Search results for: Flax fiber
461 Electrostatic and Dielectric Measurements for Hair Building Fibers from DC to Microwave Frequencies
Authors: K. Y. You, Y. L. Then
Abstract:
In recent years, the hair building fiber has become popular, in other words, it is an effective method which helps people who suffer hair loss or sparse hair since the hair building fiber is capable to create a natural look of simulated hair rapidly. In the markets, there are a lot of hair fiber brands that have been designed to formulate an intense bond with hair strands and make the hair appear more voluminous instantly. However, those products have their own set of properties. Thus, in this report, some measurement techniques are proposed to identify those products. Up to five different brands of hair fiber are tested. The electrostatic and dielectric properties of the hair fibers are macroscopically tested using design DC and high frequency microwave techniques. Besides, the hair fibers are microscopically analysis by magnifying the structures of the fiber using scanning electron microscope (SEM). From the SEM photos, the comparison of the uniformly shaped and broken rate of the hair fibers in the different bulk samples can be observed respectively.
Keywords: Hair fiber, electrostatic, dielectric properties, broken rate, microwave techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3872460 Analysis of Capillary Coating Die Flow in an Optical Fiber Coating Applicator
Authors: Kyoungjin Kim
Abstract:
Viscous heating becomes significant in the high speed resin coating process of glass fibers for optical fiber manufacturing. This study focuses on the coating resin flows inside the capillary coating die of optical fiber coating applicator and they are numerically simulated to examine the effects of viscous heating and subsequent temperature increase in coating resin. Resin flows are driven by fast moving glass fiber and the pressurization at the coating die inlet, while the temperature dependent viscosity of liquid coating resin plays an important role in the resin flow. It is found that the severe viscous heating near the coating die wall profoundly alters the radial velocity profiles and that the increase of final coating thickness by die pressurization is amplified if viscous heating is present.Keywords: Optical fiber manufacturing, Optical fiber coating, Capillary flow, Viscous heating, Flow simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3133459 Physico-Mechanical Properties of Jute-Coir Fiber Reinforced Hybrid Polypropylene Composites
Authors: Salma Siddika, Fayeka Mansura, Mahbub Hasan
Abstract:
The term hybrid composite refers to the composite containing more than one type of fiber material as reinforcing fillers. It has become attractive structural material due to the ability of providing better combination of properties with respect to single fiber containing composite. The eco-friendly nature as well as processing advantage, light weight and low cost have enhanced the attraction and interest of natural fiber reinforced composite. The objective of present research is to study the mechanical properties of jute-coir fiber reinforced hybrid polypropylene (PP) composite according to filler loading variation. In the present work composites were manufactured by using hot press machine at four levels of fiber loading (5, 10, 15 and 20 wt %). Jute and coir fibers were utilized at a ratio of (1:1) during composite manufacturing. Tensile, flexural, impact and hardness tests were conducted for mechanical characterization. Tensile test of composite showed a decreasing trend of tensile strength and increasing trend of the Young-s modulus with increasing fiber content. During flexural, impact and hardness tests, the flexural strength, flexural modulus, impact strength and hardness were found to be increased with increasing fiber loading. Based on the fiber loading used in this study, 20% fiber reinforced composite resulted the best set of mechanical properties.Keywords: Mechanical Properties; Coir, Jute, Polypropylene, Hybrid Composite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3700458 A Fiber Optic Interferometric Sensor for Dynamic Measurement
Authors: N. Sathitanon, S. Pullteap
Abstract:
An optical fiber Fabry-Perot interferometer (FFPI) is proposed and demonstrated for dynamic measurements in a mechanical vibrating target. A polishing metal with a low reflectance value adhered to a mechanical vibrator was excited via a function generator at various excitation frequencies. Output interference fringes were generated by modulating the reference and sensing signal at the output arm. A fringe-counting technique was used for interpreting the displacement information on the dedicated computer. The fiber interferometer has been found the capability of the displacement measurements of 1.28 μm – 96.01 μm. A commercial displacement sensor was employed as a reference sensor for investigating the measurement errors from the fiber sensor. A maximum percentage measurement error of approximately 1.59 % was obtained.Keywords: Optical fiber sensors, dynamic displacement, fringe counting, reference displacement sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240457 An Investigation on Ultrasonic Pulse Velocity of Hybrid Fiber Reinforced Concretes
Authors: Soner Guler, Demet Yavuz, Refik Burak Taymuş, Fuat Korkut
Abstract:
Because of the easy applying and not costing too much, ultrasonic pulse velocity (UPV) is one of the most used non-destructive techniques to determine concrete characteristics along with impact-echo, Schmidt rebound hammer (SRH) and pulse-echo. This article investigates the relationship between UPV and compressive strength of hybrid fiber reinforced concretes. Water/cement ratio (w/c) was kept at 0.4 for all concrete mixes. Compressive strength of concrete was targeted at 35 MPa. UPV testing and compressive strength tests were carried out at the curing age of 28 days. The UPV of concrete containing steel fibers has been found to be higher than plain concrete for all the testing groups. It is decided that there is not a certain relationship between fiber addition and strength.
Keywords: Ultrasonic pulse velocity, hybrid fiber, compressive strength, fiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1062456 Improvement of Bit-Error-Rate in Optical Fiber Receivers
Authors: Hadj Bourdoucen, Amer Alhabsi
Abstract:
In this paper, a post processing scheme is suggested for improvement of Bit Error-Rate (BER) in optical fiber transmission receivers. The developed scheme has been tested on optical fiber systems operating with a non-return-to-zero (NRZ) format at transmission rates of up to 10Gbps. The transmission system considered is based on well known transmitters and receivers blocks operating at wavelengths in the region of 1550 nm using a standard single mode fiber. Performance of improved detected signals has been evaluated via the analysis of quality factor and computed bit error rates. Numerical simulations have shown a noticeable improvement of the system BER after implementation of the suggested post processing operation on the detected electrical signals.Keywords: BER improvement, Optical fiber, transmissionperformance, NRZ.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150455 Mercerization Treatment Parameter Effect on Natural Fiber Reinforced Polymer Matrix Composite: A Brief Review
Authors: Mohd Yussni Hashim, Mohd Nazrul Roslan, Azriszul Mohd Amin, Ahmad Mujahid Ahmad Zaidi, Saparudin Ariffin
Abstract:
Environmental awareness and depletion of the petroleum resources are among vital factors that motivate a number of researchers to explore the potential of reusing natural fiber as an alternative composite material in industries such as packaging, automotive and building constructions. Natural fibers are available in abundance, low cost, lightweight polymer composite and most importance its biodegradability features, which often called “ecofriendly" materials. However, their applications are still limited due to several factors like moisture absorption, poor wettability and large scattering in mechanical properties. Among the main challenges on natural fibers reinforced matrices composite is their inclination to entangle and form fibers agglomerates during processing due to fiber-fiber interaction. This tends to prevent better dispersion of the fibers into the matrix, resulting in poor interfacial adhesion between the hydrophobic matrix and the hydrophilic reinforced natural fiber. Therefore, to overcome this challenge, fiber treatment process is one common alternative that can be use to modify the fiber surface topology by chemically, physically or mechanically technique. Nevertheless, this paper attempt to focus on the effect of mercerization treatment on mechanical properties enhancement of natural fiber reinforced composite or so-called bio composite. It specifically discussed on mercerization parameters, and natural fiber reinforced composite mechanical properties enhancement.Keywords: Mercerization treatment, mechanical properties, natural fiber and bio composite
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4753454 A Pull-out Fiber/Matrix Interface Characterization of Vegetal Fibers Reinforced Thermoplastic Polymer Composites: The Influence of the Processing Temperature
Authors: Duy Cuong Nguyen, Ali Makke, Guillaume Montay
Abstract:
This work presents an improved single fiber pull-out test for fiber/matrix interface characterization. This test has been used to study the Inter-Facial Shear Strength ‘IFSS’ of hemp fibers reinforced polypropylene (PP). For this aim, the fiber diameter has been carefully measured using a tomography inspired method. The fiber section contour can then be approximated by a circle or a polygon. The results show that the IFSS is overestimated if the circular approximation is used. The Influence of the molding temperature on the IFSS has also been studied. We find that a molding temperature of 183◦C leads to better interfacial properties. Above or below this temperature the interface strength is reduced.Keywords: Interface, pull-out, processing, temperature, hemp, polypropylene, composite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097453 Analytical Solution of Stress Distribution ona Hollow Cylindrical Fiber of a Composite with Cylindrical Volume Element under Axial Loading
Authors: M. H. Kargarnovin, K. Momeni
Abstract:
The study of the stress distribution on a hollow cylindrical fiber placed in a composite material is considered in this work and an analytical solution for this stress distribution has been constructed. Finally some parameters such as fiber-s thickness and fiber-s length are considered and their effects on the distribution of stress have been investigated. For finding the governing relations, continuity equations for the axisymmetric problem in cylindrical coordinate (r,o,z) are considered. Then by assuming some conditions and solving the governing equations and applying the boundary conditions, an equation relates the stress applied to the representative volume element with the stress distribution on the fiber has been found.Keywords: Axial Loading, Composite, Hollow CylindricalFiber, Stress Distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611452 Mechanical Properties of Enset Fibers Obtained from Different Breeds of Enset Plant
Authors: Diriba T. Balcha, Boris Kulig, Oliver Hensel, Eyassu Woldesenbet
Abstract:
Enset fiber is agricultural waste and available in a surplus amount in Ethiopia. However, the hypothesized variation in properties of this fiber due to diversity of its plant source breed, fiber position within plant stem and chemical treatment duration had not proven that its application for the development of composite products is problematic. Currently, limited data are known on the functional properties of the fiber as a potential functional fiber. Thus, an effort is made in this study to narrow the knowledge gaps by characterizing it. The experimental design was conducted using Design-Expert software and the tensile test was conducted on Enset fiber from 10 breeds: Dego, Dirbo, Gishera, Itine, Siskela, Neciho, Yesherkinke, Tuzuma, Ankogena, and Kucharkia. The effects of 5% Na-OH surface treatment duration and fiber location along and across the plant pseudostem was also investigated. The test result shows that the rupture stress variation is not significant among the fibers from 10 Enset breeds. However, strain variation is significant among the fibers from 10 Enset breeds that breed Dego fiber has the highest strain before failure. Surface treated fibers showed improved rupture strength and elastic modulus per 24 hours of treatment duration. Also, the result showed that chemical treatment can deteriorate the load-bearing capacity of the fiber. The raw fiber has the higher load-bearing capacity than the treated fiber. And, it was noted that both the rupture stress and strain increase in the top to bottom gradient, whereas there is no significant variation across the stem. Elastic modulus variation both along and across the stem was insignificant. The rupture stress, elastic modulus, and strain result of Enset fiber are 360.11 ± 181.86 MPa, 12.80 ± 6.85 GPa and 0.04 ± 0.02 mm/mm, respectively. These results show that Enset fiber is comparable to other natural fibers such as abaca, banana, and sisal fibers and can be used as alternatives natural fiber for composites application. Besides, the insignificant variation of properties among breeds and across stem is essential for all breeds and all leaf sheath of the Enset fiber plant for fiber extraction. The use of short natural fiber over the long is preferable to reduce the significant variation of properties along the stem or fiber direction. In conclusion, Enset fiber application for composite product design and development is mechanically feasible.Keywords: Agricultural waste, chemical treatment, fiber characteristics, natural fiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731451 Designing of a Non-Zero Dispersion Shifted Fiber with Ultra-High Birefringence and High Non-Linearity
Authors: Shabbir Chowdhury, Japatosh Mondal
Abstract:
Photonic Crystal Fiber (PCF) uses are no longer limited to telecommunication only rather it is now used for many sensors-based fiber optics application, medical science, space application and so on. In this paper, the authors have proposed a microstructure PCF that is designed by using Finite Element Method (FEM) based software. Besides designing, authors have discussed the necessity of the characteristics that it poses for some specified applications because it is not possible to have all good characteristics from a single PCF. Proposed PCF shows the property of ultra-high birefringence (0.0262 at 1550 nm) which is more useful for sensor based on fiber optics. The non-linearity of this fiber is 50.86 w-1km-1 at 1550 nm wavelength which is very high to guide the light through the core tightly. For Perfectly Matched Boundary Layer (PML), 0.6 μm diameter is taken. This design will offer the characteristics of Nonzero-Dispersion-Shifted Fiber (NZ-DSF) for 450 nm waveband. Since it is a software-based design and no practical evaluation has made, 2% tolerance is checked and the authors have found very small variation of the characteristics.
Keywords: Chromatic dispersion, birefringence, NZ-DSF, FEM, non-linear coefficient, DCF, waveband.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 486450 The Flexural Strength of Fiber-Reinforced Polymer Cement Mortars Using UM Resin
Authors: Min Ho Kwon, Woo Young Jung, Hyun Su Seo
Abstract:
A polymer cement mortar (PCM) has been widely used as the material of repair and restoration work for concrete structure; however a PCM usually induces an environmental pollutant. Therefore, there is a need to develop PCM which is less impact to environments. Usually, UM resin is known to be harmless to the environment. Accordingly, in this paper, the properties of the PCM using UM resin were studied. The general cement mortar and UM resin were mixed in the specified ratio. A certain percentage of PVA fibers, steel fibers and mixed fibers (PVA fiber and steel fiber) were added to enhance the flexural strength. The flexural tests were performed in order to investigate the flexural strength of each PCM. Experimental results showed that the strength of proposed PCM using UM resin is improved when they are compared with general cement mortar.
Keywords: Polymer cement mortar (PCM), UM resin, Compressive strength, PVA fiber, Steel fiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3291449 Flow Characteristics of Pulp Liquid in Straight Ducts
Authors: M. Sumida
Abstract:
An experimental investigation was performed on pulp liquid flow in straight ducts with a square cross section. Fully developed steady flow was visualized and the fiber concentration was obtained using a light-section method developed by the author et al. The obtained results reveal quantitatively, in a definite form, the distribution of the fiber concentration. From the results and measurements of pressure loss, it is found that the flow characteristics of pulp liquid in ducts can be classified into five patterns. The relationships among the distributions of mean and fluctuation of fiber concentration, the pressure loss and the flow velocity are discussed, and then the features for each pattern are extracted. The degree of nonuniformity of the fiber concentration, which is indicated by the standard deviation of its distribution, is decreased from 0.3 to 0.05 with an increase in the velocity of the tested pulp liquid from 0.4 to 0.8%.Keywords: Fiber Concentration, Flow Characteristic, Pulp Liquid, Straight Duct.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577448 Non-Homogeneous Layered Fiber Reinforced Concrete
Authors: Vitalijs Lusis, Andrejs Krasnikovs
Abstract:
Fiber reinforced concrete is important material for load bearing structural elements. Usually fibers are homogeneously distributed in a concrete body having arbitrary spatial orientations. At the same time, in many situations, fiber concrete with oriented fibers is more optimal. Is obvious, that is possible to create constructions with oriented short fibers in them, in different ways. Present research is devoted to one of such approaches- fiber reinforced concrete prisms having dimensions 100mm ×100mm ×400mmwith layers of non-homogeneously distributed fibers inside them were fabricated.
Simultaneously prisms with homogeneously dispersed fibers were produced for reference as well. Prisms were tested under four point bending conditions. During the tests vertical deflection at the center of every prism and crack opening were measured (using linear displacements transducers in real timescale). Prediction results were discussed.
Keywords: Fiber reinforced concrete, 4-point bending, steel fiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009447 Utilization of Soymilk Residue for Wheat Flour Substitution in Gyoza skin
Authors: Naruemon Prapasuwannakul
Abstract:
Soymilk residue is obtained as a byproduct from soymilk and tofu production with little economic value. It contains high protein and fiber as well as various minerals and phyto-chemical compounds. The objective of this research was to substitute soymilk residue for wheat flour in gyoza skin in order to enhance value of soymilk residue and increase protein and fiber content of gyoza skin. Wheat flour was replaced with soymilk residue from 0 to 40%. The soy milk residue prepared in this research contains 26.92%protein, 3.58% fiber, 2.88% lipid, 6.29% ash and 60.33% carbohydrate. The results showed that increasing soymilk residue decreased lightness (L*value), tensile strength and sensory attributes but increased redness (a*), yellowness (b*), protein and fiber contents of product. The result also showed that the gyoza skin substituted with 30% soymilk residue was the most acceptable (p≤0.05) and its protein and fiber content increased up to 45 % and 867 % respectively.
Keywords: Gyoza skin, sensory, soymilk residue, wheat flour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2333446 Detection of Max. Optical Gain by Erbium Doped Fiber Amplifier
Authors: Abdulamgid.T. Bouzed, Suleiman. M. Elhamali
Abstract:
The technical realization of data transmission using glass fiber began after the development of diode laser in year 1962. The erbium doped fiber amplifiers (EDFA's) in high speed networks allow information to be transmitted over longer distances without using of signal amplification repeaters. These kinds of fibers are doped with erbium atoms which have energy levels in its atomic structure for amplifying light at 1550nm. When a carried signal wave at 1550nm enters the erbium fiber, the light stimulates the excited erbium atoms which pumped with laser beam at 980nm as additional light. The wavelength and intensity of the semiconductor lasers depend on the temperature of active zone and the injection current. The present paper shows the effect of the diode lasers temperature and injection current on the optical amplification. From the results of in- and output power one may calculate the max. optical gain by erbium doped fiber amplifier.Keywords: Amplifier, erbium doped fiber, gain, lasers, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139445 Numerical Study of Fiber Bragg Grating Sensor: Longitudinal and Transverse Detection of Temperature and Strain
Authors: K. Khelil, H. Ammar, K. Saouchi
Abstract:
Fiber Bragg Grating (FBG) structure is an periodically modulated optical fiber. It acts as a selective filter of wavelength whose reflected peak is called Bragg wavelength and it depends on the period of the fiber and the refractive index. The simulation of FBG is based on solving the Coupled Mode Theory equation by using the Transfer Matrix Method which is carried out using MATLAB. It is found that spectral reflectivity is shifted when the change of temperature and strain is uniform. Under non-uniform temperature or strain perturbation, the spectrum is both shifted and destroyed. In case of transverse loading, reflectivity spectrum is split into two peaks, the first is specific to X axis, and the second belongs to Y axis. FBGs are used in civil engineering to detect perturbations applied to buildings.
Keywords: Bragg wavelength, coupled mode theory, optical fiber, temperature measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 885444 Post-Cracking Behaviour of High Strength Fiber Concrete Prediction and Validation
Authors: Andrejs Krasnikovs, Olga Kononova, Amjad Khabbaz, Edgar Machanovsky, Artur Machanovsky
Abstract:
Fracture process in mechanically loaded steel fiber reinforced high-strength (SFRHSC) concrete is characterized by fibers bridging the crack providing resistance to its opening. Structural SFRHSC fracture model was created; material fracture process was modeled, based on single fiber pull-out laws, which were determined experimentally (for straight fibers, fibers with end hooks (Dramix), and corrugated fibers (Tabix)) as well as obtained numerically ( using FEM simulations). For this purpose experimental program was realized and pull-out force versus pull-out fiber length was obtained (for fibers embedded into concrete at different depth and under different angle). Model predictions were validated by 15x15x60cm prisms 4 point bending tests. Fracture surfaces analysis was realized for broken prisms with the goal to improve elaborated model assumptions. Optimal SFRHSC structures were recognized.Keywords: crack, fiber concrete, fiber pull-out, strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097443 The Effects of Aggregate Sizes and Fiber Volume Fraction on Bending Toughness and Direct Tension of Steel Fiber Reinforced Concrete
Authors: Hyun-Woo Cho, Jae-Heum Moon, Jang-Hwa Lee
Abstract:
In order to supplement the brittle property of concrete, fibers are added into concrete mixtures. Compared to general concrete, various characteristics such as tensile strength, bending strength, bending toughness, and resistance to crack are superior, and even when cracks occur, improvements on toughness as well as resistance to shock are excellent due to the growth of fracture energy. Increased function of steel fiber reinforced concrete can be differentiated depending on the fiber dispersion, and sand percentage can be an important influence on the fiber dispersion. Therefore, in this research, experiments were planned on sand percentage in order to apprehend the influence of sand percentage on the bending properties and direct tension of SFRC and basic experiments were conducted on bending and direct tension in order to recognize the properties of bending properties and direct tension following the size of the aggregates and sand percentage.Keywords: Steel Fiber Reinforced Concrete, Bending Toughness, Direct tension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658442 Physical and Rheological Properties of Asphalt Modified with Cellulose Date Palm Fibers
Authors: Howaidi M. Al-Otaibi, Abdulrahman S. Al-Suhaibani, Hamad A. Alsoliman
Abstract:
Fibers are extensively used in civil engineering applications for many years. In this study, empty fruit bunch of date palm trees were used to produce cellulose fiber that were used as additives in the asphalt binder. Two sizes (coarse and fine) of cellulose fibers were pre-blended in PG64-22 binder with various contents of 1.5%, 3%, 4.5%, 6%, and 7.5% by weight of asphalt binder. The physical and rheological properties of fiber modified asphalt binders were tested by using conventional tests such as penetration, softening point and viscosity; and SHRP test such as dynamic shear rheometer. The results indicated that the fiber modified asphalt binders were higher in softening point, viscosity, and complex shear modulus, and lower in penetration compared to pure asphalt. The fiber modified binders showed an improvement in rheological properties since it was possible to raise the control binder (pure asphalt) PG from 64 to 70 by adding 6% (by weight) of either fine or coarse fibers. Such improvement in stiffness of fiber modified binder is expected to improve pavement resistance to rutting.
Keywords: Cellulose date palm fiber, fiber modified asphalt, physical properties, rheological properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856441 Sensing Characteristics to Acid Vapors of a TPPS Coated Fiber Optic: A Preliminary Analysis
Authors: A. Bahrampour, A. Iadicicco, G. De Luca, M. Giordano, A. Cutolo, L. Monsù Scolaro, A. Cusano
Abstract:
In this work we report on preliminary analysis of a novel optoelectronic gas sensor based on an optical fiber integrated with a tetrakis(4-sulfonatophenyl)porphyrin (TPPS) thin film. The sensitive materials are selectively deposited on the core region of a fiber tip by UV light induced deposition technique. A simple and cheap process which can be easily extended to different porphyrin derivatives. When the TPPS film on the fiber tip is exposed to acid and/or base vapors, dramatic changes occur in the aggregation structure of the dye molecules in the film, from J- to H-type, resulting in a profound modification of their corresponding reflectance spectra. From the achieved experimental results it is evident that the presence of intense and narrow band peaks in the reflected spectra could be monitored to detect hazardous vapors.
Keywords: Optical fiber sensor, Porphyrins, Thin films UV induced deposition, TPPS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527440 Characteristic of Discrete Raman Amplifier at Different Pump Configurations
Authors: Parekhan M. Jaff
Abstract:
This paper describes the gain and noise performances of discrete Raman amplifier as a function of fiber lengths and the signal input powers for different pump configurations. Simulation has been done by using optisystem 7.0 software simulation at signal wavelength of 1550 nm and a pump wavelength of 1450nm. The results showed that the gain is higher in bidirectional pumping than in counter pumping, the gain changes with increasing the fiber length while the noise figure remain the same for short fiber lengths and the gain saturates differently for different pumping configuration at different fiber lengths and power levels of the signal.Keywords: Optical Amplifier, Raman Amplifier DiscreteRaman Amplifier (DRA), Wavelength Division Multiplexing(WDM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2618439 An Approach to Flatten the Gain of Fiber Raman Amplifiers with Multi-Pumping
Authors: Surinder Singh, Adish Bindal
Abstract:
The effects of the pumping wavelength and their power on the gain flattening of a fiber Raman amplifier (FRA) are investigated. The multi-wavelength pumping scheme is utilized to achieve gain flatness in FRA. It is proposed that gain flatness becomes better with increase in number of pumping wavelengths applied. We have achieved flat gain with 0.27 dB fluctuation in a spectral range of 1475-1600 nm for a Raman fiber length of 10 km by using six pumps with wavelengths with in the 1385-1495 nm interval. The effect of multi-wavelength pumping scheme on gain saturation in FRA is also studied. It is proposed that gain saturation condition gets improved by using this scheme and this scheme is more useful for higher spans of Raman fiber length.Keywords: FRA, gain, pumping, WDM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928438 The Effect of Polypropylene Fiber in the Stabilization of Expansive Soils
Authors: A. S. Soğancı
Abstract:
Expansive soils are often encountered in many parts of the world, especially in arid and semi-arid fields. Such kind of soils, generally including active clay minerals in low water content, enlarge in volume by absorbing the water through the surface and cause a great harm to the light structures such as channel coating, roads and airports. The expansive soils were encountered on the path of Apa-Hotamış conveyance channel belonging to the State Hydraulic Works in the region of Konya. In the research done in this area, it is predicted that the soil has a swollen nature and the soil should be filled with proper granular equipments by digging the ground to 50-60 cm. In this study, for purpose of helping the other research to be done in the same area, it is thought that instead of replacing swollen soil with the granular soil, by stabilizing it with polypropylene fiber and using it its original place decreases effect of swelling percent, in this way the cost will be decreased. Therefore, laboratory tests were conducted to study the effects of polypropylene fiber on swelling characteristics of expansive soil. Test results indicated that inclusion of fiber reduced swell percent of expansive soil. As the fiber content increased, the unconfined compressive strength was increased. Finally, it can be said that stabilization of expansive soils with polypropylene fiber is an effective method.Keywords: Expansive soils, polypropylene fiber, stabilization, swelling percent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5747437 Design of a Strain Sensor Based on Cascaded Fiber Bragg Grating for Remote Sensing Monitoring
Authors: Arafat A. A. Shabaneh
Abstract:
Harsh environments require developed detection by an optical communication system to ensure a high level of security and safety. Fiber Bragg gratings (FBGs) are emerging sensing instruments that respond to variations in strain and temperature by varying wavelengths. In this study, a cascaded uniform FBG is designed as a strain sensor for 6 km length at 1550 nm wavelength with 30 °C temperature by analyzing dynamic strain and wavelength shifts. The FBG is placed in a small segment of an optical fiber that reflects light with a specific wavelength and passes on the remaining wavelengths. Consequently, periodic alteration occurs in the refractive index in the fiber core. The alteration in the modal index of the fiber is produced by strain effects on a Bragg wavelength. When the developed sensor is exposed to the strain (0.01) of the cascaded uniform FBG, the wavelength shifts by 0.0000144383 μm. The sensing accuracy of the developed sensor is 0.0012. Simulation results show the reliability and effectiveness of the strain monitoring sensor for remote sensing application.
Keywords: Remote sensing, cascaded fiber Bragg grating, strain sensor, wavelength shift.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 478436 Strengthening RC Columns Using Carbon Fiber Reinforced Epoxy Composites Modified with Carbon Nanotubes
Authors: Mohammad R. Irshidat, Mohammed H. Al-Saleh, Mahmoud Al-Shoubaki
Abstract:
This paper investigates the viability of using carbon fiber reinforced epoxy composites modified with carbon nanotubes to strengthening reinforced concrete (RC) columns. Six RC columns was designed and constructed according to ASCE standards. The columns were wrapped using carbon fiber sheets impregnated with either neat epoxy or CNTs modified epoxy. These columns were then tested under concentric axial loading. Test results show that; compared to the unwrapped specimens; wrapping concrete columns with carbon fiber sheet embedded in CNTs modified epoxy resulted in an increase in its axial load resistance, maximum displacement, and toughness values by 24%, 109% and 232%, respectively. These results reveal that adding CNTs into epoxy resin enhanced the confinement effect, specifically, increased the axial load resistance, maximum displacement, and toughness values by 11%, 6%, and 19%, respectively compared with columns strengthening with carbon fiber sheet embedded in neat epoxy.
Keywords: CNT, epoxy, Carbon fiber, RC columns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3925435 Synthesis of Silk Fibroin Fiber for Indoor air Particulate Removal
Authors: Janjira Triped, Wipada Sanongraj, Bovornlak Oonkhanond, Sompop Sanongraj
Abstract:
The main objective of this research is to synthesize silk fibroin fiber for indoor air particulate removal. Silk cocoons were de-gummed using 0.5 wt % Na2CO3 alkaline solutions at 90 Ó╣ìC for 60 mins, washed with distilled water, and dried at 80 Ó╣ìC for 3 hrs in a vacuum oven. Two sets of experiment were conducted to investigate the impacts of initial particulate matter (PM) concentration and that of air flow rate on the removal efficiency. Rice bran collected from a local rice mill in Ubonratchathani province was used as indoor air contaminant in this work. The morphology and physical properties of silk fibroin (SF) fiber were measured. The SEM revealed the deposition of PM on the used fiber. The PM removal efficiencies of 72.29 ± 3.03 % and 39.33 ± 1.99 % were obtained of PM10 and PM2.5, respectively, when using the initial PM concentration at 0.040 mg/m3 and 0.020 mg/m3 of PM10 and PM2.5, respectively, with the air flow rate of 5 L/min.
Keywords: Indoor air, Particulate matter, Scanning electron microscope (SEM), Silk fibroin fiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803434 Effect of Alkali Treatment on Impact Behavior of Areca Fibers Reinforced Polymer Composites
Authors: Srinivasa C. V., Bharath K. N.
Abstract:
Natural fibers are considered to have potential use as reinforcing agents in polymer composite materials because of their principal benefits: moderate strength and stiffness, low cost, and being an environmental friendly, degradable, and renewable material. A study has been carried out to evaluate impact properties of composites made by areca fibers reinforced urea formaldehyde, melamine urea formaldehyde and epoxy resins. The extracted areca fibers from the areca husk were alkali treated with potassium hydroxide (KOH) to obtain better interfacial bonding between fiber and matrix. Then composites were produced by means of compression molding technique with varying process parameters, such as fiber condition (untreated and alkali treated), and fiber loading percentages (50% and 60% by weight). The developed areca fiber reinforced composites were then characterized by impact test. The results show that, impact strength increase with increase in the loading percentage. It is observed that, treated areca fiber reinforcement increases impact strength when compared to untreated areca fiber reinforcement.
Keywords: Lignocellulosic Fibers Composites, Areca Fibers, Alkali Treatment, Impact Strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3783433 Electromagnetic Interference Shielding Characteristics for Stainless Wire Mesh and Number of Plies of Carbon Fiber Reinforced Plastic
Authors: Min Sang Lee, Hee Jae Shin, In Pyo Cha, Hyun Kyung Yoon, Seong Woo Hong, Min Jae Yu, Hong Gun Kim, Lee Ku Kwac
Abstract:
In this paper, the electromagnetic shielding characteristics of an up-to-date typical carbon filler material, carbon fiber used with a metal mesh were investigated. Carbon fiber 12k-prepregs, where carbon fibers were impregnated with epoxy, were laminated with wire meshes, vacuum bag-molded and hardened to manufacture hybrid-type specimens, with which an electromagnetic shield test was performed in accordance with ASTM D4935-10, through which was known as the most excellent reproducibility is obtainable among electromagnetic shield tests. In addition, glass fiber prepregs whose electromagnetic shielding effect were known as insignificant were laminated and formed with wire meshes to verify the validity of the electromagnetic shield effect of wire meshes in order to confirm the electromagnetic shielding effect of metal meshes corresponding existing carbon fiber 12k-prepregs. By grafting carbon fibers, on which studies are being actively underway in the environmental aspects and electromagnetic shielding effect, with hybrid-type wire meshes that were analysed through the tests, in this study, the applicability and possibility are proposed.
Keywords: Carbon Fiber Reinforced Plastic (CFRP), Glass Fiber Reinforced Plastic (GFRP), Stainless Wire Mesh, Electromagnetic Shielding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2752432 Separation of Dissolved Gas for Breathing of a Human against Sudden Waves Using Hollow Fiber Membranes
Authors: Pil Woo Heo, In Sub Park
Abstract:
The separation of dissolved gas including dissolved oxygen can be used in breathing for a human under water. When one is suddenly wrecked or meets a tsunami, one is instantly drowned and cannot breathe under water. To avoid this crisis, when we meet waves, the dissolved gas separated from water by wave is used, while air can be used to breathe when we are about to escape from water. In this thesis, we investigated the separation characteristics of dissolved gas using the pipe type of hollow fiber membrane with polypropylene and the nude type of one with polysulfone. The hollow fiber membranes with good characteristics under water are used to separate the dissolved gas. The hollow fiber membranes with good characteristics in an air are used to transfer air. The combination of membranes with good separation characteristics under water and good transferring one in an air is used to breathe instantly under water to be alive at crisis. These results showed that polypropylene represented better performance than polysulfone under both of air and water conditions.
Keywords: separation, wave, dissolved gas, hollow fiber
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822