati
Abstract:
A clustering is process to identify a homogeneous groups of object called as cluster. Clustering is one interesting topic on data mining. A group or class behaves similarly characteristics. This paper discusses a robust clustering process for data images with two reduction dimension approaches; i.e. the two dimensional principal component analysis (2DPCA) and principal component analysis (PCA). A standard approach to overcome this problem is dimension reduction, which transforms a high-dimensional data into a lower-dimensional space with limited loss of information. One of the most common forms of dimensionality reduction is the principal components analysis (PCA). The 2DPCA is often called a variant of principal component (PCA), the image matrices were directly treated as 2D matrices; they do not need to be transformed into a vector so that the covariance matrix of image can be constructed directly using the original image matrices. The decomposed classical covariance matrix is very sensitive to outlying observations. The objective of paper is to compare the performance of robust minimizing vector variance (MVV) in the two dimensional projection PCA (2DPCA) and the PCA for clustering on an arbitrary data image when outliers are hiden in the data set. The simulation aspects of robustness and the illustration of clustering images are discussed in the end of paperKeywords: Breakdown point, Consistency, 2DPCA, PCA, Outlier, Vector Variance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697811 Properties of Bacterial Nanocellulose for Scenic Arts
Abstract:
Kombucha (a symbiotic culture of bacteria and yeast) produces material capable of acquiring multiple shapes and textures that change significantly under different environment or temperature variations (e.g., when it is exposed to wet conditions), properties that may be explored in the scenic industry. This paper presents an analysis of its specific characteristics, exploring them as a non-conventional material for arts and performance. Costume Design uses surfaces as a powerful way of expression to represent concepts and stories; it may apply the unique features of nano bacterial cellulose (NBC) as assets in this artistic context. A mix of qualitative and quantitative (interventionist) methodology approaches were used such as review of relevant literature to deepen knowledge on the research topic (crossing bibliography from different fields of studies: biology, art, costume design, etc.); as well as descriptive methods: laboratorial experiments, document quantities, observation to identify material properties and possibilities used to express a multiple narrative ideas, concepts and feelings. The results confirmed that NBC is an interactive and versatile material viable to be used in an alternative scenic context; its unique aesthetic and performative qualities, which change in contact to moisture, are resources that can be used to show a visual and poetic impact on stage.
Keywords: Biotechnological materials, contemporary dance, costume design, nano bacterial cellulose, performing arts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 512810 Satellite Sensing for Evaluation of an Irrigation System in Cotton - Wheat Zone
Authors: Sadia Iqbal, Faheem Iqbal, Furqan Iqbal
Abstract:
Efficient utilization of existing water is a pressing need for Pakistan. Due to rising population, reduction in present storage capacity and poor delivery efficiency of 30 to 40% from canal. A study to evaluate an irrigation system in the cotton-wheat zone of Pakistan, after the watercourse lining was conducted. The study is made on the basis of cropping pattern and salinity to evaluate the system. This study employed an index-based approach of using Geographic information system with field data. The satellite images of different years were use to examine the effective area. Several combinations of the ratio of signals received in different spectral bands were used for development of this index. Near Infrared and Thermal IR spectral bands proved to be most effective as this combination helped easy detection of salt affected area and cropping pattern of the study area. Result showed that 9.97% area under salinity in 1992, 9.17% in 2000 and it left 2.29% in year 2005. Similarly in 1992, 45% area is under vegetation it improves to 56% and 65% in 2000 and 2005 respectively. On the basis of these results evaluation is done 30% performance is increase after the watercourse improvement.Keywords: Salinity, remote sensing index, salinity index, cropping pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678809 Assessment of Material Type, Diameter, Orientation and Closeness of Fibers in Vulcanized Reinforced Rubbers
Authors: Ali Osman Güney, Bahattin Kanber
Abstract:
In this work, the effect of material type, diameter, orientation and closeness of fibers on the general performance of reinforced vulcanized rubbers are investigated using finite element method with experimental verification. Various fiber materials such as hemp, nylon, polyester are used for different fiber diameters, orientations and closeness. 3D finite element models are developed by considering bonded contact elements between fiber and rubber sheet interfaces. The fibers are assumed as linear elastic, while vulcanized rubber is considered as hyper-elastic. After an experimental verification of finite element results, the developed models are analyzed under prescribed displacement that causes tension. The normal stresses in fibers and shear stresses between fibers and rubber sheet are investigated in all models. Large deformation of reinforced rubber sheet also represented with various fiber conditions under incremental loading. A general assessment is achieved about best fiber properties of reinforced rubber sheets for tension-load conditions.
Keywords: Fiber properties, finite element method, tension-load condition, reinforced vulcanized rubbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921808 The System for Root Canal Length Measurement Based on Multifrequency Impedance Method
Authors: Zheng Zhang, Xin Chen, Guoqing Ding
Abstract:
Electronic apex locators (EAL) has been widely used clinically for measuring root canal working length with high accuracy, which is crucial for successful endodontic treatment. In order to maintain high accuracy in different measurement environments, this study presented a system for root canal length measurement based on multifrequency impedance method. This measuring system can generate a sweep current with frequencies from 100 Hz to 1 MHz through a direct digital synthesizer. Multiple impedance ratios with different combinations of frequencies were obtained and transmitted by an analog-to-digital converter and several of them with representatives will be selected after data process. The system analyzed the functional relationship between these impedance ratios and the distance between the file and the apex with statistics by measuring plenty of teeth. The position of the apical foramen can be determined by the statistical model using these impedance ratios. The experimental results revealed that the accuracy of the system based on multifrequency impedance ratios method to determine the position of the apical foramen was higher than the dual-frequency impedance ratio method. Besides that, for more complex measurement environments, the performance of the system was more stable.Keywords: Root canal length, apex locator, multifrequency impedance, sweep frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 744807 Parametric Analysis in the Electronic Sensor Frequency Adjustment Process
Authors: Rungchat Chompu-Inwai, Akararit Charoenkasemsuk
Abstract:
The use of electronic sensors in the electronics industry has become increasingly popular over the past few years, and it has become a high competition product. The frequency adjustment process is regarded as one of the most important process in the electronic sensor manufacturing process. Due to inaccuracies in the frequency adjustment process, up to 80% waste can be caused due to rework processes; therefore, this study aims to provide a preliminary understanding of the role of parameters used in the frequency adjustment process, and also make suggestions in order to further improve performance. Four parameters are considered in this study: air pressure, dispensing time, vacuum force, and the distance between the needle tip and the product. A full factorial design for experiment 2k was considered to determine those parameters that significantly affect the accuracy of the frequency adjustment process, where a deviation in the frequency after adjustment and the target frequency is expected to be 0 kHz. The experiment was conducted on two levels, using two replications and with five center-points added. In total, 37 experiments were carried out. The results reveal that air pressure and dispensing time significantly affect the frequency adjustment process. The mathematical relationship between these two parameters was formulated, and the optimal parameters for air pressure and dispensing time were found to be 0.45 MPa and 458 ms, respectively. The optimal parameters were examined by carrying out a confirmation experiment in which an average deviation of 0.082 kHz was achieved.Keywords: Design of Experiment, Electronic Sensor, Frequency Adjustment, Parametric Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397806 Detecting Email Forgery using Random Forests and Naïve Bayes Classifiers
Authors: Emad E Abdallah, A.F. Otoom, ArwaSaqer, Ola Abu-Aisheh, Diana Omari, Ghadeer Salem
Abstract:
As emails communications have no consistent authentication procedure to ensure the authenticity, we present an investigation analysis approach for detecting forged emails based on Random Forests and Naïve Bays classifiers. Instead of investigating the email headers, we use the body content to extract a unique writing style for all the possible suspects. Our approach consists of four main steps: (1) The cybercrime investigator extract different effective features including structural, lexical, linguistic, and syntactic evidence from previous emails for all the possible suspects, (2) The extracted features vectors are normalized to increase the accuracy rate. (3) The normalized features are then used to train the learning engine, (4) upon receiving the anonymous email (M); we apply the feature extraction process to produce a feature vector. Finally, using the machine learning classifiers the email is assigned to one of the suspects- whose writing style closely matches M. Experimental results on real data sets show the improved performance of the proposed method and the ability of identifying the authors with a very limited number of features.Keywords: Digital investigation, cybercrimes, emails forensics, anonymous emails, writing style, and authorship analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5254805 Kinetic Modeling of the Fischer-Tropsch Reactions and Modeling Steady State Heterogeneous Reactor
Authors: M. Ahmadi Marvast, M. Sohrabi, H. Ganji
Abstract:
The rate of production of main products of the Fischer-Tropsch reactions over Fe/HZSM5 bifunctional catalyst in a fixed bed reactor is investigated at a broad range of temperature, pressure, space velocity, H2/CO feed molar ratio and CO2, CH4 and water flow rates. Model discrimination and parameter estimation were performed according to the integral method of kinetic analysis. Due to lack of mechanism development for Fisher – Tropsch Synthesis on bifunctional catalysts, 26 different models were tested and the best model is selected. Comprehensive one and two dimensional heterogeneous reactor models are developed to simulate the performance of fixed-bed Fischer – Tropsch reactors. To reduce computational time for optimization purposes, an Artificial Feed Forward Neural Network (AFFNN) has been used to describe intra particle mass and heat transfer diffusion in the catalyst pellet. It is seen that products' reaction rates have direct relation with H2 partial pressure and reverse relation with CO partial pressure. The results show that the hybrid model has good agreement with rigorous mechanistic model, favoring that the hybrid model is about 25-30 times faster.
Keywords: Fischer-Tropsch, heterogeneous modeling, kinetic study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2820804 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: Crime prediction, machine learning, public safety, smart city.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1324803 Efficient Boosting-Based Active Learning for Specific Object Detection Problems
Authors: Thuy Thi Nguyen, Nguyen Dang Binh, Horst Bischof
Abstract:
In this work, we present a novel active learning approach for learning a visual object detection system. Our system is composed of an active learning mechanism as wrapper around a sub-algorithm which implement an online boosting-based learning object detector. In the core is a combination of a bootstrap procedure and a semi automatic learning process based on the online boosting procedure. The idea is to exploit the availability of classifier during learning to automatically label training samples and increasingly improves the classifier. This addresses the issue of reducing labeling effort meanwhile obtain better performance. In addition, we propose a verification process for further improvement of the classifier. The idea is to allow re-update on seen data during learning for stabilizing the detector. The main contribution of this empirical study is a demonstration that active learning based on an online boosting approach trained in this manner can achieve results comparable or even outperform a framework trained in conventional manner using much more labeling effort. Empirical experiments on challenging data set for specific object deteciton problems show the effectiveness of our approach.Keywords: Computer vision, object detection, online boosting, active learning, labeling complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784802 The Techno-Economic and Environmental Assessments of Grid-Connected Photovoltaic Systems in Bhubaneswar, India
Authors: A. K. Pradhan, M. K. Mohanty, S. K. Kar
Abstract:
The power system utility has started to think about the green power technology in order to have an eco-friendly environment. The green power technology utilizes renewable energy sources for reduction of GHG emissions. Odisha state (India) is very rich in potential of renewable energy sources especially in solar energy (about 300 solar days), for installation of grid connected photovoltaic system. This paper focuses on the utilization of photovoltaic systems in an Institute building of Bhubaneswar city, Odisha. Different data like solar insolation (kW/m2/day), sunshine duration has been collected from metrological stations for Bhubaneswar city. The required electrical power and cost are calculated for daily load of 1.0 kW. The HOMER (Hybrid Optimization Model of Electric Renewable) software is used to estimate system size and its performance analysis. The simulation result shows that the cost of energy (COE) is $ 0.194/kWh, the Operating cost is $63/yr and the net present cost (NPC) is $3,917. The energy produced from PV array is 1,756kWh/yr and energy purchased from grid is 410kWh/yr. The AC primary load consumption is 1314 kWh/yr and the Grid sales are 746 kWh/yr. One battery is connected in parallel with 12V DC Bus and the usable nominal capacity 2.4 kWh with 9.6 h autonomy capacity.
Keywords: Economic assessment, HOMER, Optimization, Photovoltaic (PV), Renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262801 CompPSA: A Component-Based Pairwise RNA Secondary Structure Alignment Algorithm
Authors: Ghada Badr, Arwa Alturki
Abstract:
The biological function of an RNA molecule depends on its structure. The objective of the alignment is finding the homology between two or more RNA secondary structures. Knowing the common functionalities between two RNA structures allows a better understanding and a discovery of other relationships between them. Besides, identifying non-coding RNAs -that is not translated into a protein- is a popular application in which RNA structural alignment is the first step A few methods for RNA structure-to-structure alignment have been developed. Most of these methods are partial structure-to-structure, sequence-to-structure, or structure-to-sequence alignment. Less attention is given in the literature to the use of efficient RNA structure representation and the structure-to-structure alignment methods are lacking. In this paper, we introduce an O(N2) Component-based Pairwise RNA Structure Alignment (CompPSA) algorithm, where structures are given as a component-based representation and where N is the maximum number of components in the two structures. The proposed algorithm compares the two RNA secondary structures based on their weighted component features rather than on their base-pair details. Extensive experiments are conducted illustrating the efficiency of the CompPSA algorithm when compared to other approaches and on different real and simulated datasets. The CompPSA algorithm shows an accurate similarity measure between components. The algorithm gives the flexibility for the user to align the two RNA structures based on their weighted features (position, full length, and/or stem length). Moreover, the algorithm proves scalability and efficiency in time and memory performance.Keywords: Alignment, RNA secondary structure, pairwise, component-based, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974800 Technical Analysis of Combined Solar Water Heating Systems for Cold Climate Regions
Authors: Hossein Lotfizadeh, André McDonald, Amit Kumar
Abstract:
Renewable energy resources, which can supplement space and water heating for residential buildings, can have a noticeable impact on natural gas consumption and air pollution. This study considers a technical analysis of a combined solar water heating system with evacuated tube solar collectors for different solar coverage, ranging from 20% to 100% of the total roof area of a typical residential building located in Edmonton, Alberta, Canada. The alternative heating systems were conventional (non-condensing) and condensing tankless water heaters and condensing boilers that were coupled to solar water heating systems. The performance of the alternative heating systems was compared to a traditional heating system, consisting of a conventional boiler, applied to houses of various gross floor areas. A comparison among the annual natural gas consumption, carbon dioxide (CO2) mitigation, and emissions for the various house sizes indicated that the combined solar heating system can reduce the natural gas consumption and CO2 emissions, and increase CO2 mitigation for all the systems that were studied. The results suggest that solar water heating systems are potentially beneficial for residential heating system applications in terms of energy savings and CO2 mitigation.
Keywords: CO2 emissions, CO2 mitigation, natural gas consumption, solar water heating system, tankless water heater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484799 Attribute Based Comparison and Selection of Modular Self-Reconfigurable Robot Using Multiple Attribute Decision Making Approach
Authors: Manpreet Singh, V. P. Agrawal, Gurmanjot Singh Bhatti
Abstract:
From the last decades, there is a significant technological advancement in the field of robotics, and a number of modular self-reconfigurable robots were introduced that can help in space exploration, bucket to stuff, search, and rescue operation during earthquake, etc. As there are numbers of self-reconfigurable robots, choosing the optimum one is always a concern for robot user since there is an increase in available features, facilities, complexity, etc. The objective of this research work is to present a multiple attribute decision making based methodology for coding, evaluation, comparison ranking and selection of modular self-reconfigurable robots using a technique for order preferences by similarity to ideal solution approach. However, 86 attributes that affect the structure and performance are identified. A database for modular self-reconfigurable robot on the basis of different pertinent attribute is generated. This database is very useful for the user, for selecting a robot that suits their operational needs. Two visual methods namely linear graph and spider chart are proposed for ranking of modular self-reconfigurable robots. Using five robots (Atron, Smores, Polybot, M-Tran 3, Superbot), an example is illustrated, and raking of the robots is successfully done, which shows that Smores is the best robot for the operational need illustrated, and this methodology is found to be very effective and simple to use.
Keywords: Self-reconfigurable robots, MADM, TOPSIS, morphogenesis, scalability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 890798 Using the Combined Model of PROMETHEE and Fuzzy Analytic Network Process for Determining Question Weights in Scientific Exams through Data Mining Approach
Authors: Hassan Haleh, Amin Ghaffari, Parisa Farahpour
Abstract:
Need for an appropriate system of evaluating students- educational developments is a key problem to achieve the predefined educational goals. Intensity of the related papers in the last years; that tries to proof or disproof the necessity and adequacy of the students assessment; is the corroborator of this matter. Some of these studies tried to increase the precision of determining question weights in scientific examinations. But in all of them there has been an attempt to adjust the initial question weights while the accuracy and precision of those initial question weights are still under question. Thus In order to increase the precision of the assessment process of students- educational development, the present study tries to propose a new method for determining the initial question weights by considering the factors of questions like: difficulty, importance and complexity; and implementing a combined method of PROMETHEE and fuzzy analytic network process using a data mining approach to improve the model-s inputs. The result of the implemented case study proves the development of performance and precision of the proposed model.Keywords: Assessing students, Analytic network process, Clustering, Data mining, Fuzzy sets, Multi-criteria decision making, and Preference function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581797 MONPAR - A Page Replacement Algorithm for a Spatiotemporal Database
Authors: U. Kalay, O. Kalıpsız
Abstract:
For a spatiotemporal database management system, I/O cost of queries and other operations is an important performance criterion. In order to optimize this cost, an intense research on designing robust index structures has been done in the past decade. With these major considerations, there are still other design issues that deserve addressing due to their direct impact on the I/O cost. Having said this, an efficient buffer management strategy plays a key role on reducing redundant disk access. In this paper, we proposed an efficient buffer strategy for a spatiotemporal database index structure, specifically indexing objects moving over a network of roads. The proposed strategy, namely MONPAR, is based on the data type (i.e. spatiotemporal data) and the structure of the index structure. For the purpose of an experimental evaluation, we set up a simulation environment that counts the number of disk accesses while executing a number of spatiotemporal range-queries over the index. We reiterated simulations with query sets with different distributions, such as uniform query distribution and skewed query distribution. Based on the comparison of our strategy with wellknown page-replacement techniques, like LRU-based and Prioritybased buffers, we conclude that MONPAR behaves better than its competitors for small and medium size buffers under all used query-distributions.Keywords: Buffer Management, Spatiotemporal databases.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476796 Defining a Pathway to Zero Energy Building: A Case Study on Retrofitting an Old Office Building into a Net Zero Energy Building for Hot-Humid Climate
Authors: Kwame B. O. Amoah
Abstract:
This paper focuses on retrofitting an old existing office building to a net-zero energy building (NZEB). An existing small office building in Melbourne, Florida, was chosen as a case study to integrate state-of-the-art design strategies and energy-efficient building systems to improve building performance and reduce energy consumption. The study aimed to explore possible ways to maximize energy savings and renewable energy generation sources to cover the building's remaining energy needs necessary to achieve net-zero energy goals. A series of retrofit options were reviewed and adopted with some significant additional decision considerations. Detailed processes and considerations leading to zero energy are well documented in this study, with lessons learned adequately outlined. Based on building energy simulations, multiple design considerations were investigated, such as emerging state-of-the-art technologies, material selection, improvements to the building envelope, optimization of the HVAC, lighting systems, and occupancy loads analysis, as well as the application of renewable energy sources. The comparative analysis of simulation results was used to determine how specific techniques led to energy saving and cost reductions. The research results indicate that this small office building can meet net-zero energy use after appropriate design manipulations and renewable energy sources.
Keywords: Energy consumption, building energy analysis, energy retrofits, energy-efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 340795 Application of Machine Learning Methods to Online Test Error Detection in Semiconductor Test
Authors: Matthias Kirmse, Uwe Petersohn, Elief Paffrath
Abstract:
As in today's semiconductor industries test costs can make up to 50 percent of the total production costs, an efficient test error detection becomes more and more important. In this paper, we present a new machine learning approach to test error detection that should provide a faster recognition of test system faults as well as an improved test error recall. The key idea is to learn a classifier ensemble, detecting typical test error patterns in wafer test results immediately after finishing these tests. Since test error detection has not yet been discussed in the machine learning community, we define central problem-relevant terms and provide an analysis of important domain properties. Finally, we present comparative studies reflecting the failure detection performance of three individual classifiers and three ensemble methods based upon them. As base classifiers we chose a decision tree learner, a support vector machine and a Bayesian network, while the compared ensemble methods were simple and weighted majority vote as well as stacking. For the evaluation, we used cross validation and a specially designed practical simulation. By implementing our approach in a semiconductor test department for the observation of two products, we proofed its practical applicability.
Keywords: Ensemble methods, fault detection, machine learning, semiconductor test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2274794 Exergetic and Sustainability Evaluation of a Building Heating System in Izmir, Turkey
Authors: Nurdan Yildirim, Arif Hepbasli
Abstract:
Heating, cooling and lighting appliances in buildings account for more than one third of the world’s primary energy demand. Therefore, main components of the building heating systems play an essential role in terms of energy consumption. In this context, efficient energy and exergy utilization in HVAC-R systems has been very essential, especially in developing energy policies towards increasing efficiencies. The main objective of the present study is to assess the performance of a family house with a volume of 326.7 m3 and a net floor area of 121 m2, located in the city of Izmir, Turkey in terms of energetic, exergetic and sustainability aspects. The indoor and exterior air temperatures are taken as 20°C and 1°C, respectively. In the analysis and assessment, various metrics (indices or indicators) such as exergetic efficiency, exergy flexibility ratio and sustainability index are utilized. Two heating options (Case 1: condensing boiler and Case 2: air heat pump) are considered for comparison purposes. The total heat loss rate of the family house is determined to be 3770.72 W. The overall energy efficiencies of the studied cases are calculated to be 49.4% for Case 1 and 54.7% for Case 2. The overall exergy efficiencies, the flexibility factor and the sustainability index of Cases 1 and 2 are computed to be around 3.3%, 0.17 and 1.034, respectively.
Keywords: Buildings, exergy, low exergy, sustainability, efficiency, heating, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056793 Hospital Administration for Humanized Healthcare in Thailand
Authors: Niwatchai Namwichisirikul
Abstract:
Due to the emergence of “Humanized Healthcare" introduced by Professor Dr. Prawase Wasi in 2003[1], the development of this paradigm tends to be widely implemented. The organizations included Healthcare Accreditation Institute (public organization), National Health Foundation, Mahidol University in cooperation with Thai Health Promotion Foundation, and National Health Security Office (Thailand) have selected the hospitals or infirmaries that are qualified for humanized healthcare since 2008- 2010 and 35 of them are chosen to be the outstandingly navigating organizations for the development of humanized healthcare, humanized healthcare award [2]. The research aims to study the current issue, characteristics and patterns of hospital administration contributing to humanized healthcare system in Thailand. The selected case studies are from four hospitals including Dansai Crown Prince Hospital, Leoi; Ubolrattana Hospital, Khon Kaen; Kapho Hospital, Pattani; and Prathai Hospital, Nakhonrachasima. The methodology is in-depth interviewing with 10 staffs working as hospital executive directors, and representatives from leader groups including directors, multidisciplinary hospital committees, personnel development committees, physicians and nurses in each hospital. (Total=40) In addition, focus group discussions between hospital staffs and general people (including patients and their relatives, the community leader, and other people) are held by means of setting 4 groups including 8 people within each group. (Total=128) The observation on the working in each hospital is also implemented. The findings of the study reveal that there are five important aspects found in each hospital including (1) the quality improvement under the mental and spiritual development policy from the chief executives and lead teams, leaders as Role model and they have visionary leadership; (2) the participation hospital administration system focusing on learning process and stakeholder- needs, spiritual human resource management and development; (3) the relationship among people especially staffs, team work skills, mutual understanding, effective communication and personal inner-development; (4) organization culture relevant to the awareness of patients- rights as well as the participation policy including spiritual growth achieving to the same goals, sharing vision, developing public mind, and caring; and (5) healing structures or environment providing warmth and convenience for hospital staffs, patients and their relatives and visitors.Keywords: Hospital administration, Humanized healthcare.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2503792 Simulation of Snow Covers Area by a Physical based Model
Authors: Hossein Zeinivand, Florimond De Smedt
Abstract:
Snow cover is an important phenomenon in hydrology, hence modeling the snow accumulation and melting is an important issue in places where snowmelt significantly contributes to runoff and has significant effect on water balance. The physics-based models are invariably distributed, with the basin disaggregated into zones or grid cells. Satellites images provide valuable data to verify the accuracy of spatially distributed model outputs. In this study a spatially distributed physically based model (WetSpa) was applied to predict snow cover and melting in the Latyan dam watershed in Iran. Snowmelt is simulated based on an energy balance approach. The model is applied and calibrated with one year of observed daily precipitation, air temperature, windspeed, and daily potential evaporation. The predicted snow-covered area is compared with remotely sensed images (MODIS). The results show that simulated snow cover area SCA has a good agreement with satellite image snow cover area SCA from MODIS images. The model performance is also tested by statistical and graphical comparison of simulated and measured discharges entering the Latyan dam reservoir.Keywords: Physical based model, Satellite image, Snow covers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865791 Study on Buckling and Yielding Behaviors of Low Yield Point Steel Plates
Authors: David Boyajian, Tadeh Zirakian
Abstract:
Stability and performance of steel plates are characterized by geometrical buckling and material yielding. In this paper, the geometrical buckling and material yielding behaviors of low yield point (LYP) steel plates are studied from the point of view of their application in steel plate shear wall (SPSW) systems. Use of LYP steel facilitates the design and application of web plates with improved buckling and energy absorption capacities in SPSW systems. LYP steel infill plates may yield first and then undergo inelastic buckling. Hence, accurate determination of the limiting plate thickness corresponding to simultaneous buckling and yielding can be effective in seismic design of such lateral force-resisting and energy dissipating systems. The limiting thicknesses of plates with different loading and support conditions are determined theoretically and verified through detailed numerical simulations. Effects of use of LYP steel and plate aspect ratio parameter on the limiting plate thickness are investigated as well. In addition, detailed studies are performed on determination of the limiting web-plate thickness in code-designed SPSWs. Some practical recommendations are accordingly provided for efficient seismic design of SPSW systems with LYP steel infill plates.Keywords: Plates, buckling, yielding, low yield point steel, steel plate shear walls.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206790 Production of Energetic Nanomaterials by Spray Flash Evaporation
Authors: Martin Klaumünzer, Jakob Hübner, Denis Spitzer
Abstract:
Within this paper, latest results on processing of energetic nanomaterials by means of the Spray Flash Evaporation technique are presented. This technology constitutes a highly effective and continuous way to prepare fascinating materials on the nano- and micro-scale. Within the process, a solution is set under high pressure and sprayed into an evacuated atomization chamber. Subsequent ultrafast evaporation of the solvent leads to an aerosol stream, which is separated by cyclones or filters. No drying gas is required, so the present technique should not be confused with spray dying. Resulting nanothermites, insensitive explosives or propellants and compositions are foreseen to replace toxic (according to REACH) and very sensitive matter in military and civil applications. Diverse examples are given in detail: nano-RDX (n-Cyclotrimethylentrinitramin) and nano-aluminum based systems, mixtures (n-RDX/n-TNT - trinitrotoluene) or even cocrystalline matter like n-CL-20/HMX (Hexanitrohexaazaisowurtzitane/ Cyclotetra-methylentetranitramin). These nanomaterials show reduced sensitivity by trend without losing effectiveness and performance. An analytical study for material characterization was performed by using Atomic Force Microscopy, X-Ray Diffraction, and combined techniques as well as spectroscopic methods. As a matter of course, sensitivity tests regarding electrostatic discharge, impact, and friction are provided.
Keywords: Continuous synthesis, energetic material, nanoscale, nanothermite, nanoexplosive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436789 Aircraft Automatic Collision Avoidance Using Spiral Geometric Approach
Authors: M. Orefice, V. Di Vito
Abstract:
This paper provides a description of a Collision Avoidance algorithm that has been developed starting from the mathematical modeling of the flight of insects, in terms of spirals and conchospirals geometric paths. It is able to calculate a proper avoidance manoeuver aimed to prevent the infringement of a predefined distance threshold between ownship and the considered intruder, while minimizing the ownship trajectory deviation from the original path and in compliance with the aircraft performance limitations and dynamic constraints. The algorithm is designed in order to be suitable for real-time applications, so that it can be considered for the implementation in the most recent airborne automatic collision avoidance systems using the traffic data received through an ADS-B IN device. The presented approach is able to take into account the rules-of-the-air, due to the possibility to select, through specifically designed decision making logic based on the consideration of the encounter geometry, the direction of the calculated collision avoidance manoeuver that allows complying with the rules-of-the-air, as for instance the fundamental right of way rule. In the paper, the proposed collision avoidance algorithm is presented and its preliminary design and software implementation is described. The applicability of this method has been proved through preliminary simulation tests performed in a 2D environment considering single intruder encounter geometries, as reported and discussed in the paper.
Keywords: collision avoidance, RPAS, spiral geometry, ADS-B based application
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666788 Low Light Image Enhancement with Multi-Stage Interconnected Autoencoders Integration in Pix-to-Pix GAN
Authors: Muhammad Atif, Cang Yan
Abstract:
The enhancement of low-light images is a significant area of study aimed at enhancing the quality of captured images in challenging lighting environments. Recently, methods based on Convolutional Neural Networks (CNN) have gained prominence as they offer state-of-the-art performance. However, many approaches based on CNN rely on increasing the size and complexity of the neural network. In this study, we propose an alternative method for improving low-light images using an Autoencoders-based multiscale knowledge transfer model. Our method leverages the power of three autoencoders, where the encoders of the first two autoencoders are directly connected to the decoder of the third autoencoder. Additionally, the decoder of the first two autoencoders is connected to the encoder of the third autoencoder. This architecture enables effective knowledge transfer, allowing the third autoencoder to learn and benefit from the enhanced knowledge extracted by the first two autoencoders. We further integrate the proposed model into the Pix-to-Pix GAN framework. By integrating our proposed model as the generator in the GAN framework, we aim to produce enhanced images that not only exhibit improved visual quality but also possess a more authentic and realistic appearance. These experimental results, both qualitative and quantitative, show that our method is better than the state-of-the-art methodologies.
Keywords: Low light image enhancement, deep learning, convolutional neural network, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33787 Real-Time Fitness Monitoring with MediaPipe
Authors: Chandra Prayaga, Lakshmi Prayaga, Aaron Wade, Kyle Rank, Gopi Shankar Mallu, Sri Satya Harsha Pola
Abstract:
In today's tech-driven world, where connectivity shapes our daily lives, maintaining physical and emotional health is crucial. Athletic trainers play a vital role in optimizing athletes' performance and preventing injuries. However, a shortage of trainers impacts the quality of care. This study introduces a vision-based exercise monitoring system leveraging Google's MediaPipe library for precise tracking of bicep curl exercises and simultaneous posture monitoring. We propose a three-stage methodology: landmark detection, side detection, and angle computation. Our system calculates angles at the elbow, wrist, neck, and torso to assess exercise form. Experimental results demonstrate the system's effectiveness in distinguishing between good and partial repetitions and evaluating body posture during exercises, providing real-time feedback for precise fitness monitoring.
Keywords: Physical health, athletic trainers, fitness monitoring, technology driven solutions, Google's MediaPipe, landmark detection, angle computation, real-time feedback.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 113786 Comparison of Different Discontinuous PWM Technique for Switching Losses Reduction in Modular Multilevel Converters
Authors: Kaumil B. Shah, Hina Chandwani
Abstract:
The modular multilevel converter (MMC) is one of the advanced topologies for medium and high-voltage applications. In high-power, high-voltage MMC, a large number of switching power devices are required. These switching power devices (IGBT) considerable switching losses. This paper analyzes the performance of different discontinuous pulse width modulation (DPWM) techniques and compares the results against a conventional carrier based pulse width modulation method, in order to reduce the switching losses of an MMC. The DPWM reference wave can be generated by adding the zero-sequence component to the original (sine) reference modulation signal. The result of the addition gives the reference signal of DPWM techniques. To minimize the switching losses of the MMC, the clamping period is controlled according to the absolute value of the output load current. No switching is generated in the clamping period so overall switching of the power device is reduced. The simulation result of the different DPWM techniques is compared with conventional carrier-based pulse-width modulation technique.Keywords: Modular multilevel converter, discontinuous pulse width modulation, switching losses, zero-sequence voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 919785 Intelligent Neural Network Based STLF
Authors: H. Shayeghi, H. A. Shayanfar, G. Azimi
Abstract:
Short-Term Load Forecasting (STLF) plays an important role for the economic and secure operation of power systems. In this paper, Continuous Genetic Algorithm (CGA) is employed to evolve the optimum large neural networks structure and connecting weights for one-day ahead electric load forecasting problem. This study describes the process of developing three layer feed-forward large neural networks for load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. We find good performance for the large neural networks. The proposed methodology gives lower percent errors all the time. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.
Keywords: Feed-forward Large Neural Network, Short-TermLoad Forecasting, Continuous Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830784 Adaptive Fuzzy Control for Air-Fuel Ratio of Automobile Spark Ignition Engine
Authors: Ali Ghaffari, A. Hosein Shamekhi, Akbar Saki, Ehsan Kamrani
Abstract:
In order to meet the limits imposed on automotive emissions, engine control systems are required to constrain air/fuel ratio (AFR) in a narrow band around the stoichiometric value, due to the strong decay of catalyst efficiency in case of rich or lean mixture. This paper presents a model of a sample spark ignition engine and demonstrates Simulink-s capabilities to model an internal combustion engine from the throttle to the crankshaft output. We used welldefined physical principles supplemented, where appropriate, with empirical relationships that describe the system-s dynamic behavior without introducing unnecessary complexity. We also presents a PID tuning method that uses an adaptive fuzzy system to model the relationship between the controller gains and the target output response, with the response specification set by desired percent overshoot and settling time. The adaptive fuzzy based input-output model is then used to tune on-line the PID gains for different response specifications. Experimental results demonstrate that better performance can be achieved with adaptive fuzzy tuning relative to similar alternative control strategies. The actual response specifications with adaptive fuzzy matched the desired response specifications.Keywords: Modelling, Air–fuel ratio control, SI engine, Adaptive fuzzy Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2525783 Development of Piezoelectric Gas Micro Pumps with the PDMS Check Valve Design
Authors: Chiang-Ho Cheng, An-Shik Yang, Hong-Yih Cheng, Ming-Yu Lai
Abstract:
This paper presents the design and fabrication of a novel piezoelectric actuator for a gas micro pump with check valve having the advantages of miniature size, light weight and low power consumption. The micro pump is designed to have eight major components, namely a stainless steel upper cover layer, a piezoelectric actuator, a stainless steel diaphragm, a PDMS chamber layer, two stainless steel channel layers with two valve seats, a PDMS check valve layer with two cantilever-type check valves and an acrylic substrate. A prototype of the gas micro pump, with a size of 52 mm × 50 mm × 5.0 mm, is fabricated by precise manufacturing. This device is designed to pump gases with the capability of performing the self-priming and bubble-tolerant work mode by maximizing the stroke volume of the membrane as well as the compression ratio via minimization of the dead volume of the micro pump chamber and channel. By experiment apparatus setup, we can get the real-time values of the flow rate of micro pump and the displacement of the piezoelectric actuator, simultaneously. The gas micro pump obtained higher output performance under the sinusoidal waveform of 250 Vpp. The micro pump achieved the maximum pumping rates of 1185 ml/min and back pressure of 7.14 kPa at the corresponding frequency of 120 and 50 Hz.Keywords: PDMS, Check valve, Micro pump, Piezoelectric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026