Search results for: fiber modified asphalt
1441 The Microstructural and Mechanical Characterization of Organo-Clay-Modified Bitumen, Calcareous Aggregate, and Organo-Clay Blends
Authors: A. Gürses, T. B. Barın, Ç. Doğar
Abstract:
Bitumen has been widely used as the binder of aggregate in road pavement due to its good viscoelastic properties, as a viscous organic mixture with various chemical compositions. Bitumen is a liquid at high temperature and it becomes brittle at low temperatures, and this temperature-sensitivity can cause the rutting and cracking of the pavement and limit its application. Therefore, the properties of existing asphalt materials need to be enhanced. The pavement with polymer modified bitumen exhibits greater resistance to rutting and thermal cracking, decreased fatigue damage, as well as stripping and temperature susceptibility; however, they are expensive and their applications have disadvantages. Bituminous mixtures are composed of very irregular aggregates bound together with hydrocarbon-based asphalt, with a low volume fraction of voids dispersed within the matrix. Montmorillonite (MMT) is a layered silicate with low cost and abundance, which consists of layers of tetrahedral silicate and octahedral hydroxide sheets. Recently, the layered silicates have been widely used for the modification of polymers, as well as in many different fields. However, there are not too much studies related with the preparation of the modified asphalt with MMT, currently. In this study, organo-clay-modified bitumen, and calcareous aggregate and organo-clay blends were prepared by hot blending method with OMMT, which has been synthesized using a cationic surfactant (Cetyltrymethylammonium bromide, CTAB) and long chain hydrocarbon, and MMT. When the exchangeable cations in the interlayer region of pristine MMT were exchanged with hydrocarbon attached surfactant ions, the MMT becomes organophilic and more compatible with bitumen. The effects of the super hydrophobic OMMT onto the micro structural and mechanic properties (Marshall Stability and volumetric parameters) of the prepared blends were investigated. Stability and volumetric parameters of the blends prepared were measured using Marshall Test. Also, in order to investigate the morphological and micro structural properties of the organo-clay-modified bitumen and calcareous aggregate and organo-clay blends, their SEM and HRTEM images were taken. It was observed that the stability and volumetric parameters of the prepared mixtures improved significantly compared to the conventional hot mixes and even the stone matrix mixture. A micro structural analysis based on SEM images indicates that the organo-clay platelets dispersed in the bitumen have a dominant role in the increase of effectiveness of bitumen - aggregate interactions.
Keywords: Hot mix asphalt, stone matrix asphalt, organo clay, Marshall Test, calcareous aggregate, modified bitumen.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13771440 Experimental Study of Steel Slag Used as Aggregate in Asphalt Mixture
Authors: Magdi M. E. Zumrawi, Faiza O. A. Khalill
Abstract:
Steel slag is a by-product of the steel industry and can be used potentially as aggregate in the asphalt mixture. This study evaluates the use of Steel Slag Aggregates (SSA) as a substitute for natural aggregates in the production of hot mix asphalt (HMA) for road construction. Based on intensive laboratory testing program, the characteristic properties of SSA were assessed to determine its suitability to be used in HMA. Four different percentages (0, 50, 75, and 100%) of SSA were used, and the proposed mix designs for HMA were conducted in accordance with Marshall mix design. The experiment results revealed that the addition of SSA has a significant improvement on the properties of HMA. An increase in density and stability and a reduction in flow and air voids values were clearly observed in specimens prepared with 100% SSA. It is concluded that the steel slag can be considered reasonable alternative source of aggregate for concrete asphalt mixture production.Keywords: Aggregate, asphalt mixture, stability, steel slag.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32521439 Simulating Laboratory Short Term Aging to Suit Malaysian Field Conditions
Authors: Meor O. Hamzah, Seyed R. Omranian, Ali Jamshidi, Mohd R M. Hasan
Abstract:
This paper characterizes the effects of artificial short term aging in the laboratory on the rheological properties of virgin 80/100 penetration grade asphalt binder. After several years in service, asphalt mixture started to deteriorate due to aging. Aging is a complex physico-chemical phenomenon that influences asphalt binder rheological properties causing a deterioration in asphalt mixture performance. To ascertain asphalt binder aging effects, the virgin, artificially aged and extracted asphalt binder were tested via the Rolling Thin film Oven (RTFO), Dynamic Shear Rheometer (DSR) and Rotational Viscometer (RV). A comparative study between laboratory and field aging conditions were also carried out. The results showed that the specimens conditioned for 85 minutes inside the RTFO was insufficient to simulate the actual short term aging caused that took place in the field under Malaysian field conditionsKeywords: Asphalt binder, Short term aging, Rheological properties, Viscosity, Temperature susceptibility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25271438 Response of Pavement under Temperature and Vehicle Coupled Loading
Authors: Yang Zhong, Mei-jie Xu
Abstract:
To study the dynamic mechanics response of asphalt pavement under the temperature load and vehicle loading, asphalt pavement was regarded as multilayered elastic half-space system, and theory analysis was conducted by regarding dynamic modulus of asphalt mixture as the parameter. Firstly, based on the dynamic modulus test of asphalt mixture, function relationship between the dynamic modulus of representative asphalt mixture and temperature was obtained. In addition, the analytical solution for thermal stress in single layer was derived by using Laplace integral transformation and Hankel integral transformation respectively by using thermal equations of equilibrium. The analytical solution of calculation model of thermal stress in asphalt pavement was derived by transfer matrix of thermal stress in multilayer elastic system. Finally, the variation of thermal stress in pavement structure was analyzed. The result shows that there is obvious difference between the thermal stress based on dynamic modulus and the solution based on static modulus. So the dynamic change of parameter in asphalt mixture should be taken into consideration when theoretical analysis is taken out.Keywords: Asphalt pavement, dynamic modulus, integral transformation, transfer matrix, thermal stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16621437 Damage Strain Analysis of Parallel Fiber Eutectic
Authors: Jian Zheng, Xinhua Ni, Xiequan Liu
Abstract:
According to isotropy of parallel fiber eutectic, the no- damage strain field in parallel fiber eutectic is obtained from the flexibility tensor of parallel fiber eutectic. Considering the damage behavior of parallel fiber eutectic, damage variables are introduced to determine the strain field of parallel fiber eutectic. The damage strains in the matrix, interphase, and fiber of parallel fiber eutectic are quantitatively analyzed. Results show that damage strains are not only associated with the fiber volume fraction of parallel fiber eutectic, but also with the damage degree.
Keywords: Parallel fiber eutectic, no-damage strain, damage strain, fiber volume fraction, damage degree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9541436 Synthesis and Characterization of Recycled Isotactic Polypropylene Nanocomposites Containing Date Wood Fiber
Authors: Habib Shaban
Abstract:
Nanocomposites of isotactic polypropylene (iPP) and date wood fiber were prepared after modification of the host matrix by reactive extrusion grafting of maleic anhydride. Chemical and mechanical treatment of date wood flour (WF) was conducted to obtain nanocrystalline cellulose. Layered silicates (clay) were partially intercalated with date wood fiber, and the modified layered silicate was used as filler in the PP matrix via a melt-blending process. The tensile strength of composites prepared from wood fiber modified clay was greater than that of the iPP-clay and iPP-WF composites at a 6% filler concentration, whereas deterioration of mechanical properties was observed when clay and WF were used alone for reinforcement. The dispersion of the filler in the matrix significantly decreased after clay modification with cellulose at higher concentrations, as shown by X-ray diffraction (XRD) data.Keywords: Nanocomposites, isotactic polypropylene, date wood flour, intercalated, melt-blending.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10971435 Behavior of Concrete Slab Track on Asphalt Trackbed Subjected to Thermal Load
Authors: Woo Young Jung, Seong Hyeok Lee, Jin Wook Lee, Bu Seog Ju
Abstract:
Concrete track slab and asphalt trackbed are being introduced in Korea for providing good bearing capacity, durability to the track and comfortable rideness to passengers. Such a railway system has been designed by the train load so as to ensure stability. But there is lack of research and design for temperature changes which influence the behavior characteristics of concrete and asphalt. Therefore, in this study, the behavior characteristics of concrete track slab subjected to varying temperatures were analyzed through structural analysis using the finite element analysis program. The structural analysis was performed by considering the friction condition on the boundary surfaces in order to analyze the interaction between concrete slab and asphalt trackbed. As a result, the design of the railway system should be designed by considering the interaction and temperature changes between concrete track slab and asphalt trackbed.
Keywords: Con’c Track Slab, Asphalt Trackbed, Thermal Load, Friction Condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34391434 Effects of Temperature on Resilient Modulus of Dense Asphalt Mixtures Incorporating Steel Slag Subjected to Short Term Oven Ageing
Authors: Meor O. Hamzah, Teoh C. Yi
Abstract:
As the resources for naturally occurring aggregates diminished at an ever increasing rate, researchers are keen to utilize recycled materials in road construction in harmony with sustainable development. Steel slag, a waste product from the steel making industry, is one of the recycled materials reported to exhibit great potential to replace naturally occurring aggregates in asphalt mixtures. This paper presents the resilient modulus properties of steel slag asphalt mixtures subjected to short term oven ageing (STOA). The resilient modulus test was carried out to evaluate the stiffness of asphalt mixtures at 10ºC, 25ºC and 40ºC. Previous studies showed that stiffness changes in asphalt mixture played an important role in inflicting pavement distress particularly cracking and rutting that are common at low and high temperatures respectively. Temperature was found to significantly influence the resilient modulus of asphalt mixes. The resilient modulus of the asphalt specimens tested decreased by more than 90% when the test temperature increased from 10°C to 40°C.Keywords: Granite, Resilient Modulus, Steel Slag, Temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28511433 Temperature Susceptibility of Multigrade Bitumen Asphalt and an Approach to Account for Temperature Variation through Deep Pavements
Authors: Brody R. Clark, Chaminda Gallage, John Yeaman
Abstract:
Multigrade bitumen asphalt is a quality asphalt product that is not utilised in many places globally. Multigrade bitumen is believed to be less sensitive to temperature, which gives it an advantage over conventional binders. Previous testing has shown that asphalt temperature changes greatly with depth, but currently the industry standard is to nominate a single temperature for design. For detailed design of asphalt roads, perhaps asphalt layers should be divided into nominal layer depths and different modulus and fatigue equations/values should be used to reflect the temperatures of each respective layer. A collaboration of previous laboratory testing conducted on multigrade bitumen asphalt beams under a range of temperatures and loading conditions was analysed. The samples tested included 0% or 15% recycled asphalt pavement (RAP) to determine what impact the recycled material has on the fatigue life and stiffness of the pavement. This paper investigated the temperature susceptibility of multigrade bitumen asphalt pavements compared to conventional binders by combining previous testing that included conducting a sweep of fatigue tests, developing complex modulus master curves for each mix and a study on how pavement temperature changes through pavement depth. This investigation found that the final design of the pavement is greatly affected by the nominated pavement temperature and respective material properties. This paper has outlined a potential revision to the current design approach for asphalt pavements and proposes that further investigation is needed into pavement temperature and its incorporation into design.
Keywords: Asphalt, complex modulus, fatigue life, flexural stiffness, four-point bending, master curves, multigrade bitumen, thermal gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7741432 Properties Modification of Fiber Metal Laminates by Nanofillers
Authors: R. Eslami-Farsani, S. M. S. Mousavi Bafrouyi
Abstract:
During past decades, increasing demand of modified Fiber Metal Laminates (FMLs) has stimulated a strong trend towards the development of these structures. FMLs contain several thin layers of metal bonded with composite materials. Characteristics of FMLs such as low specific mass, high bearing strength, impact resistance, corrosion resistance and high fatigue life are attractive. Nowadays, increasing development can be observed to promote the properties of polymer-based composites by nanofillers. By dispersing strong, nanofillers in polymer matrix, modified composites can be developed and tailored to individual applications. On the other hand, the synergic effects of nanoparticles such as graphene and carbon nanotube can significantly improve the mechanical, electrical and thermal properties of nanocomposites. In present paper, the modifying of FMLs by nanofillers and the dispersing of nanoparticles in the polymers matrix are discussed. The evaluations have revealed that this approach is acceptable. Finally, a prospect is presented. This paper will lead to further work on these modified FML species.Keywords: Fiber metal laminate, nanofiller, polymer matrix, property modification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11641431 Temperature Profile Modelling in Flexible Pavement Design
Authors: Csaba Tóth, Éva Lakatos, László Pethő, Seoyoung Cho
Abstract:
The temperature effect on asphalt pavement structure is a crucial factor at the design stage. In this paper, by applying the German guidelines for temperature along the asphalt depth is estimated. The aim is to consider temperature profiles in different seasons in numerical modelling. The model is built with an elastic and isotropic solid element with 19 subdivisions of asphalt layers to reflect the temperature variation. Comparison with the simple three-layer pavement system (asphalt layers, base, and subgrade layers) will be followed to see the difference in result without temperature variation along with the depth. Finally, the fatigue life calculation was checked to prove the validity of the methodology of considering the temperature in the numerical modelling.
Keywords: Temperature profile, flexible pavement modelling, finite element method, temperature modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5291430 A Novel Cold Asphalt Concrete Mixture for Heavily Trafficked Binder Course
Authors: A. Dulaimi, H. Al Nageim, F. Ruddock, L. Seton
Abstract:
This study aims at developing a novel cold asphalt concrete binder course mixture by using Ordinary Portland Cement (OPC) as a replacement for conventional mineral filler (0%-100%) with new by-product material (LJMU-A2) used as a supplementary cementitious material. With this purpose, cold asphalt concrete binder course mixtures with cationic emulsions were studied by means of stiffness modulus whereas water sensitivity was assessed by measuring the stiffness modulus ratio before and after sample conditioning. The results indicate that a substantial enhancement in the stiffness modulus and a considerable improvement of water sensitivity resistance is achieved by adding LJMU-A2 to the cold asphalt mixtures as a supplementary cementitious material. Moreover, the addition of LJMU-A2 to those mixtures leads to a stiffness modulus after 2-day curing compared to that obtained with Portland cement, which occurs after 7-day curing.Keywords: Binder course, cold mix asphalt, cement, stiffness modulus, water sensitivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30921429 Fiber Lens Structure for Large Distance Measurement
Authors: Jaemyoung Lee
Abstract:
We propose a new fiber lens structure for large distance measurement in which a polymer layer is added to a conventional fiber lens. The proposed fiber lens can adjust the working distance by properly choosing the refractive index and thickness of the polymer layer. In our numerical analysis for the fiber lens radius of 120 μm, the working distance of the proposed fiber lens is about 10 mm which is about 30 times larger than conventional fiber lens.Keywords: fiber lens, distance measurement, collimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14851428 A Study on the Improvement of the Bond Performance of Polypropylene Macro Fiber According to Longitudinal Shape Change
Authors: Sung-yong Choi, Woo-tai Jung, Young-hwan Park
Abstract:
This study intends to improve the bond performance of the polypropylene fiber used as reinforcing fiber for concrete by changing its shape into double crimped type through the enhancement its fabrication process. The bond performance of such double crimped fiber is evaluated by applying the JCI SF-8 (dog-bone shape) testing method. The test results reveal that the double crimped fiber develops bond performance improved by more than 19% compared to the conventional crimped type fiber.
Keywords: Bond, Polypropylene, Fiber reinforcement, Macro fiber, Shape change.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18251427 Study of Compaction in Hot-Mix Asphalt Using Computer Simulations
Authors: Kasthurirangan Gopalakrishnan, Naga Shashidhar, Xiaoxiong Zhong
Abstract:
During the process of compaction in Hot-Mix Asphalt (HMA) mixtures, the distance between aggregate particles decreases as they come together and eliminate air-voids. By measuring the inter-particle distances in a cut-section of a HMA sample the degree of compaction can be estimated. For this, a calibration curve is generated by computer simulation technique when the gradation and asphalt content of the HMA mixture are known. A two-dimensional cross section of HMA specimen was simulated using the mixture design information (gradation, asphalt content and air-void content). Nearest neighbor distance methods such as Delaunay triangulation were used to study the changes in inter-particle distance and area distribution during the process of compaction in HMA. Such computer simulations would enable making several hundreds of repetitions in a short period of time without the necessity to compact and analyze laboratory specimens in order to obtain good statistics on the parameters defined. The distributions for the statistical parameters based on computer simulations showed similar trends as those of laboratory specimens.Keywords: Computer simulations, Hot-Mix Asphalt (HMA), inter-particle distance, image analysis, nearest neighbor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18921426 Comparison of Elastic and Viscoelastic Modeling for Asphalt Concrete Surface Layer
Authors: Fouzieh Rouzmehr, Mehdi Mousavi
Abstract:
Hot mix asphalt concrete is a viscoelastic material, and its stress-strain relationship depends on the loading duration and the strain rate. To investigate the effect of elastic and viscoelastic modeling under traffic load, asphalt concrete pavement is modeled with both elastic and viscoelastic properties and the pavement performance is predicted. The differences of these two models are investigated on fatigue cracking and rutting problem which are the two main design parameters in flexible pavement design. Although the differences in rutting problem between two models were negligible, in fatigue cracking, the viscoelastic model results were more accurate. Results indicate that modeling the flexible pavement with elastic material is efficient enough and gives the acceptable results.
Keywords: Flexible pavement, asphalt, FEM modeling, viscoelastic, elastic, ANSYS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4131425 Optimizing PelletPAVE™ Rubberized Asphalt Mix Design Using Gyratory Compaction and Volumetrics
Authors: H. Al-Baghli
Abstract:
In this investigation, rubberized HMA technology was examined to address the most critical forms of pavement distresses in the State of Kuwait, namely, high temperature rutting, and moisture induced raveling. PelletPAVE™ additive was selected as the preferred technology, since it offered a convenient method of directly modifying the exiting local HMA recipe without having to polymer modify the bitumen. Experimental work, using various Pelletpave contents was carried out at Kuwait Institute for Scientific Research (KISR) to design an optimum rubberized HMA formulation prior to conducting a pilot-scale road trial. With the aid of a gyratory compactor, the compaction and volumetric properties of HMAs containing 2.5% and 3.0% Pelletpave additive were investigated at a range of bitumen contents, all by mass of total mix.
Keywords: Modified bitumen, rubberized hot mix asphalt, gyratory compaction, volumetric properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3461424 Behavior of Optical Fiber Aged in CTAC Solutions
Authors: R. El Abdi, A. D. Rujinski, R. M. Boumbimba, M. Poulain
Abstract:
The evolution of silica optical fiber strength aged in cetyltrimethylammonium chloride solution (CTAC) has been investigated. If the solution containing surfactants presents appreciable changes in physical and chemical properties at the critical micelle concentration (CMC), a non negligible mechanical behavior fiber change is observed for silica fiber aged in cationic surfactants as CTAC which can lead to optical fiber reliability questioning. The purpose of this work is to study the mechanical behavior of silica coated and naked optical fibers in contact with CTAC solution at different concentrations. Result analysis proves that the immersion in CTAC drastically decreases the fiber strength and specially near the CMC point. Beyond CMC point, a small increase of fiber strength is analyzed and commented.
Keywords: Optical fiber, CMC point, CTAC surfactant, fiber strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19181423 Assessment of Compaction Temperatures on Hot Mix Asphalt (HMA) Properties
Authors: Houman Saedi
Abstract:
Hot Mix Asphalt (HMA) is one of the most commonest constructed asphalts in Iran and the quality control of constructed roads with HMA have been always paid due attention by researchers. The quality control of constructed roads with this method is being usually carried out by measuring volumetric parameters of HMA marshall samples. One of the important parameters that has a critical role in changing these volumetric parameters is “compaction temperature"; which as a result of its changing, volumetric parameters of Marshall Samples and subsequently constructed asphalt is encountered with variations. In this study, considering the necessity of preservation of the compaction temperature, the effect of various temperatures on Hot Mix Asphalt (HMA) samples properties has been evaluated. As well, to evaluate the effect of this parameter on different grading, two different grading (Top coat index grading and binder index grading) have been used and samples were compacted at 5 various temperatures.Keywords: Compaction Temperature, HMA, Volumetric Parameters, Marshall Method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29391422 Influence of Chirp of High-Speed Laser Diodes and Fiber Dispersion on Performance of Non-Amplified 40-Gbps Optical Fiber Links
Authors: Moustafa Ahmed, Ahmed Bakry, Safwat W. Z. Mahmoud
Abstract:
We model and simulate the combined effect of fiber dispersion and frequency chirp of a directly modulated high-speed laser diode on the figures of merit of a non-amplified 40-Gbps optical fiber link. We consider both the return to zero (RZ) and non-return to zero (NRZ) patterns of the pseudorandom modulation bits. The performance of the fiber communication system is assessed by the fiber-length limitation due to the fiber dispersion. We study the influence of replacing standard single-mode fibers by non-zero dispersion-shifted fibers on the maximum fiber length and evaluate the associated power penalty. We introduce new dispersion tolerances for 1-dB power penalty of the RZ and NRZ 40-Gbps optical fiber links.
Keywords: Bit error rate, dispersion, frequency chirp, fiber communications, semiconductor laser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33081421 3D Numerical Investigation of Asphalt Pavements Behaviour Using Infinite Elements
Authors: K. Sandjak, B. Tiliouine
Abstract:
This article presents the main results of three-dimensional (3-D) numerical investigation of asphalt pavement structures behaviour using a coupled Finite Element-Mapped Infinite Element (FE-MIE) model. The validation and numerical performance of this model are assessed by confronting critical pavement responses with Burmister’s solution and FEM simulation results for multi-layered elastic structures. The coupled model is then efficiently utilised to perform 3-D simulations of a typical asphalt pavement structure in order to investigate the impact of two tire configurations (conventional dual and new generation wide-base tires) on critical pavement response parameters. The numerical results obtained show the effectiveness and the accuracy of the coupled (FE-MIE) model. In addition, the simulation results indicate that, compared with conventional dual tire assembly, single wide base tire caused slightly greater fatigue asphalt cracking and subgrade rutting potentials and can thus be utilised in view of its potential to provide numerous mechanical, economic, and environmental benefits.
Keywords: Infinite elements, 3-D numerical investigation, asphalt pavements, dual and wide base tires.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7161420 Fiber Microstructure in Solanum Found in Thailand
Authors: Aree Thongpukdee, Chockpisit Thepsithar, Sujitra Timchookul
Abstract:
The study aimed to investigate characteristics of vegetative tissue for taxonomic purpose and possibly trend of waste application in industry. Stems and branches of 15 species in Solanum found in Thailand were prepared for fiber and examined by light microscopy. Microstructural characteristic data of fiber i.e. fiber length and width, fiber lumen diameter and fiber cell wall thickness were recorded. The longest average fiber cell length (>3.9 mm.) were obtained in S. lycopersicum L. and S. tuberosum L. Fiber cells from S. lycopersicum also revealed the widest average diameter of whole cell and its lumen at >45.5 μm and >29 μm respectively. However fiber cells with thickest wall of > 9.6 μm were belonged to the ornamental tree species, S. wrightii Benth. The results showed that the slenderness ratio, Runkel ratio, and flexibility coefficient, with potentially suitable for feedstock in paper industry fell in 4 exotic species, i.e. Solanumamericanum L., S. lycopersicum, S. seaforthianum Andr., and S. tuberosum L
Keywords: Fiber, microstructure, Solanaceae, Solanum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16601419 Fiber Optic Sensors
Authors: Bahareh Gholamzadeh, Hooman Nabovati
Abstract:
Fiber optic sensor technology offers the possibility of sensing different parameters like strain, temperature, pressure in harsh environment and remote locations. these kinds of sensors modulates some features of the light wave in an optical fiber such an intensity and phase or use optical fiber as a medium for transmitting the measurement information. The advantages of fiber optic sensors in contrast to conventional electrical ones make them popular in different applications and now a day they consider as a key component in improving industrial processes, quality control systems, medical diagnostics, and preventing and controlling general process abnormalities. This paper is an introduction to fiber optic sensor technology and some of the applications that make this branch of optic technology, which is still in its early infancy, an interesting field.Keywords: Fiber optic sensors, distributed sensors, sensorapplication, crack sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 65201418 Development of a Double Coating Technique for Recycled Concrete Aggregates Used in Hot-mix Asphalt
Authors: Abbaas I. Kareem, H. Nikraz
Abstract:
The use of recycled concrete aggregates (RCAs) in hot-mix asphalt (HMA) production could ease natural aggregate shortage and maintain sustainability in modern societies. However, it was the attached cement mortar and other impurities that make the RCAs behave differently than high-quality aggregates. Therefore, different upgrading treatments were suggested to enhance its properties before being used in HMA production. Disappointedly, some of these treatments had caused degradation to some RCA properties. In order to avoid degradation, a coating technique is developed. This technique is based on combining of two main treatments, so it is named as double coating technique (DCT). Dosages of 0%, 20%, 40% and 60% uncoated RCA, RCA coated with Cement Slag Paste (CSP), and Double Coated Recycled Concrete Aggregates (DCRCAs) in place of granite aggregates were evaluated. The results indicated that the DCT improves strength and reduces water absorption of the DCRCAs compared with uncoated RCAs and RCA coated with CSP. In addition, the DCRCA asphalt mixtures exhibit stability values higher than those obtained for mixes made with granite aggregates, uncoated RCAs and RCAs coated with CSP. Also, the DCRCA asphalt mixtures require less bitumen to achieve the optimum bitumen content (OBC) than those manufactured with uncoated RCA and RCA-coated with CSP. Although the results obtained were encouraging, more testing is required in order to examine the effect of the DCT on performance properties of DCRCA- asphalt mixtures such as rutting and fatigue.
Keywords: Recycled concrete aggregates, hot mix asphalt, double coating technique, aggregate crashed value, Marshall parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8421417 Surface Temperature of Asphalt Pavements with Colored Cement-Based Grouting Materials Containing Ceramic Waste Powder and Zeolite
Authors: H. Higashiyama, M. Sano, F. Nakanishi, M. Sugiyama, M. Kawanishi, S. Tsukuma
Abstract:
The heat island phenomenon and extremely hot summer climate are becoming environmental problems in Japan. Cool pavements reduce the surface temperature compared to conventional asphalt pavements in the hot summer climate and improve the thermal environment in the urban area. The authors have studied cement–based grouting materials poured into voids in porous asphalt pavements to reduce the road surface temperature. For the cement–based grouting material, cement, ceramic waste powder, and natural zeolite were used. This cement–based grouting material developed reduced the road surface temperature by 20 °C or more in the hot summer season. Considering the urban landscape, this study investigates the effect of surface temperature reduction of colored cement–based grouting materials containing pigments poured into voids in porous asphalt pavements by measuring the surface temperature of asphalt pavements outdoors. The yellow color performed the same as the original cement–based grouting material containing no pigment and was thermally better performance than the other color. However, all the tested cement–based grouting materials performed well for reducing the surface temperature and for creating the urban landscape.Keywords: Ceramic waste powder, natural zeolite, road surface temperature, asphalt pavements, urban landscape.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10081416 Tensile Strength of Asphalt Concrete due to Moisture Conditioning
Authors: Md R. Islam, Rafiqul A. Tarefder
Abstract:
This study investigates the effect of moisture conditioning on the Indirect Tensile Strength (ITS) of asphalt concrete. As a first step, cylindrical samples of 100 mm diameter and 50 mm thick were prepared using a Superpave gyratory compactor. Next, the samples were conditioned using Moisture Induced Susceptibility Test (MIST) device at different numbers of moisture conditioning cycles. In the MIST device, samples are subjected water pressure through the sample pores cyclically. The MIST conditioned samples were tested for ITS. Results show that the ITS does not change significantly with MIST conditioning at the specific pressure and cycles adopted in this study.
Keywords: Asphalt concrete, tensile strength, moisture, laboratory test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28011415 The Effect of Styrene-Butadiene-Rubber (SBR) Polymer Modifier on Properties of Bitumen
Authors: Seyed Abbas Tabatabaei, Alireza Kiasat, Ferdows Karimi Alkouhi
Abstract:
In order to use bitumen in hot mix asphalt, it must have specific characteristics. There are some methods to reach these properties. Using polymer modifiers are one of the methods to modify the bitumen properties. In this paper the effect of Styrene- Butadiene-Rubber that is one of the bitumen polymer modifiers on rheology properties of bitumen is studied. In this regard, the rheological properties of base bitumen and the modified bitumen with 3, 4, and 5 percent of Styrene-Butadiene-Rubber (SBR) were analysed. The results show that bitumen modified with 5 percent of SBR has the best performance than the other samples.
Keywords: Bitumen, polymer modifier, styrene-butadienerubber, rheological properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43951414 Estimation of Asphalt Pavement Surfaces Using Image Analysis Technique
Authors: Mohammad A. Khasawneh
Abstract:
Asphalt concrete pavements gradually lose their skid resistance causing safety problems especially under wet conditions and high driving speeds. In order to enact the actual field polishing and wearing process of asphalt pavement surfaces in a laboratory setting, several laboratory-scale accelerated polishing devices were developed by different agencies. To mimic the actual process, friction and texture measuring devices are needed to quantify surface deterioration at different polishing intervals that reflect different stages of the pavement life. The test could still be considered lengthy and to some extent labor-intensive. Therefore, there is a need to come up with another method that can assist in investigating the bituminous pavement surface characteristics in a practical and time-efficient test procedure.
The purpose of this paper is to utilize a well-developed image analysis technique to characterize asphalt pavement surfaces without the need to use conventional friction and texture measuring devices in an attempt to shorten and simplify the polishing procedure in the lab.
Promising findings showed the possibility of using image analysis in lieu of the labor-sensitive-variable-in-nature friction and texture measurements. It was found that the exposed aggregate surface area of asphalt specimens made from limestone and gravel aggregates produced solid evidence of the validity of this method in describing asphalt pavement surfaces. Image analysis results correlated well with the British Pendulum Numbers (BPN), Polish Values (PV) and Mean Texture Depth (MTD) values.
Keywords: Friction, Image Analysis, Polishing, Statistical Analysis, Texture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25591413 Separation of Composites for Recycling: Measurement of Electrostatic Charge of Carbon and Glass Fiber Particles
Authors: J. Thirunavukkarasu, M. Poulet, T. Turner, S. Pickering
Abstract:
Composite waste from manufacturing can consist of different fiber materials, including blends of different fiber. Commercially, the recycling of composite waste is currently limited to carbon fiber waste and recycling glass fiber waste is currently not economically viable due to the low cost of virgin glass fiber and the reduced mechanical properties of the recovered fibers. For this reason, the recycling of hybrid fiber materials, where carbon fiber is blended with glass fibers, cannot be processed economically. Therefore, a separation method is required to remove the glass fiber materials during the recycling process. An electrostatic separation method is chosen for this work because of the significant difference between carbon and glass fiber electrical properties. In this study, an experimental rig has been developed to measure the electrostatic charge achievable as the materials are passed through a tube. A range of particle lengths (80-100 µm, 6 mm and 12 mm), surface state conditions (0%SA, 2%SA and 6%SA), and several tube wall materials have been studied. A polytetrafluoroethylene (PTFE) tube and recycled fiber without sizing agent were identified as the most suitable parameters for the electrical separation method. It was also found that shorter fiber lengths helped to encourage particle flow and attain higher charge values. These findings can be used to develop a separation process to enable the cost-effective recycling of hybrid fiber composite waste.
Keywords: electrostatic charging, hybrid fiber composite, recycling, short fiber composites
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6711412 Characterization and Design of a Crumb Rubber Modified Asphalt Mix Formulation
Authors: H. Al-Baghli
Abstract:
Laboratory trial results of mixing crumb rubber produced from discarded tires with 60/70 pen grade Kuwaiti bitumen are presented on this paper. PG grading and multiple stress creep recovery tests were conducted on Kuwaiti bitumen blended with 15% and 18% crumb rubber at temperatures ranging from 40 to 70 °C. The results from elastic recovery and non-recoverable creep presented optimum performance at 18% rubber content. The optimum rubberized-bitumen mix was next transformed into a pelletized form (PelletPave®), and was used as a partial replacement to the conventional bitumen in the manufacture of continuously graded hot mix asphalts at a number of binder contents. The trialed PelletPave® contents were at 2.5%, 3.0%, and 3.5% by mass of asphalt mix. In this investigation, it was not possible to utilize the results of standard Marshall method of mix design (i.e. volumetric, stability and flow tests) and subsequently additional assessment of mix compactability was carried out using gyratory compactor in order to determine the optimum PelletPave® and total binder contents.
Keywords: Crumb rubber, Marshall mix design, PG grading, rubberized-bitumen.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705