Search results for: unsupervised machine learning.
2327 Efficient Boosting-Based Active Learning for Specific Object Detection Problems
Authors: Thuy Thi Nguyen, Nguyen Dang Binh, Horst Bischof
Abstract:
In this work, we present a novel active learning approach for learning a visual object detection system. Our system is composed of an active learning mechanism as wrapper around a sub-algorithm which implement an online boosting-based learning object detector. In the core is a combination of a bootstrap procedure and a semi automatic learning process based on the online boosting procedure. The idea is to exploit the availability of classifier during learning to automatically label training samples and increasingly improves the classifier. This addresses the issue of reducing labeling effort meanwhile obtain better performance. In addition, we propose a verification process for further improvement of the classifier. The idea is to allow re-update on seen data during learning for stabilizing the detector. The main contribution of this empirical study is a demonstration that active learning based on an online boosting approach trained in this manner can achieve results comparable or even outperform a framework trained in conventional manner using much more labeling effort. Empirical experiments on challenging data set for specific object deteciton problems show the effectiveness of our approach.Keywords: Computer vision, object detection, online boosting, active learning, labeling complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17852326 Image Segmentation Using 2-D Histogram in RGB Color Space in Digital Libraries
Authors: El Asnaoui Khalid, Aksasse Brahim, Ouanan Mohammed
Abstract:
This paper presents an unsupervised color image segmentation method. It is based on a hierarchical analysis of 2-D histogram in RGB color space. This histogram minimizes storage space of images and thus facilitates the operations between them. The improved segmentation approach shows a better identification of objects in a color image and, at the same time, the system is fast.Keywords: Image segmentation, hierarchical analysis, 2-D histogram, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16262325 A Convolutional Neural Network-Based Vehicle Theft Detection, Location, and Reporting System
Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala
Abstract:
One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets, especially in the motorist sector, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of Python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. 60 vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes that the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.
Keywords: Convolutional Neural Network, CNN, location identification, tracking, GPS, GSM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4162324 Parameters Influencing Human-Machine Interaction in Hospitals
Authors: Hind Bouami, Patrick Millot
Abstract:
Handling life-critical systems complexity requires to be equipped with appropriate technology and the right human agents’ functions such as knowledge, experience, and competence in problem’s prevention and solving. Human agents are involved in the management and control of human-machine system’s performance. Documenting human agent’s situation awareness is crucial to support human-machine designers’ decision-making. Knowledge about risks, critical parameters and factors that can impact and threaten automation system’s performance should be collected using preventive and retrospective approaches. This paper aims to document operators’ situation awareness through the analysis of automated organizations’ feedback. The analysis of automated hospital pharmacies feedback helps identify and control critical parameters influencing human machine interaction in order to enhance system’s performance and security. Our human machine system evaluation approach has been deployed in Macon hospital center’s pharmacy which is equipped with automated drug dispensing systems since 2015. Automation’s specifications are related to technical aspects, human-machine interaction, and human aspects. The evaluation of drug delivery automation performance in Macon hospital center has shown that the performance of the automated activity depends on the performance of the automated solution chosen, and also on the control of systemic factors. In fact, 80.95% of automation specification related to the chosen Sinteco’s automated solution is met. The performance of the chosen automated solution is involved in 28.38% of automation specifications performance in Macon hospital center. The remaining systemic parameters involved in automation specifications performance need to be controlled.
Keywords: Life-critical systems, situation awareness, human-machine interaction, decision-making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5752323 International Service Learning 3.0: Using Technology to Improve Outcomes and Sustainability
Authors: Anthony Vandarakis
Abstract:
Today’s International Service Learning practices require an update: modern technologies, fresh educational frameworks, and a new operating system to accountably prosper. This paper describes a model of International Service Learning (ISL), which combines current technological hardware, electronic platforms, and asynchronous communications that are grounded in inclusive pedagogy. This model builds on the work around collaborative field trip learning, extending the reach to international partnerships across continents. Mobile technology, 21st century skills and summit-basecamp modeling intersect to support novel forms of learning that tread lightly on fragile natural ecosystems, affirm local reciprocal partnership in projects, and protect traveling participants from common yet avoidable cultural pitfalls.Keywords: International Service Learning, ISL, field experiences, mobile technology, ‘out there in here’, summit basecamp pedagogy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5632322 Analysis of Student Motivation Behavior on e-Learning Based on Association Rule Mining
Authors: Kunyanuth Kularbphettong, Phanu Waraporn, Cholticha Tongsiri
Abstract:
This research aims to create a model for analysis of student motivation behavior on e-Learning based on association rule mining techniques in case of the Information Technology for Communication and Learning Course at Suan Sunandha Rajabhat University. The model was created under association rules, one of the data mining techniques with minimum confidence. The results showed that the student motivation behavior model by using association rule technique can indicate the important variables that influence the student motivation behavior on e-Learning.
Keywords: Motivation behavior, e-learning, moodle log, association rule mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18872321 Predictors of Academic Achievement of Student ICT Teachers with Different Learning Styles
Authors: Deniz Deryakulu, Şener Büyüköztürk Hüseyin Özçınar
Abstract:
The main purpose of this study was to determine the predictors of academic achievement of student Information and Communications Technologies (ICT) teachers with different learning styles. Participants were 148 student ICT teachers from Ankara University. Participants were asked to fill out a personal information sheet, the Turkish version of Kolb-s Learning Style Inventory, Weinstein-s Learning and Study Strategies Inventory, Schommer's Epistemological Beliefs Questionnaire, and Eysenck-s Personality Questionnaire. Stepwise regression analyses showed that the statistically significant predictors of the academic achievement of the accommodators were attitudes and high school GPAs; of the divergers was anxiety; of the convergers were gender, epistemological beliefs, and motivation; and of the assimilators were gender, personality, and test strategies. Implications for ICT teaching-learning processes and teacher education are discussed.
Keywords: Academic achievement, student ICT teachers, Kolb learning styles, experiential learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26092320 A Framework for SQL Learning: Linking Learning Taxonomy, Cognitive Model and Cross Cutting Factors
Authors: Huda Al Shuaily, Karen Renaud
Abstract:
Databases comprise the foundation of most software systems. System developers inevitably write code to query these databases. The de facto language for querying is SQL and this, consequently, is the default language taught by higher education institutions. There is evidence that learners find it hard to master SQL, harder than mastering other programming languages such as Java. Educators do not agree about explanations for this seeming anomaly. Further investigation may well reveal the reasons. In this paper, we report on our investigations into how novices learn SQL, the actual problems they experience when writing SQL, as well as the differences between expert and novice SQL query writers. We conclude by presenting a model of SQL learning that should inform the instructional material design process better to support the SQL learning process.
Keywords: Pattern, SQL, learning, model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13422319 Customization of Moodle Open Source LMS for Tanzania Secondary Schools’ Use
Authors: Ellen. A. Kalinga
Abstract:
Moodle is an open source learning management system that enables creation of a powerful and flexible learning environment. Many organizations, especially learning institutions have customized Moodle open source LMS for their own use. In general open source LMSs are of great interest due to many advantages they offer in terms of cost, usage and freedom to customize to fit a particular context. Tanzania Secondary School e- Learning (TanSSe-L) system is the learning management system for Tanzania secondary schools. TanSSe-L system was developed using a number of methods, one of them being customization of Moodle Open Source LMS. This paper presents few areas on the way Moodle OS LMS was customized to produce a functional TanSSe-L system fitted to the requirements and specifications of Tanzania secondary schools’ context.
Keywords: LMS, Moodle, e-Learning, Tanzania, Secondary school.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37362318 The Use of ICT and e-Learning in Higher Education in Japan
Authors: Kumiko Aoki
Abstract:
Japan is known to be a technological powerhouse, being noted for its automobiles, consumer electronics, laptop computers, portable gaming devices, and more recently healing animal robots. Japan is also noted for its popular culture; manga, anime, novels, films, character goods, game programs, cosplay cafes, karaoke and so on. It may be natural for people outside Japan to assume that e-learning in Japan must be well advanced and innovative. In reality, the application of technologies in education in Japan is far behind of other developed countries. Especially in higher education, apathy of students towards their study prevails and teachers continue ignoring such student attitudes. E-learning, which is supposed to revolutionalize the way people learn as it has potentials to enable more student-centered learning, has not been realized in Japan and mostly used to perpetuate the teachercentered teaching in a different format.
Keywords: e-learning, Higher Education, ICT in Education, Japan
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73912317 Teachers’ Awareness of the Significance of Lifelong Learning: A Case Study of Secondary School Teachers of Batna – Algeria
Authors: Bahloul Amel
Abstract:
This study is an attempt to raise the awareness of the stakeholders and the authorities on the sensitivity of Algerian secondary school teachers of English as a Foreign Language about the students’ loss of English language skills learned during formal schooling with effort and at expense and the supposed measures to arrest that loss. Data was collected from secondary school teachers of EFL and analyzed quantitatively using a questionnaire containing open-ended and close-ended questions. The results advocate a consensus about the need for actions to be adopted to make assessment techniques outcome-oriented. Most of the participants were in favor of including curricular activities involving contextualized learning, problem-solving learning critical selfawareness, self and peer-assisted learning, use of computers and internet so as to make learners autonomous.
Keywords: Contextualized learning, EFL, Lifelong learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20622316 Fault Classification of a Doubly FED Induction Machine Using Neural Network
Authors: A. Ourici
Abstract:
Rapid progress in process automation and tightening quality standards result in a growing demand being placed on fault detection and diagnostics methods to provide both speed and reliability of motor quality testing. Doubly fed induction generators are used mainly for wind energy conversion in MW power plants. This paper presents a detection of an inter turn stator and an open phase faults, in a doubly fed induction machine whose stator and rotor are supplied by two pulse width modulation (PWM) inverters. The method used in this article to detect these faults, is based on Park-s Vector Approach, using a neural network.Keywords: Doubly fed induction machine, inter turn stator fault, neural network, open phase fault, Park's vector approach, PWMinverter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16472315 Design and Implementation of TMS320C31 DSP and FPGA for Conventional Direct Torque Control (DTC) of Induction Machines
Authors: C. L. Toh, N. R. N. Idris, A. H. M. Yatim
Abstract:
This paper introduces a new digital logic design, which combines the DSP and FPGA to implement the conventional DTC of induction machine. The DSP will be used for floating point calculation whereas the FPGA main task is to implement the hysteresis-based controller. The emphasis is on FPGA digital logic design. The simulation and experimental results are presented and summarized.Keywords: DTC, DSP, FPGA, induction machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19832314 The Relationship between Competency-Based Learning and Learning Efficiency of Media Communication Students at Suan Sunandha Rajabhat University
Authors: Somtop Keawchuer
Abstract:
This research aims to study (1) the relationship between competency-based learning and learning efficiency of new media communication students at Suan Sunandha University (2) the demographic factor effect on learning efficiency of students at Suan Sunandha University. This research method will use quantitative research; data was collected by questionnaires distributed to students from new media communication in management science faculty of Suan Sunandha Rajabhat University for 1340 sample by purposive sampling method. Data was analyzed by descriptive statistic including percentage, mean, standard deviation and inferential statistic including T-test, ANOVA and Pearson correlation for hypothesis testing. The results showed that the competency-based learning in term of ability to communicate, ability to think and solve the problem, life skills and ability to use technology has a significant relationship with learning efficiency in term of the cognitive domain, psychomotor domain and affective domain at the 0.05 level and which is in harmony with the research hypotheses.
Keywords: Competency-based learning, learning efficiency, new media communication students, Suan Sunandha Rajabhat University.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11792313 Integration of Best Practices and Requirements for Preliminary E-Learning Courses
Authors: Sophie Huck, Knut Linke
Abstract:
This study will examine how IT practitioners can be motivated for IT studies and which kind of support they need during their occupational studies. Within this research project, the challenge of supporting students being engaged in business for several years arose. Here, it is especially important to successfully guide them through their studies. The problem of this group is that they finished their school education years ago. In order to gather first experiences, preliminary e-learning courses were introduced and tested with a group of users studying General Management. They had to work with these courses and have been questioned later on about their approach to the different methods. Moreover, a second group of potential students was interviewed with the help of online questionnaires to give information about their expectations regarding extra occupational studies. We also want to present best practices and cases in e-education in the subarea of mathematics and distance learning. Within these cases and practices, we use state of the art systems and technologies in e-education to find a way to increase teaching quality and the success of students. Our research indicated that the first group of enrolled students appreciated the new preliminary e-learning courses. The second group of potential students was convinced of this way of learning as a significant component of extra occupational studies. It can be concluded that this part of the project clarified the acceptance of the e-learning strategy by both groups and led to satisfactory results with the enrolled students.
Keywords: E-learning evaluation, self-learning, virtual classroom, virtual learning environments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16812312 Post Earthquake Volunteer Learning That Build Up Caring Learning Communities
Authors: Naoki Okamura
Abstract:
From a perspective of moral education, this study has examined the experiences of a group of college students who volunteered in disaster areas after the magnitude 9.0 Earthquake, which struck the Northeastern region of Japan in March, 2011. The research, utilizing the method of grounded theory, has uncovered that most of the students have gone through positive changes in their development of moral and social characters, such as attaining deeper sense of empathy and caring personalities. The study expresses, in identifying the nature of those transformations, that the importance of volunteer work should strongly be recognized by the colleges and universities in Japan, in fulfilling their public responsibility of creating and building learning communities that are responsible and caring.
Keywords: Moral development, moral education, service learning, volunteer learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17712311 Support Vector Machine for Persian Font Recognition
Abstract:
In this paper we examine the use of global texture analysis based approaches for the purpose of Persian font recognition in machine-printed document images. Most existing methods for font recognition make use of local typographical features and connected component analysis. However derivation of such features is not an easy task. Gabor filters are appropriate tools for texture analysis and are motivated by human visual system. Here we consider document images as textures and use Gabor filter responses for identifying the fonts. The method is content independent and involves no local feature analysis. Two different classifiers Weighted Euclidean Distance and SVM are used for the purpose of classification. Experiments on seven different type faces and four font styles show average accuracy of 85% with WED and 82% with SVM classifier over typefacesKeywords: Persian font recognition, support vector machine, gabor filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17102310 A Method for Consensus Building between Teachers and Learners in a Value Co-Creative Learning Service
Authors: Ryota Sugino, Satoshi Mizoguchi, Koji Kimita, Keiichi Muramatsu, Tatsunori Matsui, Yoshiki Shimomura
Abstract:
Improving added value and productivity of services entails improving both value-in-exchange and value-in-use. Value-in-use is realized by value co-creation, where providers and receivers create value together. In higher education services, value-in-use comes from learners achieving learning outcomes (e.g., knowledge and skills) that are consistent with their learning goals. To enhance the learning outcomes of a learner, it is necessary to enhance and utilize the abilities of the teacher along with the abilities of the learner. To do this, however, the learner and the teacher need to build a consensus about their respective roles. Teachers need to provide effective learning content; learners need to choose the appropriate learning strategies by using the learning content through consensus building. This makes consensus building an important factor in value co-creation. However, methods to build a consensus about their respective roles may not be clearly established, making such consensus difficult. In this paper, we propose some strategies for consensus building between a teacher and a learner in value co-creation. We focus on a teacher and learner co-design and propose an analysis method to clarify a collaborative design process to realize value co-creation. We then analyze some counseling data obtained from a university class. This counseling aimed to build a consensus for value-in-use, learning outcomes, and learning strategies between the teacher and the learner.Keywords: Consensus building, value co-creation, higher education, learning service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17742309 Corporate Credit Rating using Multiclass Classification Models with order Information
Authors: Hyunchul Ahn, Kyoung-Jae Kim
Abstract:
Corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has been one of the attractive research topics in the literature. In recent years, multiclass classification models such as artificial neural network (ANN) or multiclass support vector machine (MSVM) have become a very appealing machine learning approaches due to their good performance. However, most of them have only focused on classifying samples into nominal categories, thus the unique characteristic of the credit rating - ordinality - has been seldom considered in their approaches. This study proposes new types of ANN and MSVM classifiers, which are named OMANN and OMSVM respectively. OMANN and OMSVM are designed to extend binary ANN or SVM classifiers by applying ordinal pairwise partitioning (OPP) strategy. These models can handle ordinal multiple classes efficiently and effectively. To validate the usefulness of these two models, we applied them to the real-world bond rating case. We compared the results of our models to those of conventional approaches. The experimental results showed that our proposed models improve classification accuracy in comparison to typical multiclass classification techniques with the reduced computation resource.Keywords: Artificial neural network, Corporate credit rating, Support vector machines, Ordinal pairwise partitioning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34402308 An Ontology Abstract Machine
Authors: Leong Lee, Jennifer Leopold, Julia Albath, Alton Coalter
Abstract:
As more people from non-technical backgrounds are becoming directly involved with large-scale ontology development, the focal point of ontology research has shifted from the more theoretical ontology issues to problems associated with the actual use of ontologies in real-world, large-scale collaborative applications. Recently the National Science Foundation funded a large collaborative ontology development project for which a new formal ontology model, the Ontology Abstract Machine (OAM), was developed to satisfy some unique functional and data representation requirements. This paper introduces the OAM model and the related algorithms that enable maintenance of an ontology that supports node-based user access. The successful software implementation of the OAM model and its subsequent acceptance by a large research community proves its validity and its real-world application value.Keywords: Ontology, Abstract Machine, Ontology Editor, WebbasedOntology Management System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14062307 Architecture from Teaching to Learning to Practice: Authentic learning Tasks in Developing Professional Competencies
Authors: N. Utaberta, B. Hassanpour, M. Surat, A. I. Che Ani, N.M. Tawil
Abstract:
The concerns of education and practice of architecture do not necessarily overlap. Indeed the gap between them could be seen increasingly and less frequently bridged. We suggest that changing in architecture education and clarifying the relationship between these two can help to find and address the opportunities and unique positions to bridge this gulf.Keywords: Architecture education, Learning, Practice, Teaching
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16122306 Implementation of Response Surface Methodology using in Small Brown Rice Peeling Machine: Part I
Authors: S. Bangphan, P. Bangphan, T.Boonkang
Abstract:
Implementation of response surface methodology (RSM) was employed to study the effects of two factor (rubber clearance and round per minute) in brown rice peeling machine of The optimal BROKENS yield (19.02, average of three repeats),.The optimized composition derived from RSM regression was analyzed using Regression analysis and Analysis of Variance (ANOVA). At a significant level α = 0.05, the values of Regression coefficient, R 2 (adj)were 97.35 % and standard deviation were 1.09513. The independent variables are initial rubber clearance, and round per minute parameters namely. The investigating responses are final rubber clearance, and round per minute (RPM). The restriction of the optimization is the designated.
Keywords: Brown rice, Response surface methodology(RSM), Rubber clearance, Round per minute (RPM), Peeling machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19712305 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance
Authors: Sokkhey Phauk, Takeo Okazaki
Abstract:
The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.
Keywords: Academic performance prediction system, prediction model, educational data mining, dominant factors, feature selection methods, student performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9802304 Indonesian News Classification using Support Vector Machine
Authors: Dewi Y. Liliana, Agung Hardianto, M. Ridok
Abstract:
Digital news with a variety topics is abundant on the internet. The problem is to classify news based on its appropriate category to facilitate user to find relevant news rapidly. Classifier engine is used to split any news automatically into the respective category. This research employs Support Vector Machine (SVM) to classify Indonesian news. SVM is a robust method to classify binary classes. The core processing of SVM is in the formation of an optimum separating plane to separate the different classes. For multiclass problem, a mechanism called one against one is used to combine the binary classification result. Documents were taken from the Indonesian digital news site, www.kompas.com. The experiment showed a promising result with the accuracy rate of 85%. This system is feasible to be implemented on Indonesian news classification.Keywords: classification, Indonesian news, text processing, support vector machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34892303 A Dictionary Learning Method Based On EMD for Audio Sparse Representation
Authors: Yueming Wang, Zenghui Zhang, Rendong Ying, Peilin Liu
Abstract:
Sparse representation has long been studied and several dictionary learning methods have been proposed. The dictionary learning methods are widely used because they are adaptive. In this paper, a new dictionary learning method for audio is proposed. Signals are at first decomposed into different degrees of Intrinsic Mode Functions (IMF) using Empirical Mode Decomposition (EMD) technique. Then these IMFs form a learned dictionary. To reduce the size of the dictionary, the K-means method is applied to the dictionary to generate a K-EMD dictionary. Compared to K-SVD algorithm, the K-EMD dictionary decomposes audio signals into structured components, thus the sparsity of the representation is increased by 34.4% and the SNR of the recovered audio signals is increased by 20.9%.
Keywords: Dictionary Learning, EMD, K-means Method, Sparse Representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26282302 Resident-Aware Green Home
Authors: Ahlam Elkilani, Bayan Elsheikh Ali, Rasha Abu Romman, Amjed Al-mousa, Belal Sababha
Abstract:
The amount of energy the world uses doubles every 20 years. Green homes play an important role in reducing the residential energy demand. This paper presents a platform that is intended to learn the behavior of home residents and build a profile about their habits and actions. The proposed resident aware home controller intervenes in the operation of home appliances in order to save energy without compromising the convenience of the residents. The presented platform can be used to simulate the actions and movements happening inside a home. The paper includes several optimization techniques that are meant to save energy in the home. In addition, several test scenarios are presented that show how the controller works. Moreover, this paper shows the computed actual savings when each of the presented techniques is implemented in a typical home. The test scenarios have validated that the techniques developed are capable of effectively saving energy at homes.
Keywords: Green Home, Resident Aware, Resident Profile, Activity Learning, Machine Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21592301 Using Technology to Enhance the Student Assessment Experience
Authors: D. J. Smith, M. A. Qayyum
Abstract:
The use of information tools is a common activity for students of any educational stage when they encounter online learning activities. Finding the relevant information for particular learning tasks is the topic of this paper as it investigates the use of information tools for a group of student participants. The paper describes and discusses the results with particular implications for use in higher education, and the findings suggest that improvement in assessment design and subsequent student learning may be achieved by structuring the purposefulness of information tools usage and online reading behaviors of university students.
Keywords: Information tools, assessment, online learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17222300 Improving the Quality of e-learning Courses in Higher Education through Student Satisfaction
Authors: Susana Lemos, Neuza Pedro
Abstract:
Thepurpose of the research is to characterize the levels of satisfaction of the students in e-learning post-graduate courses, taking into account specific dimensions of the course which were considered as benchmarks for the quality of this type of online learning initiative, as well as the levels of satisfaction towards each specific indicator identified in each dimension. It was also an aim of this study to understand how thesedimensions relate to one another. Using a quantitative research approach in the collection and analysis of the data, the study involves the participation of the students who attended on e-learning course in 2010/2011. The conclusions of this study suggest that online students present relatively high levels of satisfaction, which points towards a positive experience during the course. It is possible to note that there is a correlation between the different dimensions studied, consequently leading to different improvement strategies. Ultimately, this investigation aims to contribute to the promotion of quality and the success of e-learning initiatives in Higher Education.Keywords: e-learning, higher education, quality, students satisfaction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15972299 Use of Semantic Networks as Learning Material and Evaluation of the Approach by Students
Authors: Philippe A. Martin
Abstract:
This article first summarizes reasons why current approaches supporting Open Learning and Distance Education need to be complemented by tools permitting lecturers, researchers and students to cooperatively organize the semantic content of Learning related materials (courses, discussions, etc.) into a fine-grained shared semantic network. This first part of the article also quickly describes the approach adopted to permit such a collaborative work. Then, examples of such semantic networks are presented. Finally, an evaluation of the approach by students is provided and analyzed.
Keywords: knowledge sharing, knowledge evaluation, e-learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15082298 Integrating Agents and Computational Intelligence Techniques in E-learning Environments
Authors: Konstantinos C. Giotopoulos, Christos E. Alexakos, Grigorios N. Beligiannis, Spiridon D.Likothanassis
Abstract:
In this contribution a newly developed elearning environment is presented, which incorporates Intelligent Agents and Computational Intelligence Techniques. The new e-learning environment is constituted by three parts, the E-learning platform Front-End, the Student Questioner Reasoning and the Student Model Agent. These parts are distributed geographically in dispersed computer servers, with main focus on the design and development of these subsystems through the use of new and emerging technologies. These parts are interconnected in an interoperable way, using web services for the integration of the subsystems, in order to enhance the user modelling procedure and achieve the goals of the learning process.
Keywords: E-learning environments, intelligent agents, user modeling, Bayesian Networks, computational intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880