Search results for: membership function.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2208

Search results for: membership function.

2178 A Self Supervised Bi-directional Neural Network (BDSONN) Architecture for Object Extraction Guided by Beta Activation Function and Adaptive Fuzzy Context Sensitive Thresholding

Authors: Siddhartha Bhattacharyya, Paramartha Dutta, Ujjwal Maulik, Prashanta Kumar Nandi

Abstract:

A multilayer self organizing neural neural network (MLSONN) architecture for binary object extraction, guided by a beta activation function and characterized by backpropagation of errors estimated from the linear indices of fuzziness of the network output states, is discussed. Since the MLSONN architecture is designed to operate in a single point fixed/uniform thresholding scenario, it does not take into cognizance the heterogeneity of image information in the extraction process. The performance of the MLSONN architecture with representative values of the threshold parameters of the beta activation function employed is also studied. A three layer bidirectional self organizing neural network (BDSONN) architecture comprising fully connected neurons, for the extraction of objects from a noisy background and capable of incorporating the underlying image context heterogeneity through variable and adaptive thresholding, is proposed in this article. The input layer of the network architecture represents the fuzzy membership information of the image scene to be extracted. The second layer (the intermediate layer) and the final layer (the output layer) of the network architecture deal with the self supervised object extraction task by bi-directional propagation of the network states. Each layer except the output layer is connected to the next layer following a neighborhood based topology. The output layer neurons are in turn, connected to the intermediate layer following similar topology, thus forming a counter-propagating architecture with the intermediate layer. The novelty of the proposed architecture is that the assignment/updating of the inter-layer connection weights are done using the relative fuzzy membership values at the constituent neurons in the different network layers. Another interesting feature of the network lies in the fact that the processing capabilities of the intermediate and the output layer neurons are guided by a beta activation function, which uses image context sensitive adaptive thresholding arising out of the fuzzy cardinality estimates of the different network neighborhood fuzzy subsets, rather than resorting to fixed and single point thresholding. An application of the proposed architecture for object extraction is demonstrated using a synthetic and a real life image. The extraction efficiency of the proposed network architecture is evaluated by a proposed system transfer index characteristic of the network.

Keywords: Beta activation function, fuzzy cardinality, multilayer self organizing neural network, object extraction,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
2177 Dynamic Routing to Multiple Destinations in IP Networks using Hybrid Genetic Algorithm (DRHGA)

Authors: K. Vijayalakshmi, S. Radhakrishnan

Abstract:

In this paper we have proposed a novel dynamic least cost multicast routing protocol using hybrid genetic algorithm for IP networks. Our protocol finds the multicast tree with minimum cost subject to delay, degree, and bandwidth constraints. The proposed protocol has the following features: i. Heuristic local search function has been devised and embedded with normal genetic operation to increase the speed and to get the optimized tree, ii. It is efficient to handle the dynamic situation arises due to either change in the multicast group membership or node / link failure, iii. Two different crossover and mutation probabilities have been used for maintaining the diversity of solution and quick convergence. The simulation results have shown that our proposed protocol generates dynamic multicast tree with lower cost. Results have also shown that the proposed algorithm has better convergence rate, better dynamic request success rate and less execution time than other existing algorithms. Effects of degree and delay constraints have also been analyzed for the multicast tree interns of search success rate.

Keywords: Dynamic Group membership change, Hybrid Genetic Algorithm, Link / node failure, QoS Parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
2176 MCOKE: Multi-Cluster Overlapping K-Means Extension Algorithm

Authors: Said Baadel, Fadi Thabtah, Joan Lu

Abstract:

Clustering involves the partitioning of n objects into k clusters. Many clustering algorithms use hard-partitioning techniques where each object is assigned to one cluster. In this paper we propose an overlapping algorithm MCOKE which allows objects to belong to one or more clusters. The algorithm is different from fuzzy clustering techniques because objects that overlap are assigned a membership value of 1 (one) as opposed to a fuzzy membership degree. The algorithm is also different from other overlapping algorithms that require a similarity threshold be defined a priori which can be difficult to determine by novice users.

Keywords: Data mining, k-means, MCOKE, overlapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2754
2175 An Application of Generalized Fuzzy Soft Sets in a Social Decision Making Problem

Authors: Nisha Singhal, Usha Chouhan

Abstract:

At present, application of the extension of soft set theory in decision making problems in day to day life is progressing rapidly. The concepts of fuzzy soft set and its properties have been evolved as an area of interest for the researchers. The generalization of the concepts recently got importance and a rapid growth in the research in this area witnessed its vital-ness. In this paper, an application of the concept of generalized fuzzy soft set to make decision in a social problem is presented. Further, this paper also highlights some of the key issues of the related areas.

Keywords: Soft set, Fuzzy Soft set, Generalized Fuzzy Soft set, Membership and Non-Membership Score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 947
2174 An Extension of the Kratzel Function and Associated Inverse Gaussian Probability Distribution Occurring in Reliability Theory

Authors: R. K. Saxena, Ravi Saxena

Abstract:

In view of their importance and usefulness in reliability theory and probability distributions, several generalizations of the inverse Gaussian distribution and the Krtzel function are investigated in recent years. This has motivated the authors to introduce and study a new generalization of the inverse Gaussian distribution and the Krtzel function associated with a product of a Bessel function of the third kind )(zKQ and a Z - Fox-Wright generalized hyper geometric function introduced in this paper. The introduced function turns out to be a unified gamma-type function. Its incomplete forms are also discussed. Several properties of this gamma-type function are obtained. By means of this generalized function, we introduce a generalization of inverse Gaussian distribution, which is useful in reliability analysis, diffusion processes, and radio techniques etc. The inverse Gaussian distribution thus introduced also provides a generalization of the Krtzel function. Some basic statistical functions associated with this probability density function, such as moments, the Mellin transform, the moment generating function, the hazard rate function, and the mean residue life function are also obtained.KeywordsFox-Wright function, Inverse Gaussian distribution, Krtzel function & Bessel function of the third kind.

Keywords: Fox-Wright function, Inverse Gaussian distribution, Krtzel function & Bessel function of the third kind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
2173 On Solution of Interval Valued Intuitionistic Fuzzy Assignment Problem Using Similarity Measure and Score Function

Authors: Gaurav Kumar, Rakesh Kumar Bajaj

Abstract:

The primary objective of the paper is to propose a new method for solving assignment problem under uncertain situation. In the classical assignment problem (AP), zpqdenotes the cost for assigning the qth job to the pth person which is deterministic in nature. Here in some uncertain situation, we have assigned a cost in the form of composite relative degree Fpq instead of  and this replaced cost is in the maximization form. In this paper, it has been solved and validated by the two proposed algorithms, a new mathematical formulation of IVIF assignment problem has been presented where the cost has been considered to be an IVIFN and the membership of elements in the set can be explained by positive and negative evidences. To determine the composite relative degree of similarity of IVIFS the concept of similarity measure and the score function is used for validating the solution which is obtained by Composite relative similarity degree method. Further, hypothetical numeric illusion is conducted to clarify the method’s effectiveness and feasibility developed in the study. Finally, conclusion and suggestion for future work are also proposed.

Keywords: Assignment problem, Interval-valued Intuitionistic Fuzzy Sets, Similarity Measures, score function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3012
2172 Novel and Different Definitions for Fuzzy Union and Intersection Operations

Authors: Aarthi Chandramohan, M. V. C. Rao

Abstract:

This paper presents three new methodologies for the basic operations, which aim at finding new ways of computing union (maximum) and intersection (minimum) membership values by taking into effect the entire membership values in a fuzzy set. The new methodologies are conceptually simple and easy from the application point of view and are illustrated with a variety of problems such as Cartesian product of two fuzzy sets, max –min composition of two fuzzy sets in different product spaces and an application of an inverted pendulum to determine the impact of the new methodologies. The results clearly indicate a difference based on the nature of the fuzzy sets under consideration and hence will be highly useful in quite a few applications where different values have significant impact on the behavior of the system.

Keywords: Centroid, fuzzy set operations, intersection, triangular norms , triangular S-norms, union.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
2171 Fuzzy Estimation of Parameters in Statistical Models

Authors: A. Falsafain, S. M. Taheri, M. Mashinchi

Abstract:

Using a set of confidence intervals, we develop a common approach, to construct a fuzzy set as an estimator for unknown parameters in statistical models. We investigate a method to derive the explicit and unique membership function of such fuzzy estimators. The proposed method has been used to derive the fuzzy estimators of the parameters of a Normal distribution and some functions of parameters of two Normal distributions, as well as the parameters of the Exponential and Poisson distributions.

Keywords: Confidence interval. Fuzzy number. Fuzzy estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2271
2170 Learning of Class Membership Values by Ellipsoidal Decision Regions

Authors: Leehter Yao, Chin-Chin Lin

Abstract:

A novel method of learning complex fuzzy decision regions in the n-dimensional feature space is proposed. Through the fuzzy decision regions, a given pattern's class membership value of every class is determined instead of the conventional crisp class the pattern belongs to. The n-dimensional fuzzy decision region is approximated by union of hyperellipsoids. By explicitly parameterizing these hyperellipsoids, the decision regions are determined by estimating the parameters of each hyperellipsoid.Genetic Algorithm is applied to estimate the parameters of each region component. With the global optimization ability of GA, the learned decision region can be arbitrarily complex.

Keywords: Ellipsoid, genetic algorithm, decision regions, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
2169 Impact of Electronic Word-of-Mouth to Consumer Adoption Process in the Online Discussion Forum: A Simulation Study

Authors: Aussadavut Dumrongsiri

Abstract:

Web-based technologies have created numerous opportunities for electronic word-of-mouth (eWOM) communication. There are many factors that affect customer adoption and decisionmaking process. However, only a few researches focus on some factors such as the membership time of forum and propensity to trust. Using a discrete-time event simulation to simulate a diffusion model along with a consumer decision model, the study shows the effect of each factor on adoption of opinions on on-line discussion forum. The purpose of this study is to examine the effect of factor affecting information adoption and decision making process. The model is constructed to test quantitative aspects of each factor. The simulation study shows the membership time and the propensity to trust has an effect on information adoption and purchasing decision. The result of simulation shows that the longer the membership time in the communities and the higher propensity to trust could lead to the higher demand rates because consumers find it easier and faster to trust the person in the community and then adopt the eWOM. Other implications for both researchers and practitioners are provided.

Keywords: word of mouth, simulation, consumer behavior, ebusiness, marketing, diffusion process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3197
2168 Monte Carlo Analysis and Fuzzy Sets for Uncertainty Propagation in SIS Performance Assessment

Authors: Fares Innal, Yves Dutuit, Mourad Chebila

Abstract:

The object of this work is the probabilistic performance evaluation of safety instrumented systems (SIS), i.e. the average probability of dangerous failure on demand (PFDavg) and the average frequency of failure (PFH), taking into account the uncertainties related to the different parameters that come into play: failure rate (λ), common cause failure proportion (β), diagnostic coverage (DC)... This leads to an accurate and safe assessment of the safety integrity level (SIL) inherent to the safety function performed by such systems. This aim is in keeping with the requirement of the IEC 61508 standard with respect to handling uncertainty. To do this, we propose an approach that combines (1) Monte Carlo simulation and (2) fuzzy sets. Indeed, the first method is appropriate where representative statistical data are available (using pdf of the relating parameters), while the latter applies in the case characterized by vague and subjective information (using membership function). The proposed approach is fully supported with a suitable computer code.

Keywords: Fuzzy sets, Monte Carlo simulation, Safety instrumented system, Safety integrity level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2779
2167 An Observer-Based Direct Adaptive Fuzzy Sliding Control with Adjustable Membership Functions

Authors: Alireza Gholami, Amir H. D. Markazi

Abstract:

In this paper, an observer-based direct adaptive fuzzy sliding mode (OAFSM) algorithm is proposed. In the proposed algorithm, the zero-input dynamics of the plant could be unknown. The input connection matrix is used to combine the sliding surfaces of individual subsystems, and an adaptive fuzzy algorithm is used to estimate an equivalent sliding mode control input directly. The fuzzy membership functions, which were determined by time consuming try and error processes in previous works, are adjusted by adaptive algorithms. The other advantage of the proposed controller is that the input gain matrix is not limited to be diagonal, i.e. the plant could be over/under actuated provided that controllability and observability are preserved. An observer is constructed to directly estimate the state tracking error, and the nonlinear part of the observer is constructed by an adaptive fuzzy algorithm. The main advantage of the proposed observer is that, the measured outputs is not limited to the first entry of a canonical-form state vector. The closed-loop stability of the proposed method is proved using a Lyapunov-based approach. The proposed method is applied numerically on a multi-link robot manipulator, which verifies the performance of the closed-loop control. Moreover, the performance of the proposed algorithm is compared with some conventional control algorithms.

Keywords: Adaptive algorithm, fuzzy systems, membership functions, observer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779
2166 A New Definition of the Intrinsic Mode Function

Authors: Zhihua Yang, Lihua Yang

Abstract:

This paper makes a detailed analysis regarding the definition of the intrinsic mode function and proves that Condition 1 of the intrinsic mode function can really be deduced from Condition 2. Finally, an improved definition of the intrinsic mode function is given.

Keywords: Empirical Mode Decomposition (EMD), Hilbert-Huang transform(HHT), Intrinsic Mode Function(IMF).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3591
2165 Optimization of Fuzzy Cluster Nodes in Cellular Multimedia Networks

Authors: J. D. Mallapur, Supriya H., Santosh B. K., Tej H.

Abstract:

The cellular network is one of the emerging areas of communication, in which the mobile nodes act as member for one base station. The cluster based communication is now an emerging area of wireless cellular multimedia networks. The cluster renders fast communication and also a convenient way to work with connectivity. In our scheme we have proposed an optimization technique for the fuzzy cluster nodes, by categorizing the group members into three categories like long refreshable member, medium refreshable member and short refreshable member. By considering long refreshable nodes as static nodes, we compute the new membership values for the other nodes in the cluster. We compare their previous and present membership value with the threshold value to categorize them into three different members. By which, we optimize the nodes in the fuzzy clusters. The simulation results show that there is reduction in the cluster computational time and iterational time after optimization.

Keywords: Clusters, fuzzy and optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
2164 A New Concept for Deriving the Expected Value of Fuzzy Random Variables

Authors: Liang-Hsuan Chen, Chia-Jung Chang

Abstract:

Fuzzy random variables have been introduced as an imprecise concept of numeric values for characterizing the imprecise knowledge. The descriptive parameters can be used to describe the primary features of a set of fuzzy random observations. In fuzzy environments, the expected values are usually represented as fuzzy-valued, interval-valued or numeric-valued descriptive parameters using various metrics. Instead of the concept of area metric that is usually adopted in the relevant studies, the numeric expected value is proposed by the concept of distance metric in this study based on two characters (fuzziness and randomness) of FRVs. Comparing with the existing measures, although the results show that the proposed numeric expected value is same with those using the different metric, if only triangular membership functions are used. However, the proposed approach has the advantages of intuitiveness and computational efficiency, when the membership functions are not triangular types. An example with three datasets is provided for verifying the proposed approach.

Keywords: Fuzzy random variables, Distance measure, Expected value.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
2163 Studying Mistaken Theory of Calendar Function of Iran-s Cross-Vaults

Authors: Ali Salehipour

Abstract:

After presenting the theory of calendar function of Iran-s cross-vaults especially “Niasar" cross-vault in recent years, there has been lots of doubts and uncertainty about this theory by astrologists and archaeologists. According to this theory “Niasar cross-vault and other cross-vaults of Iran has calendar function and are constructed in a way that sunrise and sunset can be seen from one of its openings in the beginning and middle of each season of year". But, mentioning historical documentaries we conclude here that the theory of calendar function of Iran-s cross-vaults does not have any strong basis and individual cross-vaults had only religious function in Iran.

Keywords: cross-vault, fire temple, Calendar function, Sassanid period

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
2162 Dempster-Shafer Evidence Theory for Image Segmentation: Application in Cells Images

Authors: S. Ben Chaabane, M. Sayadi, F. Fnaiech, E. Brassart

Abstract:

In this paper we propose a new knowledge model using the Dempster-Shafer-s evidence theory for image segmentation and fusion. The proposed method is composed essentially of two steps. First, mass distributions in Dempster-Shafer theory are obtained from the membership degrees of each pixel covering the three image components (R, G and B). Each membership-s degree is determined by applying Fuzzy C-Means (FCM) clustering to the gray levels of the three images. Second, the fusion process consists in defining three discernment frames which are associated with the three images to be fused, and then combining them to form a new frame of discernment. The strategy used to define mass distributions in the combined framework is discussed in detail. The proposed fusion method is illustrated in the context of image segmentation. Experimental investigations and comparative studies with the other previous methods are carried out showing thus the robustness and superiority of the proposed method in terms of image segmentation.

Keywords: Fuzzy C-means, Color image, data fusion, Dempster-Shafer's evidence theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
2161 Comparison between Beta Wavelets Neural Networks, RBF Neural Networks and Polynomial Approximation for 1D, 2DFunctions Approximation

Authors: Wajdi Bellil, Chokri Ben Amar, Adel M. Alimi

Abstract:

This paper proposes a comparison between wavelet neural networks (WNN), RBF neural network and polynomial approximation in term of 1-D and 2-D functions approximation. We present a novel wavelet neural network, based on Beta wavelets, for 1-D and 2-D functions approximation. Our purpose is to approximate an unknown function f: Rn - R from scattered samples (xi; y = f(xi)) i=1....n, where first, we have little a priori knowledge on the unknown function f: it lives in some infinite dimensional smooth function space and second the function approximation process is performed iteratively: each new measure on the function (xi; f(xi)) is used to compute a new estimate f as an approximation of the function f. Simulation results are demonstrated to validate the generalization ability and efficiency of the proposed Beta wavelet network.

Keywords: Beta wavelets networks, RBF neural network, training algorithms, MSE, 1-D, 2D function approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
2160 Evaluation on Recent Committed Crypt Analysis Hash Function

Authors: A. Arul Lawrence Selvakumar, C. Suresh Ganandhas

Abstract:

This paper describes the study of cryptographic hash functions, one of the most important classes of primitives used in recent techniques in cryptography. The main aim is the development of recent crypt analysis hash function. We present different approaches to defining security properties more formally and present basic attack on hash function. We recall Merkle-Damgard security properties of iterated hash function. The Main aim of this paper is the development of recent techniques applicable to crypt Analysis hash function, mainly from SHA family. Recent proposed attacks an MD5 & SHA motivate a new hash function design. It is designed not only to have higher security but also to be faster than SHA-256. The performance of the new hash function is at least 30% better than that of SHA-256 in software. And it is secure against any known cryptographic attacks on hash functions.

Keywords: Crypt Analysis, cryptographic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1337
2159 Micropower Fuzzy Linguistic-Hedges Circuit in Current-Mode Approach

Authors: E. Farshidi

Abstract:

In this paper, based on a novel synthesis, a set of new simplified circuit design to implement the linguistic-hedge operations for adjusting the fuzzy membership function set is presented. The circuits work in current-mode and employ floating-gate MOS (FGMOS) transistors that operate in weak inversion region. Compared to the other proposed circuits, these circuits feature severe reduction of the elements number, low supply voltage (0.7V), low power consumption (<200nW), immunity from body effect and wide input dynamic range (>60dB). In this paper, a set of fuzzy linguistic hedge circuits, including absolutely, very, much more, more, plus minus, more or less and slightly, has been implemented in 0.18 mm CMOS process. Simulation results by Hspice confirm the validity of the proposed design technique and show high performance of the circuits.

Keywords: Current-mode, Linguistic-Hedge, Fuzzy Logic, lowpower

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
2158 Towards Automatic Recognition and Grading of Ganoderma Infection Pattern Using Fuzzy Systems

Authors: Mazliham Mohd Su'ud, Pierre Loonis, Idris Abu Seman

Abstract:

This paper deals with the extraction of information from the experts to automatically identify and recognize Ganoderma infection in oil palm stem using tomography images. Expert-s knowledge are used as rules in a Fuzzy Inference Systems to classify each individual patterns observed in he tomography image. The classification is done by defining membership functions which assigned a set of three possible hypotheses : Ganoderma infection (G), non Ganoderma infection (N) or intact stem tissue (I) to every abnormalities pattern found in the tomography image. A complete comparison between Mamdani and Sugeno style,triangular, trapezoids and mixed triangular-trapezoids membership functions and different methods of aggregation and defuzzification is also presented and analyzed to select suitable Fuzzy Inference System methods to perform the above mentioned task. The results showed that seven out of 30 initial possible combination of available Fuzzy Inference methods in MATLAB Fuzzy Toolbox were observed giving result close to the experts estimation.

Keywords: Fuzzy Inference Systems, Tomography analysis, Modelizationof expert's information, Ganoderma Infection pattern recognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
2157 Application of Adaptive Neuro-Fuzzy Inference System in the Prediction of Economic Crisis Periods in USA

Authors: Eleftherios Giovanis

Abstract:

In this paper discrete choice models, Logit and Probit are examined in order to predict the economic recession or expansion periods in USA. Additionally we propose an adaptive neuro-fuzzy inference system with triangular membership function. We examine the in-sample period 1947-2005 and we test the models in the out-of sample period 2006-2009. The forecasting results indicate that the Adaptive Neuro-fuzzy Inference System (ANFIS) model outperforms significant the Logit and Probit models in the out-of sample period. This indicates that neuro-fuzzy model provides a better and more reliable signal on whether or not a financial crisis will take place.

Keywords: ANFIS, discrete choice models, financial crisis, USeconomy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
2156 Finding Fuzzy Association Rules Using FWFP-Growth with Linguistic Supports and Confidences

Authors: Chien-Hua Wang, Chin-Tzong Pang

Abstract:

In data mining, the association rules are used to search for the relations of items of the transactions database. Following the data is collected and stored, it can find rules of value through association rules, and assist manager to proceed marketing strategy and plan market framework. In this paper, we attempt fuzzy partition methods and decide membership function of quantitative values of each transaction item. Also, by managers we can reflect the importance of items as linguistic terms, which are transformed as fuzzy sets of weights. Next, fuzzy weighted frequent pattern growth (FWFP-Growth) is used to complete the process of data mining. The method above is expected to improve Apriori algorithm for its better efficiency of the whole association rules. An example is given to clearly illustrate the proposed approach.

Keywords: Association Rule, Fuzzy Partition Methods, FWFP-Growth, Apiroir algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
2155 Economic Dispatch Fuzzy Linear Regression and Optimization

Authors: A. K. Al-Othman

Abstract:

This study presents a new approach based on Tanaka's fuzzy linear regression (FLP) algorithm to solve well-known power system economic load dispatch problem (ELD). Tanaka's fuzzy linear regression (FLP) formulation will be employed to compute the optimal solution of optimization problem after linearization. The unknowns are expressed as fuzzy numbers with a triangular membership function that has middle and spread value reflected on the unknowns. The proposed fuzzy model is formulated as a linear optimization problem, where the objective is to minimize the sum of the spread of the unknowns, subject to double inequality constraints. Linear programming technique is employed to obtain the middle and the symmetric spread for every unknown (power generation level). Simulation results of the proposed approach will be compared with those reported in literature.

Keywords: Economic Dispatch, Fuzzy Linear Regression (FLP)and Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293
2154 A Centroid Ranking Approach Based Fuzzy MCDM Model

Authors: T. C. Chu, S.H. Wu

Abstract:

This paper suggests ranking alternatives under fuzzy MCDM (multiple criteria decision making) via an centroid based ranking approach, where criteria are classified to benefit qualitative, benefit quantitative and cost quantitative ones. The ratings of alternatives versus qualitative criteria and the importance weights of all criteria are assessed in linguistic values represented by fuzzy numbers. The membership function for the final fuzzy evaluation value of each alternative can be developed through α-cuts and interval arithmetic of fuzzy numbers. The distance between the original point and the relative centroid is applied to defuzzify the final fuzzy evaluation values in order to rank alternatives. Finally a numerical example demonstrates the computation procedure of the proposed model.

Keywords: Fuzzy MCDM, Criteria, Fuzzy number, Ranking, Relative centroid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
2153 Motion Recognition Based On Fuzzy WP Feature Extraction Approach

Authors: Keun-Chang Kwak

Abstract:

This paper is concerned with motion recognition based fuzzy WP(Wavelet Packet) feature extraction approach from Vicon physical data sets. For this purpose, we use an efficient fuzzy mutual-information-based WP transform for feature extraction. This method estimates the required mutual information using a novel approach based on fuzzy membership function. The physical action data set includes 10 normal and 10 aggressive physical actions that measure the human activity. The data have been collected from 10 subjects using the Vicon 3D tracker. The experiments consist of running, seating, and walking as physical activity motion among various activities. The experimental results revealed that the presented feature extraction approach showed good recognition performance.

Keywords: Motion recognition, fuzzy wavelet packet, Vicon physical data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
2152 Measuring Teachers- Beliefs about Mathematics: A Fuzzy Set Approach

Authors: M.A. Lazim, M.T.Abu Osman

Abstract:

This paper deals with the application of a fuzzy set in measuring teachers- beliefs about mathematics. The vagueness of beliefs was transformed into standard mathematical values using a fuzzy preferences model. The study employed a fuzzy approach questionnaire which consists of six attributes for measuring mathematics teachers- beliefs about mathematics. The fuzzy conjoint analysis approach based on fuzzy set theory was used to analyze the data from twenty three mathematics teachers from four secondary schools in Terengganu, Malaysia. Teachers- beliefs were recorded in form of degrees of similarity and its levels of agreement. The attribute 'Drills and practice is one of the best ways of learning mathematics' scored the highest degree of similarity at 0. 79860 with level of 'strongly agree'. The results showed that the teachers- beliefs about mathematics were varied. This is shown by different levels of agreement and degrees of similarity of the measured attributes.

Keywords: belief, membership function, degree of similarity, conjoint analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2341
2151 The Core and Shapley Function for Games on Augmenting Systems with a Coalition Structure

Authors: Fan-Yong Meng

Abstract:

In this paper, we first introduce the model of games on augmenting systems with a coalition structure, which can be seen as an extension of games on augmenting systems. The core of games on augmenting systems with a coalition structure is defined, and an equivalent form is discussed. Meantime, the Shapley function for this type of games is given, and two axiomatic systems of the given Shapley function are researched. When the given games are quasi convex, the relationship between the core and the Shapley function is discussed, which does coincide as in classical case. Finally, a numerical example is given.

Keywords: Cooperative game, augmenting system, Shapley function, core.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1194
2150 Applying Fuzzy FP-Growth to Mine Fuzzy Association Rules

Authors: Chien-Hua Wang, Wei-Hsuan Lee, Chin-Tzong Pang

Abstract:

In data mining, the association rules are used to find for the associations between the different items of the transactions database. As the data collected and stored, rules of value can be found through association rules, which can be applied to help managers execute marketing strategies and establish sound market frameworks. This paper aims to use Fuzzy Frequent Pattern growth (FFP-growth) to derive from fuzzy association rules. At first, we apply fuzzy partition methods and decide a membership function of quantitative value for each transaction item. Next, we implement FFP-growth to deal with the process of data mining. In addition, in order to understand the impact of Apriori algorithm and FFP-growth algorithm on the execution time and the number of generated association rules, the experiment will be performed by using different sizes of databases and thresholds. Lastly, the experiment results show FFPgrowth algorithm is more efficient than other existing methods.

Keywords: Data mining, association rule, fuzzy frequent patterngrowth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
2149 Transient Stability Assessment Using Fuzzy SVM and Modified Preventive Control

Authors: B. Dora Arul Selvi, .N. Kamaraj

Abstract:

Transient Stability is an important issue in power systems planning, operation and extension. The objective of transient stability analysis problem is not satisfied with mere transient instability detection or evaluation and it is most important to complement it by defining fast and efficient control measures in order to ensure system security. This paper presents a new Fuzzy Support Vector Machines (FSVM) to investigate the stability status of power systems and a modified generation rescheduling scheme to bring back the identified unstable cases to a more economical and stable operating point. FSVM improves the traditional SVM (Support Vector Machines) by adding fuzzy membership to each training sample to indicate the degree of membership of this sample to different classes. The preventive control based on economic generator rescheduling avoids the instability of the power systems with minimum change in operating cost under disturbed conditions. Numerical results on the New England 39 bus test system show the effectiveness of the proposed method.

Keywords: Fuzzy Support Vector Machine (FSVM), Incremental Cost, Preventive Control, Transient stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491