Search results for: soft computing
337 SeCloudBPMN: A Lightweight Extension for BPMN Considering Security Threats in the Cloud
Authors: Somayeh Sobati Moghadam
Abstract:
Business processes are crucial for organizations and help businesses to evaluate and optimize their performance and processes against current and future-state business goals. Outsourcing business processes to the cloud becomes popular due to a wide varsity of benefits and cost-saving. However, cloud outsourcing raises enterprise data security concerns, which must be incorporated in Business Process Model and Notation (BPMN). This paper, presents SeCloudBPMN, a lightweight extension for BPMN which extends the BPMN to explicitly support the security threats in the cloud as an outsourcing environment. SeCloudBPMN helps business’s security experts to outsource business processes to the cloud considering different threats from inside and outside the cloud. In this way, appropriate security countermeasures could be considered to preserve data security in business processes outsourcing to the cloud.Keywords: BPMN, security threats, cloud computing, graphical representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780336 Creative Teaching of New Product Development to Operations Managers
Authors: Marco Leite, J. M. Vilas-Boas da Silva, Isabel Duarte de Almeida
Abstract:
New Product Development (NPD) has got its roots on an Engineering background. Thus, one might wonder about the interest, opportunity, contents and delivery process, if students from soft sciences were involved. This paper addressed «What to teach?» and «How to do it?», as the preliminary research questions that originated the introduced propositions. The curriculum-developer model that was purposefully chosen to adapt the coursebook by pursuing macro/micro strategies was found significant by an exploratory qualitative case study. Moreover, learning was developed and value created by implementing the institutional curriculum through a creative, hands-on, experiencing, problem-solving, problem-based but organized teamwork approach. Product design of an orange squeezer complying with ill-defined requirements, including drafts, sketches, prototypes, CAD simulations and a business plan, plus a website, written reports and presentations were the deliverables that confirmed an innovative contribution towards research and practice of teaching and learning of engineering subjects to non-specialist operations managers candidates.
Keywords: Teaching Engineering to Non-specialists, Operations Managers Education, Teamwork, Product Design and Development, Market- driven NPD, Curriculum development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410335 An Efficient Run Time Interface for Heterogeneous Architecture of Large Scale Supercomputing System
Authors: Prabu D., Andrew Aaron James, Vanamala V., Vineeth Simon, Sanjeeb Kumar Deka, Sridharan R., Prahlada Rao B.B., Mohanram N.
Abstract:
In this paper we propose a novel Run Time Interface (RTI) technique to provide an efficient environment for MPI jobs on the heterogeneous architecture of PARAM Padma. It suggests an innovative, unified framework for the job management interface system in parallel and distributed computing. This approach employs proxy scheme. The implementation shows that the proposed RTI is highly scalable and stable. Moreover RTI provides the storage access for the MPI jobs in various operating system platforms and improve the data access performance through high performance C-DAC Parallel File System (C-PFS). The performance of the RTI is evaluated by using the standard HPC benchmark suites and the simulation results show that the proposed RTI gives good performance on large scale supercomputing system.Keywords: RTI, C-MPI, C-PFS, Scheduler Interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441334 An Implicit Representation of Spherical Product for Increasing the Shape Variety of Super-quadrics in Implicit Surface Modeling
Authors: Pi-Chung Hsu
Abstract:
Super-quadrics can represent a set of implicit surfaces, which can be used furthermore as primitive surfaces to construct a complex object via Boolean set operations in implicit surface modeling. In fact, super-quadrics were developed to create a parametric surface by performing spherical product on two parametric curves and some of the resulting parametric surfaces were also represented as implicit surfaces. However, because not every parametric curve can be redefined implicitly, this causes only implicit super-elliptic and super-hyperbolic curves are applied to perform spherical product and so only implicit super-ellipsoids and hyperboloids are developed in super-quadrics. To create implicit surfaces with more diverse shapes than super-quadrics, this paper proposes an implicit representation of spherical product, which performs spherical product on two implicit curves like super-quadrics do. By means of the implicit representation, many new implicit curves such as polygonal, star-shaped and rose-shaped curves can be used to develop new implicit surfaces with a greater variety of shapes than super-quadrics, such as polyhedrons, hyper-ellipsoids, superhyperboloids and hyper-toroids containing star-shaped and roseshaped major and minor circles. Besides, the newly developed implicit surfaces can also be used to define new primitive implicit surfaces for constructing a more complex implicit surface in implicit surface modeling.Keywords: Implicit surfaces, Soft objects, Super-quadrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474333 A Novel Receiver Algorithm for Coherent Underwater Acoustic Communications
Authors: Liang Zhao, Jianhua Ge
Abstract:
In this paper, we proposed a novel receiver algorithm for coherent underwater acoustic communications. The proposed receiver is composed of three parts: (1) Doppler tracking and correction, (2) Time reversal channel estimation and combining, and (3) Joint iterative equalization and decoding (JIED). To reduce computational complexity and optimize the equalization algorithm, Time reversal (TR) channel estimation and combining is adopted to simplify multi-channel adaptive decision feedback equalizer (ADFE) into single channel ADFE without reducing the system performance. Simultaneously, the turbo theory is adopted to form joint iterative ADFE and convolutional decoder (JIED). In JIED scheme, the ADFE and decoder exchange soft information in an iterative manner, which can enhance the equalizer performance using decoding gain. The simulation results show that the proposed algorithm can reduce computational complexity and improve the performance of equalizer. Therefore, the performance of coherent underwater acoustic communications can be improved greatly.Keywords: Underwater acoustic communication, Time reversal (TR) combining, joint iterative equalization and decoding (JIED)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725332 Towards Design of Context-Aware Sensor Grid Framework for Agriculture
Authors: Aqeel-ur-Rehman, Zubair A. Shaikh
Abstract:
This paper is to present context-aware sensor grid framework for agriculture and its design challenges. Use of sensor networks in the domain of agriculture is not new. However, due to the unavailability of any common framework, solutions that are developed in this domain are location, environment and problem dependent. Keeping the need of common framework for agriculture, Context-Aware Sensor Grid Framework is proposed. It will be helpful in developing solutions for majority of the problems related to irrigation, pesticides spray, use of fertilizers, regular monitoring of plot and yield etc. due to the capability of adjusting according to location and environment. The proposed framework is composed of three layer architecture including context-aware application layer, grid middleware layer and sensor network layer.Keywords: Agriculture, Context-Awareness, Grid Computing, and Sensor Grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575331 Activities of Alkaline Phosphatase and Ca2+ATPase over the Molting Cycle of mud Crab (Scylla serrata)
Authors: J. Salaenoi, A. Thongpan, M. Mingmuang
Abstract:
The activities of alkaline phosphatase and Ca2+ATPase in mud crab (Scylla serrata) collected from a soft-shell crab farm in Chantaburi Province, Thailand, in several stages of molting cycle were observed. The results showed that the activity of alkaline phosphatase in gill after molting was highly significant (p<0.05) comparing to those at intermolt and premolt stages. The activity profiles of alkaline phosphatase in integument and haemolymph were similar showing a decrease from intermolt to 2- week premolt stage and increased during 2-day premolt to 6-h postmolt stage before dropping at 7-day postmolt stage, while this enzyme in the gill was quite low at intermolt and premolt stages. For Ca2+ATPase, the activity profiles in gill and integument corresponded to the molting variation, especially the activities increased during 5-7 day postmolt stage were at highly significant levels (p<0.05) comparing to those at premolt and early postmolt stages. The highest activity of Ca2+ATPase in haemolymph was found at 2-week premolt stage (p<0.05). Changes in alkaline phosphatase and Ca2+ATPase activities over the molting cycle clearly indicated their active functions on calcification.
Keywords: Scylla serrata, molting cycle, alkaline phosphatase, Ca2+ATPase
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593330 Evaluation of Fuzzy ARTMAP with DBSCAN in VLSI Application
Authors: K. A. Sumithradevi, Vijayalakshmi. M. N., Annamma Abraham., Dr. Vasanta
Abstract:
The various applications of VLSI circuits in highperformance computing, telecommunications, and consumer electronics has been expanding progressively, and at a very hasty pace. This paper describes a new model for partitioning a circuit using DBSCAN and fuzzy ARTMAP neural network. The first step is concerned with feature extraction, where we had make use DBSCAN algorithm. The second step is the classification and is composed of a fuzzy ARTMAP neural network. The performance of both approaches is compared using benchmark data provided by MCNC standard cell placement benchmark netlists. Analysis of the investigational results proved that the fuzzy ARTMAP with DBSCAN model achieves greater performance then only fuzzy ARTMAP in recognizing sub-circuits with lowest amount of interconnections between them The recognition rate using fuzzy ARTMAP with DBSCAN is 97.7% compared to only fuzzy ARTMAP.Keywords: VLSI, Circuit partitioning, DBSCAN, fuzzyARTMAP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464329 Reliability Evaluation using Triangular Intuitionistic Fuzzy Numbers Arithmetic Operations
Authors: G. S. Mahapatra, T. K. Roy
Abstract:
In general fuzzy sets are used to analyze the fuzzy system reliability. Here intuitionistic fuzzy set theory for analyzing the fuzzy system reliability has been used. To analyze the fuzzy system reliability, the reliability of each component of the system as a triangular intuitionistic fuzzy number is considered. Triangular intuitionistic fuzzy number and their arithmetic operations are introduced. Expressions for computing the fuzzy reliability of a series system and a parallel system following triangular intuitionistic fuzzy numbers have been described. Here an imprecise reliability model of an electric network model of dark room is taken. To compute the imprecise reliability of the above said system, reliability of each component of the systems is represented by triangular intuitionistic fuzzy numbers. Respective numerical example is presented.Keywords: Fuzzy set, Intuitionistic fuzzy number, Systemreliability, Triangular intuitionistic fuzzy number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3174328 Analytical Authentication of Butter Using Fourier Transform Infrared Spectroscopy Coupled with Chemometrics
Authors: M. Bodner, M. Scampicchio
Abstract:
Fourier Transform Infrared (FT-IR) spectroscopy coupled with chemometrics was used to distinguish between butter samples and non-butter samples. Further, quantification of the content of margarine in adulterated butter samples was investigated. Fingerprinting region (1400-800 cm–1) was used to develop unsupervised pattern recognition (Principal Component Analysis, PCA), supervised modeling (Soft Independent Modelling by Class Analogy, SIMCA), classification (Partial Least Squares Discriminant Analysis, PLS-DA) and regression (Partial Least Squares Regression, PLS-R) models. PCA of the fingerprinting region shows a clustering of the two sample types. All samples were classified in their rightful class by SIMCA approach; however, nine adulterated samples (between 1% and 30% w/w of margarine) were classified as belonging both at the butter class and at the non-butter one. In the two-class PLS-DA model’s (R2 = 0.73, RMSEP, Root Mean Square Error of Prediction = 0.26% w/w) sensitivity was 71.4% and Positive Predictive Value (PPV) 100%. Its threshold was calculated at 7% w/w of margarine in adulterated butter samples. Finally, PLS-R model (R2 = 0.84, RMSEP = 16.54%) was developed. PLS-DA was a suitable classification tool and PLS-R a proper quantification approach. Results demonstrate that FT-IR spectroscopy combined with PLS-R can be used as a rapid, simple and safe method to identify pure butter samples from adulterated ones and to determine the grade of adulteration of margarine in butter samples.
Keywords: Adulterated butter, margarine, PCA, PLS-DA, PLS-R, SIMCA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781327 Touch Interaction through Tagging Context
Authors: Gabriel Chavira, Jorge Orozco, Salvador Nava, Eduardo Álvarez, Julio Rolón, Roberto Pichardo
Abstract:
Ambient Intelligence promotes a shift in computing which involves fitting-out the environments with devices to support context-aware applications. One of main objectives is the reduction to a minimum of the user’s interactive effort, the diversity and quantity of devices with which people are surrounded with, in existing environments; increase the level of difficulty to achieve this goal. The mobile phones and their amazing global penetration, makes it an excellent device for delivering new services to the user, without requiring a learning effort. The environment will have to be able to perceive all of the interaction techniques. In this paper, we present the PICTAC model (Perceiving touch Interaction through TAgging Context), which similarly delivers service to members of a research group.
Keywords: Ambient Intelligence, Tagging Context, Touch Interaction, Touching Services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835326 Exchanges of Knowledge about Product Configurations using XML Topic Map
Authors: Namchul Do, Jihun Cho
Abstract:
Modeling product configurations needs large amounts of knowledge about technical and marketing restrictions on the product. Previous attempts to automate product configurations concentrate on representations and management of the knowledge for specific domains in fixed and isolated computing environments. Since the knowledge about product configurations is subject to continuous change and hard to express, these attempts often failed to efficiently manage and exchange the knowledge in collaborative product development. In this paper, XML Topic Map (XTM) is introduced to represent and exchange the knowledge about product configurations in collaborative product development. A product configuration model based on XTM along with its merger and inference facilities enables configuration engineers in collaborative product development to manage and exchange their knowledge efficiently. A prototype implementation is also presented to demonstrate the proposed model can be applied to engineering information systems to exchange the product configuration knowledge.
Keywords: Knowledge exchange, product configurations, XML topic map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1353325 Comparing Autoregressive Moving Average (ARMA) Coefficients Determination using Artificial Neural Networks with Other Techniques
Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb
Abstract:
Autoregressive Moving average (ARMA) is a parametric based method of signal representation. It is suitable for problems in which the signal can be modeled by explicit known source functions with a few adjustable parameters. Various methods have been suggested for the coefficients determination among which are Prony, Pade, Autocorrelation, Covariance and most recently, the use of Artificial Neural Network technique. In this paper, the method of using Artificial Neural network (ANN) technique is compared with some known and widely acceptable techniques. The comparisons is entirely based on the value of the coefficients obtained. Result obtained shows that the use of ANN also gives accurate in computing the coefficients of an ARMA system.
Keywords: Autoregressive moving average, coefficients, back propagation, model parameters, neural network, weight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2290324 Feature's Extraction of Human Body Composition in Images by Segmentation Method
Authors: Mousa Mojarrad, Mashallah Abbasi Dezfouli, Amir Masoud Rahmani
Abstract:
Detection and recognition of the Human Body Composition and extraction their measures (width and length of human body) in images are a major issue in detecting objects and the important field in Image, Signal and Vision Computing in recent years. Finding people and extraction their features in Images are particularly important problem of object recognition, because people can have high variability in the appearance. This variability may be due to the configuration of a person (e.g., standing vs. sitting vs. jogging), the pose (e.g. frontal vs. lateral view), clothing, and variations in illumination. In this study, first, Human Body is being recognized in image then the measures of Human Body extract from the image.
Keywords: Analysis of image processing, canny edge detection, classification, feature extraction, human body recognition, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2771323 An Aggregate Production Planning Model for Brass Casting Industry in Fuzzy Environment
Authors: Ömer Faruk Baykoç, Ümit Sami Sakalli
Abstract:
In this paper, we propose a fuzzy aggregate production planning (APP) model for blending problem in a brass factory which is the problem of computing optimal amounts of raw materials for the total production of several types of brass in a period. The model has deterministic and imprecise parameters which follows triangular possibility distributions. The brass casting APP model can not always be solved by using common approaches used in the literature. Therefore a mathematical model is presented for solving this problem. In the proposed model, the Lai and Hwang-s fuzzy ranking concept is relaxed by using one constraint instead of three constraints. An application of the brass casting APP model in a brass factory shows that the proposed model successfully solves the multi-blend problem in casting process and determines the optimal raw material purchasing policies.Keywords: Aggregate production planning, Blending, brasscasting, possibilistic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908322 Auto Tuning of PID Controller for MIMO Processes
Authors: M. J. Lengare, R. H. Chile, L. M. Waghmare, Bhavesh Parmar
Abstract:
One of the most basic functions of control engineers is tuning of controllers. There are always several process loops in the plant necessitate of tuning. The auto tuned Proportional Integral Derivative (PID) Controllers are designed for applications where large load changes are expected or the need for extreme accuracy and fast response time exists. The algorithm presented in this paper is used for the tuning PID controller to obtain its parameters with a minimum computing complexity. It requires continuous analysis of variation in few parameters, and let the program to do the plant test and calculate the controller parameters to adjust and optimize the variables for the best performance. The algorithm developed needs less time as compared to a normal step response test for continuous tuning of the PID through gain scheduling.Keywords: Auto tuning; gain scheduling; MIMO Processes; Optimization; PID controller; Process Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3012321 eLearning Tools Evaluation based on Quality Concept Distance Computing. A Case Study
Authors: Mihai Caramihai, Irina Severin
Abstract:
Despite the extensive use of eLearning systems, there is no consensus on a standard framework for evaluating this kind of quality system. Hence, there is only a minimum set of tools that can supervise this judgment and gives information about the course content value. This paper presents two kinds of quality set evaluation indicators for eLearning courses based on the computational process of three known metrics, the Euclidian, Hamming and Levenshtein distances. The “distance" calculus is applied to standard evaluation templates (i.e. the European Commission Programme procedures vs. the AFNOR Z 76-001 Standard), determining a reference point in the evaluation of the e-learning course quality vs. the optimal concept(s). The case study, based on the results of project(s) developed in the framework of the European Programme “Leonardo da Vinci", with Romanian contractors, try to put into evidence the benefits of such a method.Keywords: eLearning, European programme, metrics, quality evaluation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520320 Computation of Probability Coefficients using Binary Decision Diagram and their Application in Test Vector Generation
Authors: Ashutosh Kumar Singh, Anand Mohan
Abstract:
This paper deals with efficient computation of probability coefficients which offers computational simplicity as compared to spectral coefficients. It eliminates the need of inner product evaluations in determination of signature of a combinational circuit realizing given Boolean function. The method for computation of probability coefficients using transform matrix, fast transform method and using BDD is given. Theoretical relations for achievable computational advantage in terms of required additions in computing all 2n probability coefficients of n variable function have been developed. It is shown that for n ≥ 5, only 50% additions are needed to compute all probability coefficients as compared to spectral coefficients. The fault detection techniques based on spectral signature can be used with probability signature also to offer computational advantage.Keywords: Binary Decision Diagrams, Spectral Coefficients, Fault detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465319 Texture Feature-Based Language Identification Using Wavelet-Domain BDIP and BVLC Features and FFT Feature
Authors: Ick Hoon Jang, Hoon Jae Lee, Dae Hoon Kwon, Ui Young Pak
Abstract:
In this paper, we propose a texture feature-based language identification using wavelet-domain BDIP (block difference of inverse probabilities) and BVLC (block variance of local correlation coefficients) features and FFT (fast Fourier transform) feature. In the proposed method, wavelet subbands are first obtained by wavelet transform from a test image and denoised by Donoho-s soft-thresholding. BDIP and BVLC operators are next applied to the wavelet subbands. FFT blocks are also obtained by 2D (twodimensional) FFT from the blocks into which the test image is partitioned. Some significant FFT coefficients in each block are selected and magnitude operator is applied to them. Moments for each subband of BDIP and BVLC and for each magnitude of significant FFT coefficients are then computed and fused into a feature vector. In classification, a stabilized Bayesian classifier, which adopts variance thresholding, searches the training feature vector most similar to the test feature vector. Experimental results show that the proposed method with the three operations yields excellent language identification even with rather low feature dimension.Keywords: BDIP, BVLC, FFT, language identification, texture feature, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149318 SOA and BPM Partnership: A Paradigm for Dynamic and Flexible Process and I.T. Management
Authors: Imran Sarwar Bajwa, Rafaqut Kazmi, Shahzad Mumtaz, M. Abbas Choudhary, M. Shahid Naweed
Abstract:
Business Process Management (BPM) helps in optimizing the business processes inside an enterprise. But BPM architecture does not provide any help for extending the enterprise. Modern business environments and rapidly changing technologies are asking for brisk changes in the business processes. Service Oriented Architecture (SOA) can help in enabling the success of enterprise-wide BPM. SOA supports agility in software development that is directly related to achieve loose coupling of interacting software agents. Agility is a premium concern of the current software designing architectures. Together, BPM and SOA provide a perfect combination for enterprise computing. SOA provides the capabilities for services to be combined together and to support and create an agile, flexible enterprise. But there are still many questions to answer; BPM is better or SOA? and what is the future track of BPM and SOA? This paper tries to answer some of these important questions.
Keywords: Information Systems, BPM, SOA, Process management, IT management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2667317 Master in Maritime Logistics: An Industry-Driven Design
Authors: Marco Sernaglia, Augusto M. P. Carreira, Helena M. L. Carvalho, Pedro B. Água, Armindo Frias, Manuel Carrasqueira
Abstract:
The existence of mismatches between the qualification requirements of professionals in the maritime industry and existing higher education offers was verified within the scope of the European project MarLEM (Maritime Logistics Engineering and Management). Professionals in the maritime industry today and in the future face additional obstacles as a result of the sector's global nature as well as the sector's rapid technological and social evolution. As a result, they feel the need to update their skills and knowledge. A professional-oriented master's program was developed to fill this gap. The NOVA School of Science and Technology and the Portuguese Naval School co-developed this Master's program with the active participation of MarLEM project partners from academia and industry. In this work, the principles and approach used to design the master's program are presented. Its design and a concise synopsis of the courses' content are shown. In addition, other international courses covering the same topic are compared. As a result of this work, the teaching materials related to maritime logistics are improved and the assumptions and methodology that guided the creation of an international master's program in maritime logistics are disseminated.
Keywords: Education, maritime logistics, shipping, industrial engineering, management, soft skills.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 511316 Strip Decomposition Parallelization of Fast Direct Poisson Solver on a 3D Cartesian Staggered Grid
Authors: Minh Vuong Pham, Frédéric Plourde, Son Doan Kim
Abstract:
A strip domain decomposition parallel algorithm for fast direct Poisson solver is presented on a 3D Cartesian staggered grid. The parallel algorithm follows the principles of sequential algorithm for fast direct Poisson solver. Both Dirichlet and Neumann boundary conditions are addressed. Several test cases are likewise addressed in order to shed light on accuracy and efficiency in the strip domain parallelization algorithm. Actually the current implementation shows a very high efficiency when dealing with a large grid mesh up to 3.6 * 109 under massive parallel approach, which explicitly demonstrates that the proposed algorithm is ready for massive parallel computing.
Keywords: Strip-decomposition, parallelization, fast directpoisson solver.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045315 Parallelization of Ensemble Kalman Filter (EnKF) for Oil Reservoirs with Time-lapse Seismic Data
Authors: Md Khairullah, Hai-Xiang Lin, Remus G. Hanea, Arnold W. Heemink
Abstract:
In this paper we describe the design and implementation of a parallel algorithm for data assimilation with ensemble Kalman filter (EnKF) for oil reservoir history matching problem. The use of large number of observations from time-lapse seismic leads to a large turnaround time for the analysis step, in addition to the time consuming simulations of the realizations. For efficient parallelization it is important to consider parallel computation at the analysis step. Our experiments show that parallelization of the analysis step in addition to the forecast step has good scalability, exploiting the same set of resources with some additional efforts.
Keywords: EnKF, Data assimilation, Parallel computing, Parallel efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281314 Statistical Reliability Based Modeling of Series and Parallel Operating Systems using Extreme Value Theory
Authors: Mohamad Mahdavi, Mojtaba Mahdavi
Abstract:
This paper tries to represent a new method for computing the reliability of a system which is arranged in series or parallel model. In this method we estimate life distribution function of whole structure using the asymptotic Extreme Value (EV) distribution of Type I, or Gumbel theory. We use EV distribution in minimal mode, for estimate the life distribution function of series structure and maximal mode for parallel system. All parameters also are estimated by Moments method. Reliability function and failure (hazard) rate and p-th percentile point of each function are determined. Other important indexes such as Mean Time to Failure (MTTF), Mean Time to repair (MTTR), for non-repairable and renewal systems in both of series and parallel structure will be computed.Keywords: Reliability, extreme value, parallel, series, lifedistribution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090313 Certain Data Dimension Reduction Techniques for application with ANN based MCS for Study of High Energy Shower
Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta
Abstract:
Cosmic showers, from their places of origin in space, after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of EAS and similar High Energy Particle Showers involve a plethora of experimental setups with certain constraints for which soft-computational tools like Artificial Neural Network (ANN)s can be adopted. The optimality of ANN classifiers can be enhanced further by the use of Multiple Classifier System (MCS) and certain data - dimension reduction techniques. This work describes the performance of certain data dimension reduction techniques like Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Self Organizing Map (SOM) approximators for application with an MCS formed using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN). The data inputs are obtained from an array of detectors placed in a circular arrangement resembling a practical detector grid which have a higher dimension and greater correlation among themselves. The PCA, ICA and SOM blocks reduce the correlation and generate a form suitable for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.Keywords: EAS, Shower, Core, ANN, Location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608312 Efficient Implementation of Serial and Parallel Support Vector Machine Training with a Multi-Parameter Kernel for Large-Scale Data Mining
Authors: Tatjana Eitrich, Bruno Lang
Abstract:
This work deals with aspects of support vector learning for large-scale data mining tasks. Based on a decomposition algorithm that can be run in serial and parallel mode we introduce a data transformation that allows for the usage of an expensive generalized kernel without additional costs. In order to speed up the decomposition algorithm we analyze the problem of working set selection for large data sets and analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our modifications and settings lead to improvement of support vector learning performance and thus allow using extensive parameter search methods to optimize classification accuracy.
Keywords: Support Vector Machines, Shared Memory Parallel Computing, Large Data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577311 Research on Weakly Hard Real-Time Constraints and Their Boolean Combination to Support Adaptive QoS
Authors: Xiangbin Zhu
Abstract:
Advances in computing applications in recent years have prompted the demand for more flexible scheduling models for QoS demand. Moreover, in practical applications, partly violated temporal constraints can be tolerated if the violation meets certain distribution. So we need extend the traditional Liu and Lanland model to adapt to these circumstances. There are two extensions, which are the (m, k)-firm model and Window-Constrained model. This paper researches on weakly hard real-time constraints and their combination to support QoS. The fact that a practical application can tolerate some violations of temporal constraint under certain distribution is employed to support adaptive QoS on the open real-time system. The experiment results show these approaches are effective compared to traditional scheduling algorithms.Keywords: Weakly Hard Real-Time, Real-Time, Scheduling, Quality of Service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579310 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxic Gases
Authors: Slimane Ouhmad, Abdellah Halimi
Abstract:
In this work, neural networks methods MLP type were applied to a database from an array of six sensors for the detection of three toxic gases. The choice of the number of hidden layers and the weight values are influential on the convergence of the learning algorithm. We proposed, in this article, a mathematical formula to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases and optimized the computation time. The model presented here has proven to be an effective application for the fast identification of toxic gases.
Keywords: Back-propagation, Computing time, Fast identification, MLP neural network, Number of neurons in the hidden layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262309 A Four-Year Study of Thyroid Carcinoma in Hail Region: Increased Incidence
Authors: Laila Seada, Hanan Oreiby, Fawaz Al Rashid, Ashraf Negm
Abstract:
Background and Objective: In most areas of the world, the incidence of thyroid cancer has been increasing over the last decade, mostly due to a combination of early detection of the neoplasm resulting from sensitive procedures and increased population exposure to radiation and unrecognized carcinogens. Methods: Cases of thyroid cancer have been retrieved from the cancer registry at King Khalid Hospital during the period from August 2012 to April 2016. Age, gender and histopathologic types have been recorded. Results: Thyroid carcinoma ranked as the second most common malignancy in females (25%) after breast cancer (31%). It constituted 20.8% of all newly diagnosed cancer cases. As for males, it ranked the 4th type of malignancy after gastrointestinal cancer, lymphomas and soft tissue sarcomas. Mean age for females and males was 38.7 +/- 13.2 and 60.25 +/- 11.5 years, respectively, and the difference between the two groups was statistically significant (p value = 0.0001). Fifty-five (82%) were papillary carcinomas including 10 follicular variant of papillary (FVPC), and eight papillary micro carcinomas (PMC) and two tall cell/oncocytic variants. Follicular carcinomas constituted two (3.1%), while two (3.1%) were anaplastic, and two (3.1%) were medullary. Conclusion: Thyroid cancer incidence in Hail is ranking as the 2nd most common female malignancy similar to other regions in the Kingdom. However, this high incidence contrasts with much lower rates worldwide.
Keywords: Thyroid, Hail, papillary, micro carcinoma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180308 New Curriculum Approach in Teaching Network Security Subjects for ICT Courses in Malaysia
Authors: Mohd Fairuz Iskandar Othman, Nazrulazhar Bahaman, Zulkiflee Muslim, Faizal Abdollah
Abstract:
This paper discusses a curriculum approach that will give emphasis on practical portions of teaching network security subjects in information and communication technology courses. As we are well aware, the need to use a practice and application oriented approach in education is paramount. Research on active learning and cooperative groups have shown that students grasps more and have more tendency towards obtaining and realizing soft skills like leadership, communication and team work as opposed to the more traditional theory and exam based teaching and learning. While this teaching and learning paradigm is relatively new in Malaysia, it has been practiced widely in the West. This paper examines a certain approach whereby students learning wireless security are divided into and work in small and manageable groups where there will be 2 teams which consist of black hat and white hat teams. The former will try to find and expose vulnerabilities in a wireless network while the latter will try their best to prevent such attacks on their wireless networks using hardware, software, design and enforcement of security policy and etc. This paper will try to show that the approach taken plus the use of relevant and up to date software and hardware and with suitable environment setting will hopefully expose students to a more fruitful outcome in terms of understanding of concepts, theories and their motivation to learn.Keywords: Curriculum approach, wireless networks, wirelesssecurity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702