Search results for: radiation detection
1374 Influence of Confined Acoustic Phonons on the Shubnikov – de Haas Magnetoresistance Oscillations in a Doped Semiconductor Superlattice
Authors: Pham Ngoc Thang, Le Thai Hung, Nguyen Quang Bau
Abstract:
The influence of confined acoustic phonons on the Shubnikov – de Haas magnetoresistance oscillations in a doped semiconductor superlattice (DSSL), subjected in a magnetic field, DC electric field, and a laser radiation, has been theoretically studied based on quantum kinetic equation method. The analytical expression for the magnetoresistance in a DSSL has been obtained as a function of external fields, DSSL parameters, and especially the quantum number m characterizing the effect of confined acoustic phonons. When m goes to zero, the results for bulk phonons in a DSSL could be achieved. Numerical calculations are also achieved for the GaAs:Si/GaAs:Be DSSL and compared with other studies. Results show that the Shubnikov – de Haas magnetoresistance oscillations amplitude decrease as the increasing of phonon confinement effect.
Keywords: Shubnikov–de Haas magnetoresistance oscillations, quantum kinetic equation, confined acoustic phonons, laser radiation, doped semiconductor superlattices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14611373 Dynamic Background Updating for Lightweight Moving Object Detection
Authors: Kelemewerk Destalem, Jungjae Cho, Jaeseong Lee, Ju H. Park, Joonhyuk Yoo
Abstract:
Background subtraction and temporal difference are often used for moving object detection in video. Both approaches are computationally simple and easy to be deployed in real-time image processing. However, while the background subtraction is highly sensitive to dynamic background and illumination changes, the temporal difference approach is poor at extracting relevant pixels of the moving object and at detecting the stopped or slowly moving objects in the scene. In this paper, we propose a simple moving object detection scheme based on adaptive background subtraction and temporal difference exploiting dynamic background updates. The proposed technique consists of histogram equalization, a linear combination of background and temporal difference, followed by the novel frame-based and pixel-based background updating techniques. Finally, morphological operations are applied to the output images. Experimental results show that the proposed algorithm can solve the drawbacks of both background subtraction and temporal difference methods and can provide better performance than that of each method.Keywords: Background subtraction, background updating, real time and lightweight algorithm, temporal difference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25651372 Detection of Diabetic Symptoms in Retina Images Using Analog Algorithms
Authors: Daniela Matei, Radu Matei
Abstract:
In this paper a class of analog algorithms based on the concept of Cellular Neural Network (CNN) is applied in some processing operations of some important medical images, namely retina images, for detecting various symptoms connected with diabetic retinopathy. Some specific processing tasks like morphological operations, linear filtering and thresholding are proposed, the corresponding template values are given and simulations on real retina images are provided.Keywords: Diabetic retinopathy, pathology detection, cellular neural networks, analog algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20791371 Skew Detection Technique for Binary Document Images based on Hough Transform
Authors: Manjunath Aradhya V N, Hemantha Kumar G, Shivakumara P
Abstract:
Document image processing has become an increasingly important technology in the automation of office documentation tasks. During document scanning, skew is inevitably introduced into the incoming document image. Since the algorithm for layout analysis and character recognition are generally very sensitive to the page skew. Hence, skew detection and correction in document images are the critical steps before layout analysis. In this paper, a novel skew detection method is presented for binary document images. The method considered the some selected characters of the text which may be subjected to thinning and Hough transform to estimate skew angle accurately. Several experiments have been conducted on various types of documents such as documents containing English Documents, Journals, Text-Book, Different Languages and Document with different fonts, Documents with different resolutions, to reveal the robustness of the proposed method. The experimental results revealed that the proposed method is accurate compared to the results of well-known existing methods.Keywords: Optical Character Recognition, Skew angle, Thinning, Hough transform, Document processing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20951370 Hierarchical PSO-Adaboost Based Classifiers for Fast and Robust Face Detection
Authors: Hong Pan, Yaping Zhu, Liang Zheng Xia
Abstract:
We propose a fast and robust hierarchical face detection system which finds and localizes face images with a cascade of classifiers. Three modules contribute to the efficiency of our detector. First, heterogeneous feature descriptors are exploited to enrich feature types and feature numbers for face representation. Second, a PSO-Adaboost algorithm is proposed to efficiently select discriminative features from a large pool of available features and reinforce them into the final ensemble classifier. Compared with the standard exhaustive Adaboost for feature selection, the new PSOAdaboost algorithm reduces the training time up to 20 times. Finally, a three-stage hierarchical classifier framework is developed for rapid background removal. In particular, candidate face regions are detected more quickly by using a large size window in the first stage. Nonlinear SVM classifiers are used instead of decision stump functions in the last stage to remove those remaining complex nonface patterns that can not be rejected in the previous two stages. Experimental results show our detector achieves superior performance on the CMU+MIT frontal face dataset.
Keywords: Adaboost, Face detection, Feature selection, PSO
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21991369 Word Base Line Detection in Handwritten Text Recognition Systems
Authors: Kamil R. Aida-zade, Jamaladdin Z. Hasanov
Abstract:
An approach is offered for more precise definition of base lines- borders in handwritten cursive text and general problems of handwritten text segmentation have also been analyzed. An offered method tries to solve problems arose in handwritten recognition with specific slant or in other words, where the letters of the words are not on the same vertical line. As an informative features, some recognition systems use ascending and descending parts of the letters, found after the word-s baseline detection. In such recognition systems, problems in baseline detection, impacts the quality of the recognition and decreases the rate of the recognition. Despite other methods, here borders are found by small pieces containing segmentation elements and defined as a set of linear functions. In this method, separate borders for top and bottom border lines are found. At the end of the paper, as a result, azerbaijani cursive handwritten texts written in Latin alphabet by different authors has been analyzed.
Keywords: Azeri, azerbaijani, latin, segmentation, cursive, HWR, handwritten, recognition, baseline, ascender, descender, symbols.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24791368 A Valley Detection for Path Planning
Authors: In-Geun Lim, Jin-Soo Kim, Chirl-Hwa Lee
Abstract:
This paper presents a constrained valley detection algorithm. The intent is to find valleys in the map for the path planning that enables a robot or a vehicle to move safely. The constraint to the valley is a desired width and a desired depth to ensure the space for movement when a vehicle passes through the valley. We propose an algorithm to find valleys satisfying these 2 dimensional constraints. The merit of our algorithm is that the pre-processing and the post-processing are not necessary to eliminate undesired small valleys. The algorithm is validated through simulation using digitized elevation data.Keywords: valley, width, depth, path planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14441367 Process Development of Safe and Ready-to-eat Raw Oyster Meat by Irradiation Technology
Authors: Pattama Ratana-Arporn, Pongtep Wilaipun
Abstract:
White scar oyster (Crassostrea belcheri) is often eaten raw and being the leading vehicle for foodborne disease, especially Salmonella Weltevreden which exposed the prominent and most resistant to radiation. Gamma irradiation at a low dose of 1 kGy was enough to eliminate S. Weltevreden contaminated in oyster meat at a level up to 5 log CFU/g while it still retain the raw characteristics and equivalent sensory quality as the non-irradiated one. Process development of ready-to-eat chilled oyster meat was conducted by shucking the meat, individually packed in plastic bags, subjected to 1 kGy gamma radiation at chilled condition and then stored in 4oC refrigerated temperature. Microbiological determination showed the absence of S. Weltevreden (5 log CFU/g initial inoculated) along the whole storage time of 30 days. Sensory evaluation indicated the decreasing in sensory scores along storage time which determining the product shelf life to be 18 days compared to 15 days of nonirradiated one. The most advantage of developed process was to provide the safe raw oyster to consumers and in addition sensory quality retained and 3-day extension shelf life also exist.Keywords: decontamination, food safety, irradiation, oyster, Salmonella Weltevreden
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16841366 Improved Feature Extraction Technique for Handling Occlusion in Automatic Facial Expression Recognition
Authors: Khadijat T. Bamigbade, Olufade F. W. Onifade
Abstract:
The field of automatic facial expression analysis has been an active research area in the last two decades. Its vast applicability in various domains has drawn so much attention into developing techniques and dataset that mirror real life scenarios. Many techniques such as Local Binary Patterns and its variants (CLBP, LBP-TOP) and lately, deep learning techniques, have been used for facial expression recognition. However, the problem of occlusion has not been sufficiently handled, making their results not applicable in real life situations. This paper develops a simple, yet highly efficient method tagged Local Binary Pattern-Histogram of Gradient (LBP-HOG) with occlusion detection in face image, using a multi-class SVM for Action Unit and in turn expression recognition. Our method was evaluated on three publicly available datasets which are JAFFE, CK, SFEW. Experimental results showed that our approach performed considerably well when compared with state-of-the-art algorithms and gave insight to occlusion detection as a key step to handling expression in wild.
Keywords: Automatic facial expression analysis, local binary pattern, LBP-HOG, occlusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7811365 Performance Degradation for the GLR Test-Statistics for Spatial Signal Detection
Authors: Olesya Bolkhovskaya, Alexander Maltsev
Abstract:
Antenna arrays are widely used in modern radio systems in sonar and communications. The solving of the detection problems of a useful signal on the background of noise is based on the GLRT method. There is a large number of problem which depends on the known a priori information. In this work, in contrast to the majority of already solved problems, it is used only difference spatial properties of the signal and noise for detection. We are analyzing the influence of the degree of non-coherence of signal and noise unhomogeneity on the performance characteristics of different GLRT statistics. The description of the signal and noise is carried out by means of the spatial covariance matrices C in the cases of different number of known information. The partially coherent signalis is simulated as a plane wave with a random angle of incidence of the wave concerning a normal. Background noise is simulated as random process with uniform distribution function in each element. The results of investigation of degradation of performance characteristics for different cases are represented in this work.
Keywords: GLRT, Neumann-Pearson’s criterion, test-statistics, degradation, spatial processing, multielement antenna array
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18061364 A Static Android Malware Detection Based on Actual Used Permissions Combination and API Calls
Authors: Xiaoqing Wang, Junfeng Wang, Xiaolan Zhu
Abstract:
Android operating system has been recognized by most application developers because of its good open-source and compatibility, which enriches the categories of applications greatly. However, it has become the target of malware attackers due to the lack of strict security supervision mechanisms, which leads to the rapid growth of malware, thus bringing serious safety hazards to users. Therefore, it is critical to detect Android malware effectively. Generally, the permissions declared in the AndroidManifest.xml can reflect the function and behavior of the application to a large extent. Since current Android system has not any restrictions to the number of permissions that an application can request, developers tend to apply more than actually needed permissions in order to ensure the successful running of the application, which results in the abuse of permissions. However, some traditional detection methods only consider the requested permissions and ignore whether it is actually used, which leads to incorrect identification of some malwares. Therefore, a machine learning detection method based on the actually used permissions combination and API calls was put forward in this paper. Meanwhile, several experiments are conducted to evaluate our methodology. The result shows that it can detect unknown malware effectively with higher true positive rate and accuracy while maintaining a low false positive rate. Consequently, the AdaboostM1 (J48) classification algorithm based on information gain feature selection algorithm has the best detection result, which can achieve an accuracy of 99.8%, a true positive rate of 99.6% and a lowest false positive rate of 0.Keywords: Android, permissions combination, API calls, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19151363 Sequential Straightforward Clustering for Local Image Block Matching
Authors: Mohammad Akbarpour Sekeh, Mohd. Aizaini Maarof, Mohd. Foad Rohani, Malihe Motiei
Abstract:
Duplicated region detection is a technical method to expose copy-paste forgeries on digital images. Copy-paste is one of the common types of forgeries to clone portion of an image in order to conceal or duplicate special object. In this type of forgery detection, extracting robust block feature and also high time complexity of matching step are two main open problems. This paper concentrates on computational time and proposes a local block matching algorithm based on block clustering to enhance time complexity. Time complexity of the proposed algorithm is formulated and effects of two parameter, block size and number of cluster, on efficiency of this algorithm are considered. The experimental results and mathematical analysis demonstrate this algorithm is more costeffective than lexicographically algorithms in time complexity issue when the image is complex.Keywords: Copy-paste forgery detection, Duplicated region, Timecomplexity, Local block matching, Sequential block clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18321362 A Four-Year Study of Thyroid Carcinoma in Hail Region: Increased Incidence
Authors: Laila Seada, Hanan Oreiby, Fawaz Al Rashid, Ashraf Negm
Abstract:
Background and Objective: In most areas of the world, the incidence of thyroid cancer has been increasing over the last decade, mostly due to a combination of early detection of the neoplasm resulting from sensitive procedures and increased population exposure to radiation and unrecognized carcinogens. Methods: Cases of thyroid cancer have been retrieved from the cancer registry at King Khalid Hospital during the period from August 2012 to April 2016. Age, gender and histopathologic types have been recorded. Results: Thyroid carcinoma ranked as the second most common malignancy in females (25%) after breast cancer (31%). It constituted 20.8% of all newly diagnosed cancer cases. As for males, it ranked the 4th type of malignancy after gastrointestinal cancer, lymphomas and soft tissue sarcomas. Mean age for females and males was 38.7 +/- 13.2 and 60.25 +/- 11.5 years, respectively, and the difference between the two groups was statistically significant (p value = 0.0001). Fifty-five (82%) were papillary carcinomas including 10 follicular variant of papillary (FVPC), and eight papillary micro carcinomas (PMC) and two tall cell/oncocytic variants. Follicular carcinomas constituted two (3.1%), while two (3.1%) were anaplastic, and two (3.1%) were medullary. Conclusion: Thyroid cancer incidence in Hail is ranking as the 2nd most common female malignancy similar to other regions in the Kingdom. However, this high incidence contrasts with much lower rates worldwide.
Keywords: Thyroid, Hail, papillary, micro carcinoma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11801361 Implementation of an Innovative Simplified Sliding Mode Observer-Based Robust Fault Detection in a Drum Boiler System
Authors: L. Khoshnevisan, H. R. Momeni, A. Ashraf-Modarres
Abstract:
One of the robust fault detection filter (RFDF) designing method is based on sliding-mode theory. The main purpose of our study is to introduce an innovative simplified reference residual model generator to formulate the RFDF as a sliding-mode observer without any manipulation package or transformation matrix, through which the generated residual signals can be evaluated. So the proposed design is more explicit and requires less design parameters in comparison with approaches requiring changing coordinates. To the best author's knowledge, this is the first time that the sliding mode technique is applied to detect actuator and sensor faults in a real boiler. The designing procedure is proposed in a drum boiler in Synvendska Kraft AB Plant in Malmo, Sweden as a multivariable and strongly coupled system. It is demonstrated that both sensor and actuator faults can robustly be detected. Also sensor faults can be diagnosed and isolated through this method.Keywords: Boiler, fault detection, robustness, simplified sliding-mode observer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19411360 Reduction of False Positives in Head-Shoulder Detection Based on Multi-Part Color Segmentation
Authors: Lae-Jeong Park
Abstract:
The paper presents a method that utilizes figure-ground color segmentation to extract effective global feature in terms of false positive reduction in the head-shoulder detection. Conventional detectors that rely on local features such as HOG due to real-time operation suffer from false positives. Color cue in an input image provides salient information on a global characteristic which is necessary to alleviate the false positives of the local feature based detectors. An effective approach that uses figure-ground color segmentation has been presented in an effort to reduce the false positives in object detection. In this paper, an extended version of the approach is presented that adopts separate multipart foregrounds instead of a single prior foreground and performs the figure-ground color segmentation with each of the foregrounds. The multipart foregrounds include the parts of the head-shoulder shape and additional auxiliary foregrounds being optimized by a search algorithm. A classifier is constructed with the feature that consists of a set of the multiple resulting segmentations. Experimental results show that the presented method can discriminate more false positive than the single prior shape-based classifier as well as detectors with the local features. The improvement is possible because the presented approach can reduce the false positives that have the same colors in the head and shoulder foregrounds.
Keywords: Pedestrian detection, color segmentation, false positives, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11441359 Simulating Climate Change (Temperature and Soil Moisture) in a Mixed-Deciduous Forest, Ontario, Canada
Authors: David Goldblum, Lesley S. Rigg
Abstract:
To simulate expected climate change, we implemented a two-factor (temperature and soil moisture) field design in a forest in Ontario, Canada. To manipulate moisture input, we erected rain-exclusion structures. Under each structure, plots were watered with one of three treatments and thermally controlled with three heat treatments to simulate changes in air temperature and rainfall based on the climate model (GCM) predictions for the study area. Environmental conditions (including untreated controls) were monitored tracking air temperature, soil temperature, soil moisture, and photosynthetically active radiation. We measured rainfall and relative humidity at the site outside the rain-exclusion structures. Analyses of environmental conditions demonstrates that the temperature manipulation was most effective at maintaining target temperature during the early part of the growing season, but it was more difficult to keep the warmest treatment at 5º C above ambient by late summer. Target moisture regimes were generally achieved however incoming solar radiation was slightly attenuated by the structures.
Keywords: Acer saccharum, climate change, forest, environmental manipulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17271358 Developing Optical Sensors with Application of Cancer Detection by Elastic Light Scattering Spectroscopy
Authors: May Fadheel Estephan, Richard Perks
Abstract:
Cancer is a serious health concern that affects millions of people worldwide. Early detection and treatment are essential for improving patient outcomes. However, current methods for cancer detection have limitations, such as low sensitivity and specificity. The aim of this study was to develop an optical sensor for cancer detection using elastic light scattering spectroscopy (ELSS). ELSS is a non-invasive optical technique that can be used to characterize the size and concentration of particles in a solution. An optical probe was fabricated with a 100-μm-diameter core and a 132-μm centre-to-centre separation. The probe was used to measure the ELSS spectra of polystyrene spheres with diameters of 2 μm, 0.8 μm, and 0.413 μm. The spectra were then analysed to determine the size and concentration of the spheres. The results showed that the optical probe was able to differentiate between the three different sizes of polystyrene spheres. The probe was also able to detect the presence of polystyrene spheres in suspension concentrations as low as 0.01%. The results of this study demonstrate the potential of ELSS for cancer detection. ELSS is a non-invasive technique that can be used to characterize the size and concentration of cells in a tissue sample. This information can be used to identify cancer cells and assess the stage of the disease. The data for this study were collected by measuring the ELSS spectra of polystyrene spheres with different diameters. The spectra were collected using a spectrometer and a computer. The ELSS spectra were analysed using a software program to determine the size and concentration of the spheres. The software program used a mathematical algorithm to fit the spectra to a theoretical model. The question addressed by this study was whether ELSS could be used to detect cancer cells. The results of the study showed that ELSS could be used to differentiate between different sizes of cells, suggesting that it could be used to detect cancer cells. The findings of this research show the utility of ELSS in the early identification of cancer. ELSS is a non-invasive method for characterizing the number and size of cells in a tissue sample. To determine cancer cells and determine the disease's stage, this information can be employed. Further research is needed to evaluate the clinical performance of ELSS for cancer detection.
Keywords: Elastic Light Scattering Spectroscopy, Polystyrene spheres in suspension, optical probe, fibre optics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401357 Anomaly Detection using Neuro Fuzzy system
Authors: Fatemeh Amiri, Caro Lucas, Nasser Yazdani
Abstract:
As the network based technologies become omnipresent, demands to secure networks/systems against threat increase. One of the effective ways to achieve higher security is through the use of intrusion detection systems (IDS), which are a software tool to detect anomalous in the computer or network. In this paper, an IDS has been developed using an improved machine learning based algorithm, Locally Linear Neuro Fuzzy Model (LLNF) for classification whereas this model is originally used for system identification. A key technical challenge in IDS and LLNF learning is the curse of high dimensionality. Therefore a feature selection phase is proposed which is applicable to any IDS. While investigating the use of three feature selection algorithms, in this model, it is shown that adding feature selection phase reduces computational complexity of our model. Feature selection algorithms require the use of a feature goodness measure. The use of both a linear and a non-linear measure - linear correlation coefficient and mutual information- is investigated respectivelyKeywords: anomaly Detection, feature selection, Locally Linear Neuro Fuzzy (LLNF), Mutual Information (MI), liner correlation coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21841356 Design and Performance Improvement of Three-Dimensional Optical Code Division Multiple Access Networks with NAND Detection Technique
Authors: Satyasen Panda, Urmila Bhanja
Abstract:
In this paper, we have presented and analyzed three-dimensional (3-D) matrices of wavelength/time/space code for optical code division multiple access (OCDMA) networks with NAND subtraction detection technique. The 3-D codes are constructed by integrating a two-dimensional modified quadratic congruence (MQC) code with one-dimensional modified prime (MP) code. The respective encoders and decoders were designed using fiber Bragg gratings and optical delay lines to minimize the bit error rate (BER). The performance analysis of the 3D-OCDMA system is based on measurement of signal to noise ratio (SNR), BER and eye diagram for a different number of simultaneous users. Also, in the analysis, various types of noises and multiple access interference (MAI) effects were considered. The results obtained with NAND detection technique were compared with those obtained with OR and AND subtraction techniques. The comparison results proved that the NAND detection technique with 3-D MQC\MP code can accommodate more number of simultaneous users for longer distances of fiber with minimum BER as compared to OR and AND subtraction techniques. The received optical power is also measured at various levels of BER to analyze the effect of attenuation.Keywords: Cross correlation, three-dimensional optical code division multiple access, spectral amplitude coding optical code division multiple access, multiple access interference, phase induced intensity noise, three-dimensional modified quadratic congruence/modified prime code.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15291355 Circular Patch Microstrip Array Antenna for KU-band
Authors: T.F.Lai, Wan Nor Liza Mahadi, Norhayati Soin
Abstract:
This paper present a circular patch microstrip array antenna operate in KU-band (10.9GHz – 17.25GHz). The proposed circular patch array antenna will be in light weight, flexible, slim and compact unit compare with current antenna used in KU-band. The paper also presents the detail steps of designing the circular patch microstrip array antenna. An Advance Design System (ADS) software is used to compute the gain, power, radiation pattern, and S11 of the antenna. The proposed Circular patch microstrip array antenna basically is a phased array consisting of 'n' elements (circular patch antennas) arranged in a rectangular grid. The size of each element is determined by the operating frequency. The incident wave from satellite arrives at the plane of the antenna with equal phase across the surface of the array. Each 'n' element receives a small amount of power in phase with the others. There are feed network connects each element to the microstrip lines with an equal length, thus the signals reaching the circular patches are all combined in phase and the voltages add up. The significant difference of the circular patch array antenna is not come in the phase across the surface but in the magnitude distribution.
Keywords: Circular patch microstrip array antenna, gain, radiation pattern, S-Parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31131354 Face Detection in Color Images using Color Features of Skin
Authors: Fattah Alizadeh, Saeed Nalousi, Chiman Savari
Abstract:
Because of increasing demands for security in today-s society and also due to paying much more attention to machine vision, biometric researches, pattern recognition and data retrieval in color images, face detection has got more application. In this article we present a scientific approach for modeling human skin color, and also offer an algorithm that tries to detect faces within color images by combination of skin features and determined threshold in the model. Proposed model is based on statistical data in different color spaces. Offered algorithm, using some specified color threshold, first, divides image pixels into two groups: skin pixel group and non-skin pixel group and then based on some geometric features of face decides which area belongs to face. Two main results that we received from this research are as follow: first, proposed model can be applied easily on different databases and color spaces to establish proper threshold. Second, our algorithm can adapt itself with runtime condition and its results demonstrate desirable progress in comparison with similar cases.Keywords: face detection, skin color modeling, color, colorfulimages, face recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23131353 Influence of Shading on a BIPV System’s Performance in an Urban Context: Case Study of BIPV Systems of the Science Center of Complexity Building of the National and Autonomous University of Mexico in Mexico City
Authors: Viridiana Edith Ardura Perea, José Luis Bermúdez Alcocer
Abstract:
The purpose of this paper is to establish the influence of shading on a Building Integrated Photovoltaic (BIPV) system´s performance in an urban context. The PV systems of the Science Center of Complexity (Centro de Ciencias de la Complejidad) Building based in the Main Campus of the National and Autonomous University of Mexico (UNAM) in Mexico City was taken as case study. The PV systems are placed on the rooftop and on the south façade of the building. The south-façade PV system, operating as sunshades, consists of two strings: one at the ground floor and the other one at the first floor. According to the building’s facility manager, the south-façade PV system generates 42% less electricity per kilowatt peak (kWp) installed than the one on the roof. The methods applied in this study were Solar Radiation Analysis (SRA) simulations performed with the Insight 360 Plug-in from Revit 2018® and an on-site measurement using specialized tools. The results of the SRA simulations showed that the shading casted by the PV system placed on the first floor on top of the PV system of the ground floor decreases its solar incident radiation over 50%. The simulation outcome was compared and validated to the measured data obtained from the on-site measurement. In conclusion, the loss factor achieved from the shading of the PVs is due to the surroundings and the PV system´s own design. The south-façade BIPV system’s deficient design generates critical losses on its performance and decreases its profitability.
Keywords: Building integrated photovoltaics (BIPV) design, energy analysis software, shading losses, solar radiation analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14931352 A Soft Error Rates Evaluation Method of Combinational Logic Circuit Based on Linear Energy Transfers
Authors: Man Li, Wanting Zhou, Lei Li
Abstract:
Communication stability is the primary concern of communication satellites. Communication satellites are easily affected by particle radiation to generate single event effects (SEE), which leads to soft errors (SE) of combinational logic circuit. The existing research on soft error rates (SER) of combined logic circuit is mostly based on the assumption that the logic gates being bombarded have the same pulse width. However, in the actual radiation environment, the pulse widths of the logic gates being bombarded are different due to different linear energy transfers (LET). In order to improve the accuracy of SER evaluation model, this paper proposes a soft error rates evaluation method based on LET. In this paper, we analyze the influence of LET on the pulse width of combinational logic and establish the pulse width model based on LET. Based on this model, the error rate of test circuit ISCAS’85 is calculated. Experimental results show that this model can be used for SER evaluation.
Keywords: Communication satellite, pulse width, soft error rates, linear energy transfer, LET.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3831351 Metamorphism, Formal Grammars and Undecidable Code Mutation
Authors: Eric Filiol
Abstract:
This paper presents a formalisation of the different existing code mutation techniques (polymorphism and metamorphism) by means of formal grammars. While very few theoretical results are known about the detection complexity of viral mutation techniques, we exhaustively address this critical issue by considering the Chomsky classification of formal grammars. This enables us to determine which family of code mutation techniques are likely to be detected or on the contrary are bound to remain undetected. As an illustration we then present, on a formal basis, a proof-of-concept metamorphic mutation engine denoted PB MOT, whose detection has been proven to be undecidable.
Keywords: Polymorphism, Metamorphism, Formal Grammars, Formal Languages, Language Decision, Code Mutation, Word Problem
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24291350 Development of Fake News Model Using Machine Learning through Natural Language Processing
Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini
Abstract:
Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.
Keywords: Fake news detection, types of fake news, machine learning, natural language processing, classification techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15121349 Detecting the Edge of Multiple Images in Parallel
Authors: Prakash K. Aithal, U. Dinesh Acharya, Rajesh Gopakumar
Abstract:
Edge is variation of brightness in an image. Edge detection is useful in many application areas such as finding forests, rivers from a satellite image, detecting broken bone in a medical image etc. The paper discusses about finding edge of multiple aerial images in parallel. The proposed work tested on 38 images 37 colored and one monochrome image. The time taken to process N images in parallel is equivalent to time taken to process 1 image in sequential. Message Passing Interface (MPI) and Open Computing Language (OpenCL) is used to achieve task and pixel level parallelism respectively.Keywords: Edge detection, multicore, GPU, openCL, MPI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23391348 An Efficient Clustering Technique for Copy-Paste Attack Detection
Authors: N. Chaitawittanun, M. Munlin
Abstract:
Due to rapid advancement of powerful image processing software, digital images are easy to manipulate and modify by ordinary people. Lots of digital images are edited for a specific purpose and more difficult to distinguish form their original ones. We propose a clustering method to detect a copy-move image forgery of JPEG, BMP, TIFF, and PNG. The process starts with reducing the color of the photos. Then, we use the clustering technique to divide information of measuring data by Hausdorff Distance. The result shows that the purposed methods is capable of inspecting the image file and correctly identify the forgery.
Keywords: Image detection, forgery image, copy-paste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13191347 Edge Detection in Low Contrast Images
Authors: Koushlendra Kumar Singh, Manish Kumar Bajpai, Rajesh K. Pandey
Abstract:
The edges of low contrast images are not clearly distinguishable to human eye. It is difficult to find the edges and boundaries in it. The present work encompasses a new approach for low contrast images. The Chebyshev polynomial based fractional order filter has been used for filtering operation on an image. The preprocessing has been performed by this filter on the input image. Laplacian of Gaussian method has been applied on preprocessed image for edge detection. The algorithm has been tested on two test images.
Keywords: Chebyshev polynomials, Fractional order differentiator, Laplacian of Gaussian (LoG) method, Low contrast image.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32751346 Real-Time Detecting Concentration of Mycobacterium Tuberculosis by CNTFET Biosensor
Authors: Hsiao-Wei Wang, Jung-Tang Huang, Chun-Chiang Lin
Abstract:
Aptamers are useful tools in microorganism researches, diagnoses, and treatment. Aptamers are specific target molecules formed by oligonucleic acid molecules, and are not decomposed by alcohol. Aptamers used to detect Mycobacterium tuberculosis (MTB) have been proved to have specific affinity to the outer membrane proteins of MTB. This article presents a biosensor chip set with aptamers for early detection of MTB with high specificity and sensitivity, even in very low concentration. Meanwhile, we have already made a modified hydrophobic facial mask module with internal rendering hydrophobic for effectively collecting M. tuberculosis.
Keywords: Aptamers, CNTFET, Mycobacterium tuberculosis, early detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19991345 Study of Integrated Vehicle Image System Including LDW, FCW, and AFS
Authors: Yi-Feng Su, Chia-Tseng Chen, Hsueh-Lung Liao
Abstract:
The objective of this research is to develop an advanced driver assistance system characterized with the functions of lane departure warning (LDW), forward collision warning (FCW) and adaptive front-lighting system (AFS). The system is mainly configured a CCD/CMOS camera to acquire the images of roadway ahead in association with the analysis made by an image-processing unit concerning the lane ahead and the preceding vehicles. The input image captured by a camera is used to recognize the lane and the preceding vehicle positions by image detection and DROI (Dynamic Range of Interesting) algorithms. Therefore, the system is able to issue real-time auditory and visual outputs of warning when a driver is departing the lane or driving too close to approach the preceding vehicle unwittingly so that the danger could be prevented from occurring. During the nighttime, in addition to the foregoing warning functions, the system is able to control the bending light of headlamp to provide an immediate light illumination when making a turn at a curved lane and adjust the level automatically to reduce the lighting interference against the oncoming vehicles driving in the opposite direction by the curvature of lane and the vanishing point estimations. The experimental results show that the integrated vehicle image system is robust to most environments such as the lane detection and preceding vehicle detection average accuracy performances are both above 90 %.
Keywords: Lane mark detection, lane departure warning (LDW), dynamic range of interesting (DROI), forward collision warning (FCW), adaptive front-lighting system (AFS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157