Search results for: time temperature superposition.
7934 Energy Separation Mechanism in Uni-Flow Vortex Tube Using Compressible Vortex Flow
Authors: Hiroshi Katanoda, Mohd Hazwan bin Yusof
Abstract:
A theoretical investigation from the view point of gas-dynamics and thermodynamics was carried out, in order to clarify the energy separation mechanism in a viscous compressible vortex, as a primary flow element in a uni-flow vortex tube. The mathematical solutions of tangential velocity, density and temperature in a viscous compressible vortical flow were used in this study.It is clear that a total temperature in the vortex core falls well below that distant from the vortex core in the radial direction, causing aregion with higher total temperature,compared to the distant region,peripheral to the vortex core.
Keywords: Energy separation mechanism, theoretical analysis, vortex tube, vortical flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19047933 On the Differential Geometry of the Curves in Minkowski Space-Time II
Authors: Süha Yılmaz, Emin Özyılmaz, Melih Turgut
Abstract:
In the first part of this paper [6], a method to determine Frenet apparatus of the space-like curves in Minkowski space-time is presented. In this work, the mentioned method is developed for the time-like curves in Minkowski space-time. Additionally, an example of presented method is illustrated.Keywords: Frenet Apparatus, Time-like Curves, MinkowskiSpace-time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16657932 Production of Biodiesel from Roasted Chicken Fat and Methanol: Free Catalyst
Authors: Jorge Ramírez-Ortiz, Merced Martínez Rosales, Horacio Flores Zúñiga
Abstract:
Transesterification reactions free of catalyst between roasted chicken fat with methanol were carried out in a batch reactor in order to produce biodiesel to temperatures from 120°C to 140°C. Parameters related to the transesterification reactions, including temperature, time and the molar ratio of chicken fat to methanol also investigated. The maximum yield of the reaction was of 98% under conditions of 140°C, 4 h of reaction time and a molar ratio of chicken fat to methanol of 1:31. The biodiesel thus obtained exhibited a viscosity of 6.3 mm2/s and a density of 895.9 kg/m3. The results showed this process can be right choice to produce biodiesel since this process does not use any catalyst. Therefore, the steps of neutralization and washing are avoided, indispensables in the case of the alkaline catalysis.
Keywords: Biodiesel, non-catalyst, roasted chicken fat, transesterification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31587931 A Computational Study into the Effect of Design Parameters on Ignition Timing and Emission Characteristics of HCCI Engine in Internal Combustion Engines Fuelled with Isooctane
Authors: Fridhi Hadia, Soua Wadhah, Hidouri Ammar, Omri Ahmed
Abstract:
In order to understand the auto-ignition process in a HCCI engine better, the influence of some important parameters on the auto-ignition is investigated. The inlet temperature, the inlet pressure, and the compression ratio were varied and their influence on the ignition delays and emission characteristics were studied. The inlet temperature was changed from 400 K to 460 K (in step of 15 K), the inlet pressure from 0.9 to 3 atm, while the compression ratio varied from 15 to 23. The fuel that was investigated is isooctane. The inlet temperature, the inlet pressure, and the compression ratio appeared to decrease the ignition delays, with the inlet pressure having the least influence and the compression ratio the most. The effect of these parameters on emissions’ characteristics were also investigated. Results indicate that increasing the compression ratio results in increasing the concentration of all the species.
Keywords: Compression Ratio, intake temperature, intake pressure, HCCI engine, isooctane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17107930 Application of CFD for Air Flow Analysis underneath Natural Ventilation with Forced Convection in Roof Attic
Authors: C. Nutphuang, S. Chirarattananon, V.D. Hien
Abstract:
In research on natural ventilation, and passive cooling with forced convection, is essential to know how heat flows in a solid object and the pattern of temperature distribution on their surfaces, and eventually how air flows through and convects heat from the surfaces of steel under roof. This paper presents some results from running the computational fluid dynamic program (CFD) by comparison between natural ventilation and forced convection within roof attic that is received directly from solar radiation. The CFD program for modeling air flow inside roof attic has been modified to allow as two cases. First case, the analysis under natural ventilation, is closed area in roof attic and second case, the analysis under forced convection, is opened area in roof attic. These extend of all cases to available predictions of variations such as temperature, pressure, and mass flow rate distributions in each case within roof attic. The comparison shows that this CFD program is an effective model for predicting air flow of temperature and heat transfer coefficient distribution within roof attic. The result shows that forced convection can help to reduce heat transfer through roof attic and an around area of steel core has temperature inner zone lower than natural ventilation type. The different temperature on the steel core of roof attic of two cases was 10-15 oK.Keywords: CFD program, natural ventilation, forcedconvection, heat transfer, air flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22237929 Enzymatic Saccharification of Dilute Alkaline Pre-treated Microalgal (Tetraselmis suecica) Biomass for Biobutanol Production
Authors: M. A. Kassim, R. Potumarthi, A. Tanksale, S. C. Srivatsa, S. Bhattacharya
Abstract:
Enzymatic saccharification of biomass for reducing sugar production is one of the crucial processes in biofuel production through biochemical conversion. In this study, enzymatic saccharification of dilute potassium hydroxide (KOH) pre-treated Tetraselmis suecica biomass was carried out by using cellulase enzyme obtained from Trichoderma longibrachiatum. Initially, the pre-treatment conditions were optimised by changing alkali reagent concentration, retention time for reaction, and temperature. The T. suecica biomass after pre-treatment was also characterized using Fourier Transform Infrared Spectra and Scanning Electron Microscope. These analyses revealed that the functional group such as acetyl and hydroxyl groups, structure and surface of T. suecica biomass were changed through pre-treatment, which is favourable for enzymatic saccharification process. Comparison of enzymatic saccharification of untreated and pre-treated microalgal biomass indicated that higher level of reducing sugar can be obtained from pre-treated T. suecica. Enzymatic saccharification of pre-treated T. suecica biomass was optimised by changing temperature, pH, and enzyme concentration to solid ratio ([E]/[S]). Highest conversion of carbohydrate into reducing sugar of 95% amounted to reducing sugar yield of 20 (wt%) from pre-treated T. suecica was obtained from saccharification, at temperature: 40°C, pH: 4.5 and [E]/[S] of 0.1 after 72 h of incubation. Hydrolysate obtained from enzymatic saccharification of pretreated T. suecica biomass was further fermented into biobutanol using Clostridium saccharoperbutyliticum as biocatalyst. The results from this study demonstrate a positive prospect of application of dilute alkaline pre-treatment to enhance enzymatic saccharification and biobutanol production from microalgal biomass.
Keywords: Microalgal biomass, enzymatic saccharification, biobutanol, fermentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28977928 Performance Evaluation of Thermosiphon Based Solar Water Heater in India
Authors: Dnyandip K. Bhamare, Manish K Rathod, Jyotirmay Banerjee
Abstract:
This paper aims to study performance of a thermosiphon solar water heating system with the help of the proposed analytical model. This proposed model predicts the temperature and mass flow rate in a thermosiphon solar water heating system depending on radiation intensity and ambient temperature. The performance of the thermosiphon solar water heating system is evaluated in the Indian context. For this, eight cities in India are selected considering radiation intensity and geographical positions. Predicted performance at various cities reveals the potential for thermosiphon solar water in India.
Keywords: Collector outlet temperature, India, solar water heater, thermosiphon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15407927 Online Battery Equivalent Circuit Model Estimation on Continuous-Time Domain Using Linear Integral Filter Method
Authors: Cheng Zhang, James Marco, Walid Allafi, Truong Q. Dinh, W. D. Widanage
Abstract:
Equivalent circuit models (ECMs) are widely used in battery management systems in electric vehicles and other battery energy storage systems. The battery dynamics and the model parameters vary under different working conditions, such as different temperature and state of charge (SOC) levels, and therefore online parameter identification can improve the modelling accuracy. This paper presents a way of online ECM parameter identification using a continuous time (CT) estimation method. The CT estimation method has several advantages over discrete time (DT) estimation methods for ECM parameter identification due to the widely separated battery dynamic modes and fast sampling. The presented method can be used for online SOC estimation. Test data are collected using a lithium ion cell, and the experimental results show that the presented CT method achieves better modelling accuracy compared with the conventional DT recursive least square method. The effectiveness of the presented method for online SOC estimation is also verified on test data.Keywords: Equivalent circuit model, continuous time domain estimation, linear integral filter method, parameter and SOC estimation, recursive least square.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13467926 Combination of Tensile Strength and Elongation of Reverse Rolled TaNbHfZrTi Refractory High Entropy Alloy
Authors: M. Veerasham
Abstract:
The refractory high entropy alloys are potential materials for high-temperature applications because of their ability to retain high strength up to 1600°C. However, their practical applications were limited due to poor elongation at room temperature. Therefore, decreasing the average valence electron concentrations (VEC) is an effective design strategy to improve the intrinsic ductility of refractory high entropy alloys. In this work, the high-entropy alloy TaNbHfZrTi was processed at room temperature by each step reverse rolling up to a 90% reduction in thickness. Subsequently, the reverse rolled 90% samples were utilized for annealing treatment at 800°C and 1000°C for 1 h to understand phase stability, microstructure, texture, and mechanical properties. The reverse rolled 90% condition contains body-centered cubic (BCC) single-phase; upon annealing at 800 °C, the formation of secondary phase BCC-2 prevailed. The partial recrystallization and complete recrystallization microstructures were developed for annealed at 800°C and 1000°C, respectively. The reverse rolled condition and 1000°C annealed temperature exhibit extraordinary room temperature tensile properties with high ultimate tensile strength (UTS) without compromising loss of ductility called “strength-ductility” trade-off. The reverse-rolled 90% and annealing treatment carried out at temperature about 1000°C for 1 h consist of UTS 1430 MPa and 1556 MPa with an appreciable amount of 21% and 20% elongation, respectively. The development of hierarchical microstructure prevailed for the annealed 1000°C which led to the simultaneous increase in tensile strength and elongation.
Keywords: refractory high entropy alloys, reverse rolling, recrystallization, microstructure, tensile properties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5477925 Comparative Study of the Effects of Process Parameters on the Yield of Oil from Melon Seed (Cococynthis citrullus) and Coconut Fruit (Cocos nucifera)
Authors: Ndidi F. Amulu, Patrick E. Amulu, Gordian O. Mbah, Callistus N. Ude
Abstract:
Comparative analysis of the properties of melon seed, coconut fruit and their oil yield were evaluated in this work using standard analytical technique AOAC. The results of the analysis carried out revealed that the moisture contents of the samples studied are 11.15% (melon) and 7.59% (coconut). The crude lipid content are 46.10% (melon) and 55.15% (coconut).The treatment combinations used (leaching time, leaching temperature and solute: solvent ratio) showed significant difference (p < 0.05) in yield between the samples, with melon oil seed flour having a higher percentage range of oil yield (41.30 – 52.90%) and coconut (36.25 – 49.83%). The physical characterization of the extracted oil was also carried out. The values gotten for refractive index are 1.487 (melon seed oil) and 1.361 (coconut oil) and viscosities are 0.008 (melon seed oil) and 0.002 (coconut oil). The chemical analysis of the extracted oils shows acid value of 1.00mg NaOH/g oil (melon oil), 10.050mg NaOH/g oil (coconut oil) and saponification value of 187.00mg/KOH (melon oil) and 183.26mg/KOH (coconut oil). The iodine value of the melon oil gave 75.00mg I2/g and 81.00mg I2/g for coconut oil. A standard statistical package Minitab version 16.0 was used in the regression analysis and analysis of variance (ANOVA). The statistical software mentioned above was also used to optimize the leaching process. Both samples gave high oil yield at the same optimal conditions. The optimal conditions to obtain highest oil yield ≥ 52% (melon seed) and ≥ 48% (coconut seed) are solute - solvent ratio of 40g/ml, leaching time of 2hours and leaching temperature of 50oC. The two samples studied have potential of yielding oil with melon seed giving the higher yield.Keywords: Coconut, melon, optimization, processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21537924 Enhancement of Natural Convection Heat Transfer within Closed Enclosure Using Parallel Fins
Authors: F. A. Gdhaidh, K. Hussain, H. S. Qi
Abstract:
A numerical study of natural convection heat transfer in water filled cavity has been examined in 3-Dfor single phase liquid cooling system by using an array of parallel plate fins mounted to one wall of a cavity. The heat generated by a heat source represents a computer CPU with dimensions of 37.5∗37.5mm mounted on substrate. A cold plate is used as a heat sink installed on the opposite vertical end of the enclosure. The air flow inside the computer case is created by an exhaust fan. A turbulent air flow is assumed and k-ε model is applied. The fins are installed on the substrate to enhance the heat transfer. The applied power energy range used is between 15 - 40W. In order to determine the thermal behaviour of the cooling system, the effect of the heat input and the number of the parallel plate fins are investigated. The results illustrate that as the fin number increases the maximum heat source temperature decreases. However, when the fin number increases to critical value the temperature start to increase due to the fins are too closely spaced and that cause the obstruction of water flow. The introduction of parallel plate fins reduces the maximum heat source temperature by 10% compared to the case without fins. The cooling system maintains the maximum chip temperature at 64.68°C when the heat input was at 40W that is much lower than the recommended computer chips limit temperature of no more than 85°C and hence the performance of the CPU is enhanced.
Keywords: Chips limit temperature, closed enclosure, natural convection, parallel plate, single phase liquid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29887923 Exergy Analysis of Combined Cycle of Air Separation and Natural Gas Liquefaction
Authors: Hanfei Tuo, Yanzhong Li
Abstract:
This paper presented a novel combined cycle of air separation and natural gas liquefaction. The idea is that natural gas can be liquefied, meanwhile gaseous or liquid nitrogen and oxygen are produced in one combined cryogenic system. Cycle simulation and exergy analysis were performed to evaluate the process and thereby reveal the influence of the crucial parameter, i.e., flow rate ratio through two stages expanders β on heat transfer temperature difference, its distribution and consequent exergy loss. Composite curves for the combined hot streams (feeding natural gas and recycled nitrogen) and the cold stream showed the degree of optimization available in this process if appropriate β was designed. The results indicated that increasing β reduces temperature difference and exergy loss in heat exchange process. However, the maximum limit value of β should be confined in terms of minimum temperature difference proposed in heat exchanger design standard and heat exchanger size. The optimal βopt under different operation conditions corresponding to the required minimum temperature differences was investigated.
Keywords: combined cycle simulation, exergy analysis, natural gas liquefaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27947922 Effect of Sewing Speed on the Physical Properties of Firefighter Sewing Threads
Authors: Adnan Mazari, Engin Akcagun, Antonin Havelka, Funda Buyuk Mazari, Pavel Kejzlar
Abstract:
This article experimentally investigates various physical properties of special fire retardant sewing threads under different sewing speeds. The aramid threads are common for sewing the fire-fighter clothing due to high strength and high melting temperature. 3 types of aramid threads with different linear densities are used for sewing at different speed of 2000 to 4000 r/min. The needle temperature is measured at different speeds of sewing and tensile properties of threads are measured before and after the sewing process respectively. The results shows that the friction and abrasion during the sewing process causes a significant loss to the tensile properties of the threads and needle temperature rises to nearly 300oC at 4000 r/min of machine speed. The Scanning electron microscope images are taken before and after the sewing process and shows no melting spots but significant damage to the yarn. It is also found that machine speed of 2000r/min is ideal for sewing firefighter clothing for higher tensile properties and production.
Keywords: Kevlar, needle temperature, Nomex, sewing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14527921 Hydrogen Production from Dehydrogenation of Ethanol over Ag-Based Catalysts
Authors: S. Totong, K. Faungnawakij, N. Laosiripojana
Abstract:
The development of alternative energy is interesting in the present especially, hydrogen production because it is an important energy resource in the future. This paper studied the hydrogen production from catalytic dehydrogenation of ethanol through via low temperature (<500°C) reaction. Copper (Cu) and silver (Ag) supported on fumed silica (SiO2) were selected in the present work; in addition, bimetallic material; Ag-Cu supported on SiO2 was also investigated. The catalysts were prepared by the incipient wetness impregnation method and characterized via X-ray diffraction (XRD), temperature-programmed reduction (TPR)and nitrogen adsorption measurements. The catalytic dehydrogenation of ethanol was carried out in a fixed bed continuous flow reactor at atmospheric pressure. The effect of reaction temperature between 300-375°C was studied in order to maximize the hydrogen yield. It was found that Ag-Cu/SiO2 exhibited the highest hydrogen yield compared to Ag/SiO2 and Cu/SiO2 at low reaction temperature (300°C) with full ethanol conversion. The highest hydrogen yield observed was 40% and will be further used as a reactant in fuel cells to generate electricity or feedstock of chemical production.
Keywords: Catalyst, dehydrogenation, ethanol, hydrogen production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35197920 Design and Microfabrication of a High Throughput Thermal Cycling Platform with Various Annealing Temperatures
Authors: Sin J. Chen, Jyh J. Chen
Abstract:
This study describes a micro device integrated with multi-chamber for polymerase chain reaction (PCR) with different annealing temperatures. The device consists of the reaction polydimethylsiloxane (PDMS) chip, a cover glass chip, and is equipped with cartridge heaters, fans, and thermocouples for temperature control. In this prototype, commercial software is utilized to determine the geometric and operational parameters those are responsible for creating the denaturation, annealing, and extension temperatures within the chip. Two cartridge heaters are placed at two sides of the chip and maintained at two different temperatures to achieve a thermal gradient on the chip during the annealing step. The temperatures on the chip surface are measured via an infrared imager. Some thermocouples inserted into the reaction chambers are used to obtain the transient temperature profiles of the reaction chambers during several thermal cycles. The experimental temperatures compared to the simulated results show a similar trend. This work should be interesting to persons involved in the high-temperature based reactions and genomics or cell analysis.Keywords: Polymerase chain reaction, thermal cycles, temperature gradient, micro-fabrication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16497919 Synchrony between Genetic Repressilators in Sister Cells in Different Temperatures
Authors: Jerome G. Chandraseelan, Samuel M. D. Oliveira, Antti Häkkinen, Sofia Startceva, Andre S. Ribeiro
Abstract:
We used live E. coli containing synthetic genetic oscillators to study how the degree of synchrony between the genetic circuits of sister cells changes with temperature. We found that both the mean and the variability of the degree of synchrony between the fluorescence signals from sister cells are affected by temperature. Also, while most pairs of sister cells were found to be highly synchronous in each condition, the number of asynchronous pairs increased with increasing temperature, which was found to be due to disruptions in the oscillations. Finally we provide evidence that these disruptions tend to affect multiple generations as opposed to individual cells. These findings provide insight in how to design more robust synthetic circuits and in how cell division can affect their dynamics.Keywords: Repressilator, robustness, synchrony, synthetic biology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17537918 Biogas Potentiality of Agro-wastes Jatropha Fruit Coat
Authors: M.S. Dhanya, N. Gupta, H.C. Joshi, Lata
Abstract:
The present investigation was undertaken to explore the biogas potentiality of Jatropha (Jatropha curcas, Euphorbiaceae) Fruit Coat (JFC) alone and in combination with cattle dung (CD) in various proportions at 15 per cent total solids by batch phase anaerobic digestion for a period of ten weeks HRT (Hydraulic Retention Time) under a temperature of 35°C+1°C. The maximum biogas production was noticed in Cattle dung and Jatropha Fruit Coat in 2:1 ratio with 403.84 L/kg dry matter followed by 3:1,1:2, 1:1 and 1:3 having 329.66, 219.77, 217.79, 203.64 L /kg dm respectively as compared to 178.49 L/kg dm in CD alone. The JFC alone found to produce 91 per cent of total biogas that obtained from Cattle dung. The per cent methane content of the biogas in all the treatments was found on par with Cattle dung.
Keywords: Jatropha Fruit Coat, Cattle dung, Hydraulic Retention Time, Dry matter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21937917 Interannual Variations in Snowfall and Continuous Snow Cover Duration in Pelso, Central Finland, Linked to Teleconnection Patterns, 1944-2010
Authors: M. Irannezhad, E. H. N. Gashti, S. Mohammadighavam, M. Zarrini, B. Kløve
Abstract:
Climate warming would increase rainfall by shifting precipitation falling form from snow to rain, and would accelerate snow cover disappearing by increasing snowpack. Using temperature and precipitation data in the temperature-index snowmelt model, we evaluated variability of snowfall and continuous snow cover duration (CSCD) during 1944-2010 over Pelso, central Finland. Mann- Kendall non-parametric test determined that annual precipitation increased by 2.69 (mm/year, p<0.05) during the study period, but no clear trend in annual temperature. Both annual rainfall and snowfall increased by 1.67 and 0.78 (mm/year, p<0.05), respectively. CSCD was generally about 205 days from 14 October to 6 May. No clear trend was found in CSCD over Pelso. Spearman’s rank correlation showed most significant relationships of annual snowfall with the East Atlantic (EA) pattern, and CSCD with the East Atlantic/West Russia (EA/WR) pattern. Increased precipitation with no warming temperature caused the rainfall and snowfall to increase, while no effects on CSCD.
Keywords: Variations, snowfall, snow cover duration, temperature-index snowmelt model, teleconnection patterns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19167916 The Influence of Thermic Plastic Films on Vegetative and Reproductive Growth of Iceberg Lettuce ‘Dublin’
Authors: Wael M. Semida, P. Hadley, W. Sobeih, N. A. El-Sawah, M. A. S. Barakat
Abstract:
Photoselective plastic films with thermic properties are now available so that greenhouses clad with such plastics exhibit a higher degree of “Greenhouse Effect” with a consequent increase in night time temperature. In this study, we investigate the potential benefits of a range of thermic plastic films used as greenhouse cover materials on the vegetative and reproductive growth and development of Iceberg lettuce (Lactuca sativa L). Transplants were grown under thermic films and destructively harvested 4, 5, and 6 weeks after transplanting. Thermic films can increase night temperatures up to 2 ⁰C reducing the wide fluctuation in greenhouse temperature during winter compared to the standard commercial film and consequently increased the yield (leaf number, fresh weight, and dry weight) of lettuce plants. Lettuce plants grown under Clear film respond to cold stress by the accumulation of secondary products (phenolics, and flavonoids).
Keywords: Photoselective plastic films, thermic films, secondary metabolites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20787915 Control Technology for a Daily Load-following Operation in a Nuclear Power Plant
Authors: Keuk Jong Yu, Sang Hee Kang, Sung Chang You
Abstract:
In Korea, the technology of a load fo nuclear power plant has been being developed. automatic controller which is able to control temperature and axial power distribution was developed. identification algorithm and a model predictive contact former transforms the nuclear reactor status into numerically. And the latter uses them and ge manipulated values such as two kinds of control ro this automatic controller, the performance of a coperation was evaluated. As a result, the automatic generated model parameters of a nuclear react to nuclear reactor average temperature and axial power the desired targets during a daily load follow.Keywords: axial power distribution, model reactor temperature, system identification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21667914 Effect of Temperature on Specific Retention Volumes of Selected Volatile Organic Compounds Using the Gas - Liquid Chromatographic Technique Revisited
Authors: Edison Muzenda, Ayo S. Afolabi
Abstract:
This paper is a continuation of our interest in the influence of temperature on specific retention volumes and the resulting infinite dilution activity coefficients. This has a direct effect in the design of absorption and stripping columns for the abatement of volatile organic compounds. The interaction of 13 volatile organic compounds (VOCs) with polydimethylsiloxane (PDMS) at varying temperatures was studied by gas liquid chromatography (GLC). Infinite dilution activity coefficients and specific retention volumes obtained in this study were found to be in agreement with those obtained from static headspace and group contribution methods by the authors as well as literature values for similar systems. Temperature variation also allows for transport calculations for different seasons. The results of this work confirm that PDMS is well suited for the scrubbing of VOCs from waste gas streams. Plots of specific retention volumes against temperature gave linear van-t Hoff plots.
Keywords: Specific retention volume, Waste gas streams, specific retention, infinite dilution, abatement, transport.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19567913 Rheological and Computational Analysis of Crude Oil Transportation
Authors: Praveen Kumar, Satish Kumar, Jashanpreet Singh
Abstract:
Transportation of unrefined crude oil from the production unit to a refinery or large storage area by a pipeline is difficult due to the different properties of crude in various areas. Thus, the design of a crude oil pipeline is a very complex and time consuming process, when considering all the various parameters. There were three very important parameters that play a significant role in the transportation and processing pipeline design; these are: viscosity profile, temperature profile and the velocity profile of waxy crude oil through the crude oil pipeline. Knowledge of the Rheological computational technique is required for better understanding the flow behavior and predicting the flow profile in a crude oil pipeline. From these profile parameters, the material and the emulsion that is best suited for crude oil transportation can be predicted. Rheological computational fluid dynamic technique is a fast method used for designing flow profile in a crude oil pipeline with the help of computational fluid dynamics and rheological modeling. With this technique, the effect of fluid properties including shear rate range with temperature variation, degree of viscosity, elastic modulus and viscous modulus was evaluated under different conditions in a transport pipeline. In this paper, two crude oil samples was used, as well as a prepared emulsion with natural and synthetic additives, at different concentrations ranging from 1,000 ppm to 3,000 ppm. The rheological properties was then evaluated at a temperature range of 25 to 60 °C and which additive was best suited for transportation of crude oil is determined. Commercial computational fluid dynamics (CFD) has been used to generate the flow, velocity and viscosity profile of the emulsions for flow behavior analysis in crude oil transportation pipeline. This rheological CFD design can be further applied in developing designs of pipeline in the future.
Keywords: Natural surfactant, crude oil, rheology, CFD, viscosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16767912 An Experimental Investigation on the Droplet Behavior Impacting a Hot Surface above the Leidenfrost Temperature
Authors: Khaleel Sami Hamdan, Dong-Eok Kim, Sang-Ki Moon
Abstract:
An appropriate model to predict the size of the droplets resulting from the break-up with the structures will help in a better understanding and modeling of the two-phase flow calculations in the simulation of a reactor core loss-of-coolant accident (LOCA). A droplet behavior impacting on a hot surface above the Leidenfrost temperature was investigated. Droplets of known size and velocity were impacted to an inclined plate of hot temperature, and the behavior of the droplets was observed by a high-speed camera. It was found that for droplets of Weber number higher than a certain value, the higher the Weber number of the droplet the smaller the secondary droplets. The COBRA-TF model over-predicted the measured secondary droplet sizes obtained by the present experiment. A simple model for the secondary droplet size was proposed using the mass conservation equation. The maximum spreading diameter of the droplets was also compared to previous correlations and a fairly good agreement was found. A better prediction of the heat transfer in the case of LOCA can be obtained with the presented model.
Keywords: Break-up, droplet, impact, inclined hot plate, Leidenfrost temperature, LOCA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23717911 Heat Transfer and Entropy Generation in a Partial Porous Channel Using LTNE and Exothermicity/Endothermicity Features
Authors: Mohsen Torabi, Nader Karimi, Kaili Zhang
Abstract:
This work aims to provide a comprehensive study on the heat transfer and entropy generation rates of a horizontal channel partially filled with a porous medium which experiences internal heat generation or consumption due to exothermic or endothermic chemical reaction. The focus has been given to the local thermal non-equilibrium (LTNE) model. The LTNE approach helps us to deliver more accurate data regarding temperature distribution within the system and accordingly to provide more accurate Nusselt number and entropy generation rates. Darcy-Brinkman model is used for the momentum equations, and constant heat flux is assumed for boundary conditions for both upper and lower surfaces. Analytical solutions have been provided for both velocity and temperature fields. By incorporating the investigated velocity and temperature formulas into the provided fundamental equations for the entropy generation, both local and total entropy generation rates are plotted for a number of cases. Bifurcation phenomena regarding temperature distribution and interface heat flux ratio are observed. It has been found that the exothermicity or endothermicity characteristic of the channel does have a considerable impact on the temperature fields and entropy generation rates.
Keywords: Entropy generation, exothermicity, endothermicity, forced convection, local thermal non-equilibrium, analytical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8747910 Influence of Reaction Temperature and Water Content on Wheat Straw Pyrolysis
Authors: N.Ibrahim, Peter A. Jensen, K. Dam-Johansen, Roshafima.R. Ali, Rafiziana.M. Kasmani
Abstract:
The aim of this study was to investigate the influence of reaction temperature and wheat straw moisture content on the pyrolysis product yields, in the temperature range of 475-575 °C. Samples of straw with moisture contents from 1.5 wt % to 15.0 wt % were fed to a bench scale Pyrolysis Centrifuge Reactor (PCR). The experimental results show that the changes in straw moisture content have no significant effect on the distribution of pyrolysis product yields. The maximum bio-oil yields approximately 60 (wt %, on dry ash free feedstock basis) was observed around 525 °C - 550 °C for all straw moisture levels. The water content in the wet straw bio-oil was the highest. The heating value of bio-oil and solid char were measured and the percentages of its energy distribution were calculated. The energy distributions of bio-oil, char and gas were 56- 69 % 24-33 %, and 2-19 %, respectively.Keywords: Flash pyrolysis, moisture content, wheat straw, biooil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32997909 Stress Relaxation of Date at Different Temperature and Moisture Content of Product: A New Approach
Authors: D. Zare, M. Alirezaei, S.M. Nassiri
Abstract:
Iran is one of the greatest producers of date in the world. However due to lack of information about its viscoelastic properties, much of the production downgraded during harvesting and postharvesting processes. In this study the effect of temperature and moisture content of product were investigated on stress relaxation characteristics. Therefore, the freshly harvested date (kabkab) at tamar stage were put in controlled environment chamber to obtain different temperature levels (25, 35, 45, and 55 0C) and moisture contents (8.5, 8.7, 9.2, 15.3, 20, 32.2 %d.b.). A texture analyzer TAXT2 (Stable Microsystems, UK) was used to apply uniaxial compression tests. A chamber capable to control temperature was designed and fabricated around the plunger of texture analyzer to control the temperature during the experiment. As a new approach a CCD camera (A4tech, 30 fps) was mounted on a cylindrical glass probe to scan and record contact area between date and disk. Afterwards, pictures were analyzed using image processing toolbox of Matlab software. Individual date fruit was uniaxially compressed at speed of 1 mm/s. The constant strain of 30% of thickness of date was applied to the horizontally oriented fruit. To select a suitable model for describing stress relaxation of date, experimental data were fitted with three famous stress relaxation models including the generalized Maxwell, Nussinovitch, and Pelege. The constant in mentioned model were determined and correlated with temperature and moisture content of product using non-linear regression analysis. It was found that Generalized Maxwell and Nussinovitch models appropriately describe viscoelastic characteristics of date fruits as compared to Peleg mode.Keywords: Stress relaxation, Viscoelastic properties, Date, Texture analyzer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19137908 Modal Approach for Decoupling Damage Cost Dependencies in Building Stories
Authors: Haj Najafi Leila, Tehranizadeh Mohsen
Abstract:
Dependencies between diverse factors involved in probabilistic seismic loss evaluation are recognized to be an imperative issue in acquiring accurate loss estimates. Dependencies among component damage costs could be taken into account considering two partial distinct states of independent or perfectly-dependent for component damage states; however, in our best knowledge, there is no available procedure to take account of loss dependencies in story level. This paper attempts to present a method called "modal cost superposition method" for decoupling story damage costs subjected to earthquake ground motions dealt with closed form differential equations between damage cost and engineering demand parameters which should be solved in complex system considering all stories' cost equations by the means of the introduced "substituted matrixes of mass and stiffness". Costs are treated as probabilistic variables with definite statistic factors of median and standard deviation amounts and a presumed probability distribution. To supplement the proposed procedure and also to display straightforwardness of its application, one benchmark study has been conducted. Acceptable compatibility has been proven for the estimated damage costs evaluated by the new proposed modal and also frequently used stochastic approaches for entire building; however, in story level, insufficiency of employing modification factor for incorporating occurrence probability dependencies between stories has been revealed due to discrepant amounts of dependency between damage costs of different stories. Also, more dependency contribution in occurrence probability of loss could be concluded regarding more compatibility of loss results in higher stories than the lower ones, whereas reduction in incorporation portion of cost modes provides acceptable level of accuracy and gets away from time consuming calculations including some limited number of cost modes in high mode situation.
Keywords: Dependency, story-cost, cost modes, engineering demand parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10187907 The Optimization of Engine Mounting Parts Using Hot-Cold Forging Technology
Authors: D. H. Park, Y. H. Tak, H. H. Kwon, G. J. Kwon, H. G. Kim
Abstract:
The purpose of this study is to develop a forging process of automotive parts that satisfies the deformation characteristics. The analyses of temperature variation and deformation behavior of the material are important to obtain the optimal forging products. The hot compression test was carried out to know formability at high temperature. In order to define the optimum forging conditions including material temperature, strain and forging load, the commercial finite element analysis code was used to simulate the forging procedure of engine mounting parts. Experimental results were compared with the simulation results by finite element analysis. Test results were in good agreement with the simulations.
Keywords: Cold forging, hot forging, engine mounting, automotive parts, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16447906 Development of an Internet of Things System for Smart Crop Production
Authors: O. M. Olanrewaju, F. O. Echobu, A. G. Adesoji, E. D. Ajik, J. N. Ndabula, S. Luka
Abstract:
Nutrients are required for any soil with which plants thrive to improve efficient growth and productivity. Amongst these nutrients required for proper plant productivity are nitrogen, phosphorus and potassium (NPK). Due to factors like leaching, nutrient uptake by plants, soil erosion and evaporation, these elements tend to be in low quantity and the need to replenish them arises. However, this replenishment of soil nutrients cannot be done without a timely soil test to enable farmers to know the amount of each element in short quantity and evaluate the amount required to be added. Though wet soil analysis is good, it comes with a lot of challenges ranging from soil test gargets availability to the technical knowledge of how to conduct such soil tests by the common farmer. The Internet of Things test kit was developed to fill in the gaps created by wet soil analysis, as it can test for NPK, soil temperature and soil moisture in a given soil at the time of test. In this implementation, a sample test was carried out within 0.2 hectares of land divided into smaller plots. The kits performed adequately well, as the range of values obtained across the segments was within a very close range.
Keywords: Internet of things, soil nutrients, test kit, soil temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 677905 Rapid Expansion Supercritical Solution (RESS) Carbon Dioxide as an Environmental Friendly Method for Ginger Rhizome Solid Oil Particles Formation
Authors: N. A. Zainuddin, I. Norhuda, I. S. Adeib, A. N. Mustapa, S. H. Sarijo
Abstract:
Recently, RESS (Rapid Expansion Supercritical Solution) method has been used by researchers to produce fine particles for pharmaceutical drug substances. Since RESS technology acknowledges a lot of benefits compare to conventional method of ginger extraction, it is suggested to use this method to explore particle formation of bioactive compound from powder ginger. The objective of this research is to produce direct solid oil particles formation from ginger rhizome which contains valuable compounds by using RESS-CO2 process. RESS experiments were carried using extraction pressure of 3000, 4000, 5000, 6000 and 7000psi and at different extraction temperature of 40, 45, 50, 55, 60, 65 and 70°C for 40 minutes extraction time and contant flowrate (24ml/min). From the studies conducted, it was found that at extraction pressure 5000psi and temperature 40°C, the smallest particle size obtained was 2.22μm on 99 % reduction from the original size of 370μm.
Keywords: Particle size, RESS, solid oil particle, supercritical carbon dioxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 972