Search results for: Social Network Sites
3929 EAAC: Energy-Aware Admission Control Scheme for Ad Hoc Networks
Authors: Dilip Kumar S.M, Vijaya Kumar B.P.
Abstract:
The decisions made by admission control algorithms are based on the availability of network resources viz. bandwidth, energy, memory buffers, etc., without degrading the Quality-of-Service (QoS) requirement of applications that are admitted. In this paper, we present an energy-aware admission control (EAAC) scheme which provides admission control for flows in an ad hoc network based on the knowledge of the present and future residual energy of the intermediate nodes along the routing path. The aim of EAAC is to quantify the energy that the new flow will consume so that it can be decided whether the future residual energy of the nodes along the routing path can satisfy the energy requirement. In other words, this energy-aware routing admits a new flow iff any node in the routing path does not run out of its energy during the transmission of packets. The future residual energy of a node is predicted using the Multi-layer Neural Network (MNN) model. Simulation results shows that the proposed scheme increases the network lifetime. Also the performance of the MNN model is presented.Keywords: Ad hoc networks, admission control, energy-aware routing, Quality-of-Service, future residual energy, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16473928 Proposal of Data Collection from Probes
Authors: M. Kebisek, L. Spendla, M. Kopcek, T. Skulavik
Abstract:
In our paper we describe the security capabilities of data collection. Data are collected with probes located in the near and distant surroundings of the company. Considering the numerous obstacles e.g. forests, hills, urban areas, the data collection is realized in several ways. The collection of data uses connection via wireless communication, LAN network, GSM network and in certain areas data are collected by using vehicles. In order to ensure the connection to the server most of the probes have ability to communicate in several ways. Collected data are archived and subsequently used in supervisory applications. To ensure the collection of the required data, it is necessary to propose algorithms that will allow the probes to select suitable communication channel.
Keywords: Communication, computer network, data collection, probe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17823927 Performance Comparison of Single and Multi-Path Routing Protocol in MANET with Selfish Behaviors
Authors: Abdur Rashid Sangi, Jianwei Liu, Zhiping Liu
Abstract:
Mobile Ad Hoc network is an infrastructure less network which operates with the coordination of each node. Each node believes to help another node, by forwarding its data to/from another node. Unlike a wired network, nodes in an ad hoc network are resource (i.e. battery, bandwidth computational capability and so on) constrained. Such dependability of one node to another and limited resources of nodes can result in non cooperation by any node to accumulate its resources. Such non cooperation is known as selfish behavior. This paper discusses the performance analysis of very well known MANET single-path (i.e. AODV) and multi-path (i.e. AOMDV) routing protocol, in the presence of selfish behaviors. Along with existing selfish behaviors, a new variation is also studied. Extensive simulations were carried out using ns-2 and the study concluded that the multi-path protocol (i.e. AOMDV) with link disjoint configuration outperforms the other two configurations.Keywords: performance analysis, single and multi path protocol, selfish behaviors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20233926 Antenna Array Beamforming Using Neural Network
Authors: Maja Sarevska, Abdel-Badeeh M. Salem
Abstract:
This paper considers the problem of Null-Steering beamforming using Neural Network (NN) approach for antenna array system. Two cases are presented. First, unlike the other authors, the estimated Direction Of Arrivals (DOAs) are used for antenna array weights NN-based determination and the imprecise DOAs estimations are taken into account. Second, the blind null-steering beamforming is presented. In this case the antenna array outputs are presented at the input of the NN without DOAs estimation. The results of computer simulations will show much better relative mean error performances of the first NN approach compared to the NNbased blind beamforming.
Keywords: Beamforming, DOAs, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24193925 Queen-bee Algorithm for Energy Efficient Clusters in Wireless Sensor Networks
Authors: Z. Pooranian, A. Barati, A. Movaghar
Abstract:
Wireless sensor networks include small nodes which have sensing ability; calculation and connection extend themselves everywhere soon. Such networks have source limitation on connection, calculation and energy consumption. So, since the nodes have limited energy in sensor networks, the optimized energy consumption in these networks is of more importance and has created many challenges. The previous works have shown that by organizing the network nodes in a number of clusters, the energy consumption could be reduced considerably. So the lifetime of the network would be increased. In this paper, we used the Queen-bee algorithm to create energy efficient clusters in wireless sensor networks. The Queen-bee (QB) is similar to nature in that the queen-bee plays a major role in reproduction process. The QB is simulated with J-sim simulator. The results of the simulation showed that the clustering by the QB algorithm decreases the energy consumption with regard to the other existing algorithms and increases the lifetime of the network.Keywords: Queen-bee, sensor network, energy efficient, clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19753924 Dynamical Network Transmission of H1N1 Virus at the Local Level Transmission Model
Authors: P. Pongsumpun
Abstract:
A new strain of Type A influenza virus can cause the transmission of H1N1 virus. This virus can spread between the people by coughing and sneezing. Because the people are always movement, so this virus can be easily spread. In this study, we construct the dynamical network model of H1N1 virus by separating the human into five groups; susceptible, exposed, infectious, quarantine and recovered groups. The movement of people between houses (local level) is considered. The behaviors of solutions to our dynamical model are shown for the different parameters.Keywords: Dynamical network, H1N1virus, local level, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15473923 Voltage Sag Characteristics during Symmetrical and Asymmetrical Faults
Authors: Ioannis Binas, Marios Moschakis
Abstract:
Electrical faults in transmission and distribution networks can have great impact on the electrical equipment used. Fault effects depend on the characteristics of the fault as well as the network itself. It is important to anticipate the network’s behavior during faults when planning a new equipment installation, as well as troubleshooting. Moreover, working backwards, we could be able to estimate the characteristics of the fault when checking the perceived effects. Different transformer winding connections dominantly used in the Greek power transfer and distribution networks and the effects of 1-phase to neutral, phase-to-phase, 2-phases to neutral and 3-phase faults on different locations of the network were simulated in order to present voltage sag characteristics. The study was performed on a generic network with three steps down transformers on two voltage level buses (one 150 kV/20 kV transformer and two 20 kV/0.4 kV). We found that during faults, there are significant changes both on voltage magnitudes and on phase angles. The simulations and short-circuit analysis were performed using the PSCAD simulation package. This paper presents voltage characteristics calculated for the simulated network, with different approaches on the transformer winding connections during symmetrical and asymmetrical faults on various locations.
Keywords: Phase angle shift, power quality, transformer winding connections, voltage sag propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8143922 Generator Damage Recognition Based on Artificial Neural Network
Authors: Chang-Hung Hsu, Chun-Yao Lee, Guan-Lin Liao, Yung-Tsan Jou, Jin-Maun Ho, Yu-Hua Hsieh, Yi-Xing Shen
Abstract:
This article simulates the wind generator set which has two fault bearing collar rail destruction and the gear box oil leak fault. The electric current signal which produced by the generator, We use Empirical Mode Decomposition (EMD) as well as Fast Fourier Transform (FFT) obtains the frequency range-s signal figure and characteristic value. The last step is use a kind of Artificial Neural Network (ANN) classifies which determination fault signal's type and reason. The ANN purpose of the automatic identification wind generator set fault..Keywords: Wind-driven generator, Fast Fourier Transform, Neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17613921 Using Artificial Neural Network Algorithm for Voltage Stability Improvement
Authors: Omid Borazjani, Mahmoud Roosta, Khodakhast Isapour, Ali Reza Rajabi
Abstract:
This paper presents an application of Artificial Neural Network (ANN) algorithm for improving power system voltage stability. The training data is obtained by solving several normal and abnormal conditions using the Linear Programming technique. The selected objective function gives minimum deviation of the reactive power control variables, which leads to the maximization of minimum Eigen value of load flow Jacobian. The considered reactive power control variables are switchable VAR compensators, OLTC transformers and excitation of generators. The method has been implemented on a modified IEEE 30-bus test system. The results obtain from the test clearly show that the trained neural network is capable of improving the voltage stability in power system with a high level of precision and speed.Keywords: Artificial Neural Network (ANN), Load Flow, Voltage Stability, Power Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19703920 Safety Conditions Analysis of Scaffolding on Construction Sites
Authors: M. Pieńko, A. Robak, E. Błazik-Borowa, J. Szer
Abstract:
This paper presents the results of analysis of 100 full-scale scaffolding structures in terms of compliance with legal acts and safety of use. In 2016 and 2017, authors examined scaffolds in Poland located at buildings which were at construction or renovation stage. The basic elements affecting the safety of scaffolding use such as anchors, supports, platforms, guardrails and toe-boards have been taken into account. All of these elements were checked in each of considered scaffolding. Based on the analyzed scaffoldings, the most common errors concerning assembly process and use of scaffolding were collected. Legal acts on the scaffoldings are not always clear, and this causes many issues. In practice, people realize how dangerous the use of incomplete scaffolds is only when the accident occurs. Despite the fact that the scaffolding should ensure the safety of its users, most accidents on construction sites are caused by fall from a height.
Keywords: Façade scaffolds, load capacity, practice, safety of people.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15513919 A Novel Framework for Abnormal Behaviour Identification and Detection for Wireless Sensor Networks
Authors: Muhammad R. Ahmed, Xu Huang, Dharmendra Sharma
Abstract:
Despite extensive study on wireless sensor network security, defending internal attacks and finding abnormal behaviour of the sensor are still difficult and unsolved task. The conventional cryptographic technique does not give the robust security or detection process to save the network from internal attacker that cause by abnormal behavior. The insider attacker or abnormally behaved sensor identificationand location detection framework using false massage detection and Time difference of Arrival (TDoA) is presented in this paper. It has been shown that the new framework can efficiently identify and detect the insider attacker location so that the attacker can be reprogrammed or subside from the network to save from internal attack.Keywords: Insider Attaker identification, Abnormal Behaviour, Location detection, Time difference of Arrival (TDoA), Wireless sensor network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17743918 New Approach for Minimizing Wavelength Fragmentation in Wavelength-Routed WDM Networks
Authors: Sami Baraketi, Jean-Marie Garcia, Olivier Brun
Abstract:
Wavelength Division Multiplexing (WDM) is the dominant transport technology used in numerous high capacity backbone networks, based on optical infrastructures. Given the importance of costs (CapEx and OpEx) associated to these networks, resource management is becoming increasingly important, especially how the optical circuits, called “lightpaths”, are routed throughout the network. This requires the use of efficient algorithms which provide routing strategies with the lowest cost. We focus on the lightpath routing and wavelength assignment problem, known as the RWA problem, while optimizing wavelength fragmentation over the network. Wavelength fragmentation poses a serious challenge for network operators since it leads to the misuse of the wavelength spectrum, and then to the refusal of new lightpath requests. In this paper, we first establish a new Integer Linear Program (ILP) for the problem based on a node-link formulation. This formulation is based on a multilayer approach where the original network is decomposed into several network layers, each corresponding to a wavelength. Furthermore, we propose an efficient heuristic for the problem based on a greedy algorithm followed by a post-treatment procedure. The obtained results show that the optimal solution is often reached. We also compare our results with those of other RWA heuristic methods
Keywords: WDM, lightpath, RWA, wavelength fragmentation, optimization, linear programming, heuristic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18713917 Rock Textures Classification Based on Textural and Spectral Features
Authors: Tossaporn Kachanubal, Somkait Udomhunsakul
Abstract:
In this paper, we proposed a method to classify each type of natural rock texture. Our goal is to classify 26 classes of rock textures. First, we extract five features of each class by using principle component analysis combining with the use of applied spatial frequency measurement. Next, the effective node number of neural network was tested. We used the most effective neural network in classification process. The results from this system yield quite high in recognition rate. It is shown that high recognition rate can be achieved in separation of 26 stone classes.Keywords: Texture classification, SFM, neural network, rock texture classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20103916 Detecting Fake News: A Natural Language Processing, Reinforcement Learning, and Blockchain Approach
Authors: Ashly Joseph, Jithu Paulose
Abstract:
In an era where misleading information may quickly circulate on digital news channels, it is crucial to have efficient and trustworthy methods to detect and reduce the impact of misinformation. This research proposes an innovative framework that combines Natural Language Processing (NLP), Reinforcement Learning (RL), and Blockchain technologies to precisely detect and minimize the spread of false information in news articles on social media. The framework starts by gathering a variety of news items from different social media sites and performing preprocessing on the data to ensure its quality and uniformity. NLP methods are utilized to extract complete linguistic and semantic characteristics, effectively capturing the subtleties and contextual aspects of the language used. These features are utilized as input for a RL model. This model acquires the most effective tactics for detecting and mitigating the impact of false material by modeling the intricate dynamics of user engagements and incentives on social media platforms. The integration of blockchain technology establishes a decentralized and transparent method for storing and verifying the accuracy of information. The Blockchain component guarantees the unchangeability and safety of verified news records, while encouraging user engagement for detecting and fighting false information through an incentive system based on tokens. The suggested framework seeks to provide a thorough and resilient solution to the problems presented by misinformation in social media articles.
Keywords: Natural Language Processing, Reinforcement Learning, Blockchain, fake news mitigation, misinformation detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 893915 Behavioral Signature Generation using Shadow Honeypot
Authors: Maros Barabas, Michal Drozd, Petr Hanacek
Abstract:
A novel behavioral detection framework is proposed to detect zero day buffer overflow vulnerabilities (based on network behavioral signatures) using zero-day exploits, instead of the signature-based or anomaly-based detection solutions currently available for IDPS techniques. At first we present the detection model that uses shadow honeypot. Our system is used for the online processing of network attacks and generating a behavior detection profile. The detection profile represents the dataset of 112 types of metrics describing the exact behavior of malware in the network. In this paper we present the examples of generating behavioral signatures for two attacks – a buffer overflow exploit on FTP server and well known Conficker worm. We demonstrated the visualization of important aspects by showing the differences between valid behavior and the attacks. Based on these metrics we can detect attacks with a very high probability of success, the process of detection is however very expensive.Keywords: behavioral signatures, metrics, network, security design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20543914 Performance Analysis of Deterministic Stable Election Protocol Using Fuzzy Logic in Wireless Sensor Network
Authors: Sumanpreet Kaur, Harjit Pal Singh, Vikas Khullar
Abstract:
In Wireless Sensor Network (WSN), the sensor containing motes (nodes) incorporate batteries that can lament at some extent. To upgrade the energy utilization, clustering is one of the prototypical approaches for split sensor motes into a number of clusters where one mote (also called as node) proceeds as a Cluster Head (CH). CH selection is one of the optimization techniques for enlarging stability and network lifespan. Deterministic Stable Election Protocol (DSEP) is an effectual clustering protocol that makes use of three kinds of nodes with dissimilar residual energy for CH election. Fuzzy Logic technology is used to expand energy level of DSEP protocol by using fuzzy inference system. This paper presents protocol DSEP using Fuzzy Logic (DSEP-FL) CH by taking into account four linguistic variables such as energy, concentration, centrality and distance to base station. Simulation results show that our proposed method gives more effective results in term of a lifespan of network and stability as compared to the performance of other clustering protocols.
Keywords: Deterministic stable election protocol, energy model, fuzzy logic, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9783913 Impact of Node Density and Transmission Range on the Performance of OLSR and DSDV Routing Protocols in VANET City Scenarios
Authors: Yassine Meraihi, Dalila Acheli, Rabah Meraihi
Abstract:
Vehicular Ad hoc Network (VANET) is a special case of Mobile Ad hoc Network (MANET) used to establish communications and exchange information among nearby vehicles and between vehicles and nearby fixed infrastructure. VANET is seen as a promising technology used to provide safety, efficiency, assistance and comfort to the road users. Routing is an important issue in Vehicular Ad Hoc Network to find and maintain communication between vehicles due to the highly dynamic topology, frequently disconnected network and mobility constraints.
This paper evaluates the performance of two most popular proactive routing protocols OLSR and DSDV in real city traffic scenario on the basis of three metrics namely Packet delivery ratio, throughput and average end to end delay by varying vehicles density and transmission range.
Keywords: DSDV, OLSR, Quality of service, Routing protocols, VANET.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22763912 Artificial Neural Network based Modeling of Evaporation Losses in Reservoirs
Authors: Surinder Deswal, Mahesh Pal
Abstract:
An Artificial Neural Network based modeling technique has been used to study the influence of different combinations of meteorological parameters on evaporation from a reservoir. The data set used is taken from an earlier reported study. Several input combination were tried so as to find out the importance of different input parameters in predicting the evaporation. The prediction accuracy of Artificial Neural Network has also been compared with the accuracy of linear regression for predicting evaporation. The comparison demonstrated superior performance of Artificial Neural Network over linear regression approach. The findings of the study also revealed the requirement of all input parameters considered together, instead of individual parameters taken one at a time as reported in earlier studies, in predicting the evaporation. The highest correlation coefficient (0.960) along with lowest root mean square error (0.865) was obtained with the input combination of air temperature, wind speed, sunshine hours and mean relative humidity. A graph between the actual and predicted values of evaporation suggests that most of the values lie within a scatter of ±15% with all input parameters. The findings of this study suggest the usefulness of ANN technique in predicting the evaporation losses from reservoirs.Keywords: Artificial neural network, evaporation losses, multiple linear regression, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19783911 A Performance Evaluation of Cellular Network Suitability for VANET
Authors: Ho-Yeon Kim, Dong-Min Kang, Jun-Ho Lee, Tai-Myoung Chung
Abstract:
Recently, a vehicular ad-hoc networks(VANETs) for Intelligent Transport System(ITS) have become able safety and convenience services surpassing the simple services such as an electronic toll collection system. To provide the proper services, VANET needs infrastructure over the country infrastructure. Thus, we have to spend a huge sum of human resources. In this reason, several studies have been made on the usage of cellular networks instead of new protocols this study is to assess a performance evaluation of the cellular network for VANET. In this paper, the result of a for the suitability of cellular networks for VANET experiment, The LTE(Long Term Evolution) of cellular networks found to be most suitable among the others cellular networksKeywords: Vehicle communication, VANET, Cellular network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27153910 A Maximum Parsimony Model to Reconstruct Phylogenetic Network in Honey Bee Evolution
Authors: Usha Chouhan, K. R. Pardasani
Abstract:
Phylogenies ; The evolutionary histories of groups of species are one of the most widely used tools throughout the life sciences, as well as objects of research with in systematic, evolutionary biology. In every phylogenetic analysis reconstruction produces trees. These trees represent the evolutionary histories of many groups of organisms, bacteria due to horizontal gene transfer and plants due to process of hybridization. The process of gene transfer in bacteria and hybridization in plants lead to reticulate networks, therefore, the methods of constructing trees fail in constructing reticulate networks. In this paper a model has been employed to reconstruct phylogenetic network in honey bee. This network represents reticulate evolution in honey bee. The maximum parsimony approach has been used to obtain this reticulate network.Keywords: Hybridization, HGT, Reticulate networks, Recombination, Species, Parsimony.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16073909 A Distributed Topology Control Algorithm to Conserve Energy in Heterogeneous Wireless Mesh Networks
Authors: F. O. Aron, T. O. Olwal, A. Kurien, M. O. Odhiambo
Abstract:
A considerable amount of energy is consumed during transmission and reception of messages in a wireless mesh network (WMN). Reducing per-node transmission power would greatly increase the network lifetime via power conservation in addition to increasing the network capacity via better spatial bandwidth reuse. In this work, the problem of topology control in a hybrid WMN of heterogeneous wireless devices with varying maximum transmission ranges is considered. A localized distributed topology control algorithm is presented which calculates the optimal transmission power so that (1) network connectivity is maintained (2) node transmission power is reduced to cover only the nearest neighbours (3) networks lifetime is extended. Simulations and analysis of results are carried out in the NS-2 environment to demonstrate the correctness and effectiveness of the proposed algorithm.Keywords: Topology Control, Wireless Mesh Networks, Backbone, Energy Efficiency, Localized Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13943908 Application of Various Methods for Evaluation of Heavy Metal Pollution in Soils around Agarak Copper-Molybdenum Mine Complex, Armenia
Authors: K. A. Ghazaryan, H. S. Movsesyan, N. P. Ghazaryan
Abstract:
The present study was aimed in assessing the heavy metal pollution of the soils around Agarak copper-molybdenum mine complex and related environmental risks. This mine complex is located in the south-east part of Armenia, and the present study was conducted in 2013. The soils of the five riskiest sites of this region were studied: surroundings of the open mine, the sites adjacent to processing plant of Agarak copper-molybdenum mine complex, surroundings of Darazam active tailing dump, the recultivated tailing dump of “ravine - 2”, and the recultivated tailing dump of “ravine - 3”. The mountain cambisol was the main soil type in the study sites. The level of soil contamination by heavy metals was assessed by Contamination factors (Cf), Degree of contamination (Cd), Geoaccumulation index (I-geo) and Enrichment factor (EF). The distribution pattern of trace metals in the soil profile according to Cf, Cd, I-geo and EF values shows that the soil is much polluted. Almost in all studied sites, Cu, Mo, Pb, and Cd were the main polluting heavy metals, and this was conditioned by Agarak copper-molybdenum mine complex activity. It is necessary to state that the pollution problem becomes pressing as some parts of these highly polluted region are inhabited by population, and agriculture is highly developed there; therefore, heavy metals can be transferred into human bodies through food chains and have direct influence on public health. Since the induced pollution can pose serious threats to public health, further investigations on soil and vegetation pollution are recommended. Finally, Cf calculating based on distance from the pollution source and the wind direction can provide more reasonable results.
Keywords: Agarak copper-molybdenum mine complex, heavy metals, soil contamination, enrichment factor, Armenia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12493907 Optimum Surface Roughness Prediction in Face Milling of High Silicon Stainless Steel
Authors: M. Farahnakian, M.R. Razfar, S. Elhami-Joosheghan
Abstract:
This paper presents an approach for the determination of the optimal cutting parameters (spindle speed, feed rate, depth of cut and engagement) leading to minimum surface roughness in face milling of high silicon stainless steel by coupling neural network (NN) and Electromagnetism-like Algorithm (EM). In this regard, the advantages of statistical experimental design technique, experimental measurements, artificial neural network, and Electromagnetism-like optimization method are exploited in an integrated manner. To this end, numerous experiments on this stainless steel were conducted to obtain surface roughness values. A predictive model for surface roughness is created by using a back propogation neural network, then the optimization problem was solved by using EM optimization. Additional experiments were performed to validate optimum surface roughness value predicted by EM algorithm. It is clearly seen that a good agreement is observed between the predicted values by EM coupled with feed forward neural network and experimental measurements. The obtained results show that the EM algorithm coupled with back propogation neural network is an efficient and accurate method in approaching the global minimum of surface roughness in face milling.
Keywords: cutting parameters, face milling, surface roughness, artificial neural network, Electromagnetism-like algorithm,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25863906 A Fair Non-transfer Exchange Protocol
Authors: Cheng-Chi Lee, Min-Shiang Hwang, Shu-Yin Hsiao
Abstract:
Network exchange is now widely used. However, it still cannot avoid the problems evolving from network exchange. For example. A buyer may not receive the order even if he/she makes the payment. For another example, the seller possibly get nothing even when the merchandise is sent. Some studies about the fair exchange have proposed protocols for the design of efficiency and exploited the signature property to specify that two parties agree on the exchange. The information about purchased item and price are disclosed in this way. This paper proposes a new fair network payment protocol with off-line trusted third party. The proposed protocol can protect the buyers- purchase message from being traced. In addition, the proposed protocol can meet the proposed requirements. The most significant feature is Non-transfer property we achieved.Keywords: E-commerce, digital signature, fair exchange, security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13473905 A Neural Network Approach in Predicting the Blood Glucose Level for Diabetic Patients
Authors: Zarita Zainuddin, Ong Pauline, C. Ardil
Abstract:
Diabetes Mellitus is a chronic metabolic disorder, where the improper management of the blood glucose level in the diabetic patients will lead to the risk of heart attack, kidney disease and renal failure. This paper attempts to enhance the diagnostic accuracy of the advancing blood glucose levels of the diabetic patients, by combining principal component analysis and wavelet neural network. The proposed system makes separate blood glucose prediction in the morning, afternoon, evening and night intervals, using dataset from one patient covering a period of 77 days. Comparisons of the diagnostic accuracy with other neural network models, which use the same dataset are made. The comparison results showed overall improved accuracy, which indicates the effectiveness of this proposed system.Keywords: Diabetes Mellitus, principal component analysis, time-series, wavelet neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29893904 Identifying a Drug Addict Person Using Artificial Neural Networks
Authors: Mustafa Al Sukar, Azzam Sleit, Abdullatif Abu-Dalhoum, Bassam Al-Kasasbeh
Abstract:
Use and abuse of drugs by teens is very common and can have dangerous consequences. The drugs contribute to physical and sexual aggression such as assault or rape. Some teenagers regularly use drugs to compensate for depression, anxiety or a lack of positive social skills. Teen resort to smoking should not be minimized because it can be "gateway drugs" for other drugs (marijuana, cocaine, hallucinogens, inhalants, and heroin). The combination of teenagers' curiosity, risk taking behavior, and social pressure make it very difficult to say no. This leads most teenagers to the questions: "Will it hurt to try once?" Nowadays, technological advances are changing our lives very rapidly and adding a lot of technologies that help us to track the risk of drug abuse such as smart phones, Wireless Sensor Networks (WSNs), Internet of Things (IoT), etc. This technique may help us to early discovery of drug abuse in order to prevent an aggravation of the influence of drugs on the abuser. In this paper, we have developed a Decision Support System (DSS) for detecting the drug abuse using Artificial Neural Network (ANN); we used a Multilayer Perceptron (MLP) feed-forward neural network in developing the system. The input layer includes 50 variables while the output layer contains one neuron which indicates whether the person is a drug addict. An iterative process is used to determine the number of hidden layers and the number of neurons in each one. We used multiple experiment models that have been completed with Log-Sigmoid transfer function. Particularly, 10-fold cross validation schemes are used to access the generalization of the proposed system. The experiment results have obtained 98.42% classification accuracy for correct diagnosis in our system. The data had been taken from 184 cases in Jordan according to a set of questions compiled from Specialists, and data have been obtained through the families of drug abusers.
Keywords: Artificial Neural Network, Decision Support System, drug abuse, drug addiction, Multilayer Perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16823903 The Age Difference in Social Skills Constructs for School Adaptation: A Cross-Sectional Study of Japanese Students at Elementary, Junior, and Senior High Schools
Authors: Hiroki Shinkawa, Tadaaki Tomiie
Abstract:
Many interventions for social skills acquisition aim to decrease the gap between social skills deficits in the individual and normative social skills; nevertheless little is known of typical social skills according to age difference in students. In this study, we developed new quintet of Hokkaido Social Skills Inventory (HSSI) to identify age-appropriate social skills for school adaptation. First, we selected 13 categories of social skills for school adaptation from previous studies, and created questionnaire items through discussion by 25 teachers in all three levels from elementary schools to senior high schools. Second, the factor structures of five versions of the social skills scale were investigated on 2nd grade (n = 1,864), 4th grade (n = 1,936), 6th grade (n = 2,085), 7th grade (n = 2,007), and 10th grade (n = 912) students, respectively. The exploratory factor analysis showed that a number of constructing factors of social skills increased as one’s grade in school advanced. The results in the present study can be useful to characterize the age-appropriate social skills for school adaptation.
Keywords: Social skills, age difference, children, adolescents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15533902 Traffic Behaviour of VoIP in a Simulated Access Network
Authors: Jishu Das Gupta, Srecko Howard, Angela Howard
Abstract:
Insufficient Quality of Service (QoS) of Voice over Internet Protocol (VoIP) is a growing concern that has lead the need for research and study. In this paper we investigate the performance of VoIP and the impact of resource limitations on the performance of Access Networks. The impact of VoIP performance in Access Networks is particularly important in regions where Internet resources are limited and the cost of improving these resources is prohibitive. It is clear that perceived VoIP performance, as measured by mean opinion score [2] in experiments, where subjects are asked to rate communication quality, is determined by end-to-end delay on the communication path, delay variation, packet loss, echo, the coding algorithm in use and noise. These performance indicators can be measured and the affect in the Access Network can be estimated. This paper investigates the congestion in the Access Network to the overall performance of VoIP services with the presence of other substantial uses of internet and ways in which Access Networks can be designed to improve VoIP performance. Methods for analyzing the impact of the Access Network on VoIP performance will be surveyed and reviewed. This paper also considers some approaches for improving performance of VoIP by carrying out experiments using Network Simulator version 2 (NS2) software with a view to gaining a better understanding of the design of Access Networks.Keywords: Codec, DiffServ, Droptail, RED, VOIP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15953901 Robust Stabilization against Unknown Consensus Network
Authors: Myung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha
Abstract:
This paper studies a robust stabilization problem of a single agent in a multi-agent consensus system composed of identical agents, when the network topology of the system is completely unknown. It is shown that the transfer function of an agent in a consensus system can be described as a multiplicative perturbation of the isolated agent transfer function in frequency domain. From an existing robust stabilization result, we present sufficient conditions for a robust stabilization of an agent against unknown network topology.
Keywords: Multi-agent System, Robust Stabilization, Transfer Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18703900 Distributed Self-Healing Protocol for Unattended Wireless Sensor Network
Authors: E. Golden Julie, E. Sahaya Rose Vigita, S. Tamil Selvi
Abstract:
Wireless sensor network is vulnerable to a wide range of attacks. Recover secrecy after compromise, to develop technique that can detect intrusions and able to resilient networks that isolates the point(s) of intrusion while maintaining network connectivity for other legitimate users. To define new security metrics to evaluate collaborative intrusion resilience protocol, by leveraging the sensor mobility that allows compromised sensors to recover secure state after compromise. This is obtained with very low overhead and in a fully distributed fashion using extensive simulations support our findings.
Keywords: WSN security, intrusion resilience, compromised sensors, mobility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757