Search results for: Heuristic algorithms.
1109 Cloud Computing Initiative using Modified Ant Colony Framework
Authors: Soumya Banerjee, Indrajit Mukherjee, P.K. Mahanti
Abstract:
Scheduling of diversified service requests in distributed computing is a critical design issue. Cloud is a type of parallel and distributed system consisting of a collection of interconnected and virtual computers. It is not only the clusters and grid but also it comprises of next generation data centers. The paper proposes an initial heuristic algorithm to apply modified ant colony optimization approach for the diversified service allocation and scheduling mechanism in cloud paradigm. The proposed optimization method is aimed to minimize the scheduling throughput to service all the diversified requests according to the different resource allocator available under cloud computing environment.Keywords: Ant Colony, Cloud Computing, Grid, Resource allocator, Service Request.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27671108 An Augmented Beam-search Based Algorithm for the Strip Packing Problem
Authors: Hakim Akeb, Mhand Hifi
Abstract:
In this paper, the use of beam search and look-ahead strategies for solving the strip packing problem (SPP) is investigated. Given a strip of fixed width W, unlimited length L, and a set of n circular pieces of known radii, the objective is to determine the minimum length of the initial strip that packs all the pieces. An augmented algorithm which combines beam search and a look-ahead strategies is proposed. The look-ahead is used in order to evaluate the nodes at each level of the tree search. The best nodes are then retained for branching. The computational investigation showed that the proposed augmented algorithm is able to improve the best known solutions of the literature on most instances used.
Keywords: Combinatorial optimization, cutting and packing, beam search, heuristic, look-ahead strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13571107 Applying Lagrangian Relaxation-Based Algorithm for the Airline Coordinated Flight Scheduling Problems
Authors: Chia-Hung Chen, Shangyao Yan
Abstract:
The solution algorithm, based on Lagrangian relaxation, a sub-gradient method and a heuristic to find the upper bound of the solution, is proposed to solve the coordinated fleet routing and flight scheduling problems. Numerical tests are performed to evaluate the proposed algorithm using real operating data from two Taiwan airlines. The test results indicate that the solution algorithm is a significant improvement over those obtained with CPLEX, consequently they could be useful for allied airlines to solve coordinated fleet routing and flight scheduling problems.
Keywords: Coordinated flight scheduling, multiple commodity network flow problem, Lagrangian relaxation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18141106 Robot Exploration and Navigation in Unseen Environments Using Deep Reinforcement Learning
Authors: Romisaa Ali
Abstract:
This paper presents a comparison between twin-delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic (SAC) reinforcement learning algorithms in the context of training robust navigation policies for Jackal robots. By leveraging an open-source framework and custom motion control environments, the study evaluates the performance, robustness, and transferability of the trained policies across a range of scenarios. The primary focus of the experiments is to assess the training process, the adaptability of the algorithms, and the robot’s ability to navigate in previously unseen environments. Moreover, the paper examines the influence of varying environment complexities on the learning process and the generalization capabilities of the resulting policies. The results of this study aim to inform and guide the development of more efficient and practical reinforcement learning-based navigation policies for Jackal robots in real-world scenarios.
Keywords: Jackal robot environments, reinforcement learning, TD3, SAC, robust navigation, transferability, Custom Environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 671105 Modeling of the Process Parameters using Soft Computing Techniques
Authors: Miodrag T. Manić, Dejan I. Tanikić, Miloš S. Stojković, Dalibor M. ðenadić
Abstract:
The design of technological procedures for manufacturing certain products demands the definition and optimization of technological process parameters. Their determination depends on the model of the process itself and its complexity. Certain processes do not have an adequate mathematical model, thus they are modeled using heuristic methods. First part of this paper presents a state of the art of using soft computing techniques in manufacturing processes from the perspective of applicability in modern CAx systems. Methods of artificial intelligence which can be used for this purpose are analyzed. The second part of this paper shows some of the developed models of certain processes, as well as their applicability in the actual calculation of parameters of some technological processes within the design system from the viewpoint of productivity.Keywords: fuzzy logic, manufacturing, neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19101104 Multi Objective Micro Genetic Algorithm for Combine and Reroute Problem
Authors: Soottipoom Yaowiwat, Manoj Lohatepanont, Proadpran Punyabukkana
Abstract:
Several approaches such as linear programming, network modeling, greedy heuristic and decision support system are well-known approaches in solving irregular airline operation problem. This paper presents an alternative approach based on Multi Objective Micro Genetic Algorithm. The aim of this research is to introduce the concept of Multi Objective Micro Genetic Algorithm as a tool to solve irregular airline operation, combine and reroute problem. The experiment result indicated that the model could obtain optimal solutions within a few second.Keywords: Irregular Airline Operation, Combine and RerouteRoutine, Genetic Algorithm, Micro Genetic Algorithm, Multi ObjectiveOptimization, Evolutionary Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16431103 A Transform Domain Function Controlled VSSLMS Algorithm for Sparse System Identification
Authors: Cemil Turan, Mohammad Shukri Salman
Abstract:
The convergence rate of the least-mean-square (LMS) algorithm deteriorates if the input signal to the filter is correlated. In a system identification problem, this convergence rate can be improved if the signal is white and/or if the system is sparse. We recently proposed a sparse transform domain LMS-type algorithm that uses a variable step-size for a sparse system identification. The proposed algorithm provided high performance even if the input signal is highly correlated. In this work, we investigate the performance of the proposed TD-LMS algorithm for a large number of filter tap which is also a critical issue for standard LMS algorithm. Additionally, the optimum value of the most important parameter is calculated for all experiments. Moreover, the convergence analysis of the proposed algorithm is provided. The performance of the proposed algorithm has been compared to different algorithms in a sparse system identification setting of different sparsity levels and different number of filter taps. Simulations have shown that the proposed algorithm has prominent performance compared to the other algorithms.Keywords: Adaptive filtering, sparse system identification, VSSLMS algorithm, TD-LMS algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10001102 Sparse Networks-Based Speedup Technique for Proteins Betweenness Centrality Computation
Authors: Razvan Bocu, Dr Sabin Tabirca
Abstract:
The study of proteomics reached unexpected levels of interest, as a direct consequence of its discovered influence over some complex biological phenomena, such as problematic diseases like cancer. This paper presents the latest authors- achievements regarding the analysis of the networks of proteins (interactome networks), by computing more efficiently the betweenness centrality measure. The paper introduces the concept of betweenness centrality, and then describes how betweenness computation can help the interactome net- work analysis. Current sequential implementations for the between- ness computation do not perform satisfactory in terms of execution times. The paper-s main contribution is centered towards introducing a speedup technique for the betweenness computation, based on modified shortest path algorithms for sparse graphs. Three optimized generic algorithms for betweenness computation are described and implemented, and their performance tested against real biological data, which is part of the IntAct dataset.Keywords: Betweenness centrality, interactome networks, protein-protein interactions, sub-communities, sparse networks, speedup tech-nique, IntAct.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15071101 Simulation Modeling of Manufacturing Systems for the Serial Route and the Parallel One
Authors: Tadeusz Witkowski, Paweł Antczak, Arkadiusz Antczak
Abstract:
In the paper we discuss the influence of the route flexibility degree, the open rate of operations and the production type coefficient on makespan. The flexible job-open shop scheduling problem FJOSP (an extension of the classical job shop scheduling) is analyzed. For the analysis of the production process we used a hybrid heuristic of the GRASP (greedy randomized adaptive search procedure) with simulated annealing algorithm. Experiments with different levels of factors have been considered and compared. The GRASP+SA algorithm has been tested and illustrated with results for the serial route and the parallel one.Keywords: Makespan, open shop, route flexibility, serial and parallel route, simulation modeling, type of production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18141100 Delaunay Triangulations Efficiency for Conduction-Convection Problems
Authors: Bashar Albaalbaki, Roger E. Khayat
Abstract:
This work is a comparative study on the effect of Delaunay triangulation algorithms on discretization error for conduction-convection conservation problems. A structured triangulation and many unstructured Delaunay triangulations using three popular algorithms for node placement strategies are used. The numerical method employed is the vertex-centered finite volume method. It is found that when the computational domain can be meshed using a structured triangulation, the discretization error is lower for structured triangulations compared to unstructured ones for only low Peclet number values, i.e. when conduction is dominant. However, as the Peclet number is increased and convection becomes more significant, the unstructured triangulations reduce the discretization error. Also, no statistical correlation between triangulation angle extremums and the discretization error is found using 200 samples of randomly generated Delaunay and non-Delaunay triangulations. Thus, the angle extremums cannot be an indicator of the discretization error on their own and need to be combined with other triangulation quality measures, which is the subject of further studies.
Keywords: Conduction-convection problems, Delaunay triangulation, discretization error, finite volume method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561099 Improving the Performances of the nMPRA Architecture by Implementing Specific Functions in Hardware
Authors: Ionel Zagan, Vasile Gheorghita Gaitan
Abstract:
Minimizing the response time to asynchronous events in a real-time system is an important factor in increasing the speed of response and an interesting concept in designing equipment fast enough for the most demanding applications. The present article will present the results regarding the validation of the nMPRA (Multi Pipeline Register Architecture) architecture using the FPGA Virtex-7 circuit. The nMPRA concept is a hardware processor with the scheduler implemented at the processor level; this is done without affecting a possible bus communication, as is the case with the other CPU solutions. The implementation of static or dynamic scheduling operations in hardware and the improvement of handling interrupts and events by the real-time executive described in the present article represent a key solution for eliminating the overhead of the operating system functions. The nMPRA processor is capable of executing a preemptive scheduling, using various algorithms without a software scheduler. Therefore, we have also presented various scheduling methods and algorithms used in scheduling the real-time tasks.
Keywords: nMPRA architecture, pipeline processor, preemptive scheduling, real-time system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8791098 Complexity Analysis of Some Known Graph Coloring Instances
Authors: Jeffrey L. Duffany
Abstract:
Graph coloring is an important problem in computer science and many algorithms are known for obtaining reasonably good solutions in polynomial time. One method of comparing different algorithms is to test them on a set of standard graphs where the optimal solution is already known. This investigation analyzes a set of 50 well known graph coloring instances according to a set of complexity measures. These instances come from a variety of sources some representing actual applications of graph coloring (register allocation) and others (mycieleski and leighton graphs) that are theoretically designed to be difficult to solve. The size of the graphs ranged from ranged from a low of 11 variables to a high of 864 variables. The method used to solve the coloring problem was the square of the adjacency (i.e., correlation) matrix. The results show that the most difficult graphs to solve were the leighton and the queen graphs. Complexity measures such as density, mobility, deviation from uniform color class size and number of block diagonal zeros are calculated for each graph. The results showed that the most difficult problems have low mobility (in the range of .2-.5) and relatively little deviation from uniform color class size.Keywords: graph coloring, complexity, algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14011097 Improvement in Power Transformer Intelligent Dissolved Gas Analysis Method
Authors: S. Qaedi, S. Seyedtabaii
Abstract:
Non-Destructive evaluation of in-service power transformer condition is necessary for avoiding catastrophic failures. Dissolved Gas Analysis (DGA) is one of the important methods. Traditional, statistical and intelligent DGA approaches have been adopted for accurate classification of incipient fault sources. Unfortunately, there are not often enough faulty patterns required for sufficient training of intelligent systems. By bootstrapping the shortcoming is expected to be alleviated and algorithms with better classification success rates to be obtained. In this paper the performance of an artificial neural network, K-Nearest Neighbour and support vector machine methods using bootstrapped data are detailed and shown that while the success rate of the ANN algorithms improves remarkably, the outcome of the others do not benefit so much from the provided enlarged data space. For assessment, two databases are employed: IEC TC10 and a dataset collected from reported data in papers. High average test success rate well exhibits the remarkable outcome.Keywords: Dissolved gas analysis, Transformer incipient fault, Artificial Neural Network, Support Vector Machine (SVM), KNearest Neighbor (KNN)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27391096 Learning Algorithms for Fuzzy Inference Systems Composed of Double- and Single-Input Rule Modules
Authors: Hirofumi Miyajima, Kazuya Kishida, Noritaka Shigei, Hiromi Miyajima
Abstract:
Most of self-tuning fuzzy systems, which are automatically constructed from learning data, are based on the steepest descent method (SDM). However, this approach often requires a large convergence time and gets stuck into a shallow local minimum. One of its solutions is to use fuzzy rule modules with a small number of inputs such as DIRMs (Double-Input Rule Modules) and SIRMs (Single-Input Rule Modules). In this paper, we consider a (generalized) DIRMs model composed of double and single-input rule modules. Further, in order to reduce the redundant modules for the (generalized) DIRMs model, pruning and generative learning algorithms for the model are suggested. In order to show the effectiveness of them, numerical simulations for function approximation, Box-Jenkins and obstacle avoidance problems are performed.Keywords: Box-Jenkins’s problem, Double-input rule module, Fuzzy inference model, Obstacle avoidance, Single-input rule module.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19571095 Model to Support Synchronous and Asynchronous in the Learning Process with An Adaptive Hypermedia System
Authors: Francisca Grimón, Marylin Giugni, Josep Monguet F., Joaquín Fernández, Luis León G.
Abstract:
In blended learning environments, the Internet can be combined with other technologies. The aim of this research was to design, introduce and validate a model to support synchronous and asynchronous activities by managing content domains in an Adaptive Hypermedia System (AHS). The application is based on information recovery techniques, clustering algorithms and adaptation rules to adjust the user's model to contents and objects of study. This system was applied to blended learning in higher education. The research strategy used was the case study method. Empirical studies were carried out on courses at two universities to validate the model. The results of this research show that the model had a positive effect on the learning process. The students indicated that the synchronous and asynchronous scenario is a good option, as it involves a combination of work with the lecturer and the AHS. In addition, they gave positive ratings to the system and stated that the contents were adapted to each user profile.
Keywords: Blended Learning, System Adaptive, Model, Clustering Algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18521094 Low Overhead Dynamic Channel Selection with Cluster-Based Spatial-Temporal Station Reporting in Wireless Networks
Authors: Zeyad Abdelmageid, Xianbin Wang
Abstract:
Choosing the operational channel for a WLAN access point (AP) in WLAN networks has been a static channel assignment process initiated by the user during the deployment process of the AP, which fails to cope with the dynamic conditions of the assigned channel at the station side afterwards. However, the dramatically growing number of Wi-Fi APs and stations operating in the unlicensed band has led to dynamic, distributed and often severe interference. This highlights the urgent need for the AP to dynamically select the best overall channel of operation for the basic service set (BSS) by considering the distributed and changing channel conditions at all stations. Consequently, dynamic channel selection algorithms which consider feedback from the station side have been developed. Despite the significant performance improvement, existing channel selection algorithms suffer from very high feedback overhead. Feedback latency from the STAs, due the high overhead, can cause the eventually selected channel to no longer be optimal for operation due to the dynamic sharing nature of the unlicensed band. This has inspired us to develop our own dynamic channel selection algorithm with reduced overhead through the proposed low-overhead, cluster-based station reporting mechanism. The main idea behind the cluster-based station reporting is the observation that STAs which are very close to each other tend to have very similar channel conditions. Instead of requesting each STA to report on every candidate channel while causing high overhead, the AP divides STAs into clusters then assigns each STA in each cluster one channel to report feedback on. With proper design of the cluster based reporting, the AP does not lose any information about the channel conditions at the station side while reducing feedback overhead. The simulation results show equal performance and at times better performance with a fraction of the overhead. We believe that this algorithm has great potential in designing future dynamic channel selection algorithms with low overhead.
Keywords: Channel assignment, Wi-Fi networks, clustering, DBSCAN, overhead.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3841093 Experimental Results about the Dynamics of the Generalized Belief Propagation Used on LDPC Codes
Authors: Jean-Christophe Sibel, Sylvain Reynal, David Declercq
Abstract:
In the context of channel coding, the Generalized Belief Propagation (GBP) is an iterative algorithm used to recover the transmission bits sent through a noisy channel. To ensure a reliable transmission, we apply a map on the bits, that is called a code. This code induces artificial correlations between the bits to send, and it can be modeled by a graph whose nodes are the bits and the edges are the correlations. This graph, called Tanner graph, is used for most of the decoding algorithms like Belief Propagation or Gallager-B. The GBP is based on a non unic transformation of the Tanner graph into a so called region-graph. A clear advantage of the GBP over the other algorithms is the freedom in the construction of this graph. In this article, we explain a particular construction for specific graph topologies that involves relevant performance of the GBP. Moreover, we investigate the behavior of the GBP considered as a dynamic system in order to understand the way it evolves in terms of the time and in terms of the noise power of the channel. To this end we make use of classical measures and we introduce a new measure called the hyperspheres method that enables to know the size of the attractors.
Keywords: iterative decoder, LDPC, region-graph, chaos.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16481092 DACS3: Embedding Individual Ant Behavior in Ant Colony System
Authors: Zulaiha Ali Othman, Helmi Md Rais, Abdul Razak Hamdan
Abstract:
Ants are fascinating creatures that demonstrate the ability to find food and bring it back to their nest. Their ability as a colony, to find paths to food sources has inspired the development of algorithms known as Ant Colony Systems (ACS). The principle of cooperation forms the backbone of such algorithms, commonly used to find solutions to problems such as the Traveling Salesman Problem (TSP). Ants communicate to each other through chemical substances called pheromones. Modeling individual ants- ability to manipulate this substance can help an ACS find the best solution. This paper introduces a Dynamic Ant Colony System with threelevel updates (DACS3) that enhance an existing ACS. Experiments were conducted to observe single ant behavior in a colony of Malaysian House Red Ants. Such behavior was incorporated into the DACS3 algorithm. We benchmark the performance of DACS3 versus DACS on TSP instances ranging from 14 to 100 cities. The result shows that the DACS3 algorithm can achieve shorter distance in most cases and also performs considerably faster than DACS.Keywords: Dynamic Ant Colony System (DACS), TravelingSalesmen Problem (TSP), Optimization, Swarm Intelligent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13181091 Analysis of Genotype Size for an Evolvable Hardware System
Authors: Emanuele Stomeo, Tatiana Kalganova, Cyrille Lambert
Abstract:
The evolution of logic circuits, which falls under the heading of evolvable hardware, is carried out by evolutionary algorithms. These algorithms are able to automatically configure reconfigurable devices. One of main difficulties in developing evolvable hardware with the ability to design functional electrical circuits is to choose the most favourable EA features such as fitness function, chromosome representations, population size, genetic operators and individual selection. Until now several researchers from the evolvable hardware community have used and tuned these parameters and various rules on how to select the value of a particular parameter have been proposed. However, to date, no one has presented a study regarding the size of the chromosome representation (circuit layout) to be used as a platform for the evolution in order to increase the evolvability, reduce the number of generations and optimize the digital logic circuits through reducing the number of logic gates. In this paper this topic has been thoroughly investigated and the optimal parameters for these EA features have been proposed. The evolution of logic circuits has been carried out by an extrinsic evolvable hardware system which uses (1+λ) evolution strategy as the core of the evolution.
Keywords: Evolvable hardware, genotype size, computational intelligence, design of logic circuits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16611090 Effect of Personality Traits on Classification of Political Orientation
Authors: Vesile Evrim, Aliyu Awwal
Abstract:
Today, there is a large number of political transcripts available on the Web to be mined and used for statistical analysis, and product recommendations. As the online political resources are used for various purposes, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do an automatic classification are based on different features that are classified under categories such as Linguistic, Personality etc. Considering the ideological differences between Liberals and Conservatives, in this paper, the effect of Personality traits on political orientation classification is studied. The experiments in this study were based on the correlation between LIWC features and the BIG Five Personality traits. Several experiments were conducted using Convote U.S. Congressional- Speech dataset with seven benchmark classification algorithms. The different methodologies were applied on several LIWC feature sets that constituted by 8 to 64 varying number of features that are correlated to five personality traits. As results of experiments, Neuroticism trait was obtained to be the most differentiating personality trait for classification of political orientation. At the same time, it was observed that the personality trait based classification methodology gives better and comparable results with the related work.Keywords: Politics, personality traits, LIWC, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21621089 A “Greedy“ Czech Manufacturing Case
Authors: George Cristian Gruia, Michal Kavan
Abstract:
The article describes a case study on one of Czech Republic-s manufacturing middle size enterprises (ME), where due to the European financial crisis, production lines had to be redesigned and optimized in order to minimize the total costs of the production of goods. It is considered an optimization problem of minimizing the total cost of the work load, according to the costs of the possible locations of the workplaces, with an application of the Greedy algorithm and a partial analogy to a Set Packing Problem. The displacement of working tables in a company should be as a one-toone monotone increasing function in order for the total costs of production of the goods to be at minimum. We use a heuristic approach with greedy algorithm for solving this linear optimization problem, regardless the possible greediness which may appear and we apply it in a Czech ME.Keywords: Czech, greedy algorithm, minimize, total costs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16211088 Effects of Introducing Similarity Measures into Artificial Bee Colony Approach for Optimization of Vehicle Routing Problem
Authors: P. Shunmugapriya, S. Kanmani, P. Jude Fredieric, U. Vignesh, J. Reman Justin, K. Vivek
Abstract:
Vehicle Routing Problem (VRP) is a complex combinatorial optimization problem and it is quite difficult to find an optimal solution consisting of a set of routes for vehicles whose total cost is minimum. Evolutionary and swarm intelligent (SI) algorithms play a vital role in solving optimization problems. While the SI algorithms perform search, the diversity between the solutions they exploit is very important. This is because of the need to avoid early convergence and to get an appropriate balance between the exploration and exploitation. Therefore, it is important to check how far the solutions are diverse. In this paper, we measure the similarity between solutions, which ABC exploits while optimizing VRP. The similar solutions found are discarded at the end of the iteration and only unique solutions are passed on to the next iteration. The bees of discarded solutions become scouts and they start searching for new solutions. This process is continued and results show that the solution is optimized at lesser number of iterations but with the overhead of computing similarity in all the iterations. The problem instance from Solomon benchmarked dataset has been used for evaluating the presented methodology.
Keywords: ABC algorithm, vehicle routing problem, optimization, Jaccard’s similarity measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8451087 A Second Look at Gesture-Based Passwords: Usability and Vulnerability to Shoulder-Surfing Attacks
Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier
Abstract:
For security purposes, it is important to detect passwords entered by unauthorized users. With traditional alphanumeric passwords, if the content of a password is acquired and correctly entered by an intruder, it is impossible to differentiate the password entered by the intruder from those entered by the authorized user because the password entries contain precisely the same character set. However, no two entries for the gesture-based passwords, even those entered by the person who created the password, will be identical. There are always variations between entries, such as the shape and length of each stroke, the location of each stroke, and the speed of drawing. It is possible that passwords entered by the unauthorized user contain higher levels of variations when compared with those entered by the authorized user (the creator). The difference in the levels of variations may provide cues to detect unauthorized entries. To test this hypothesis, we designed an empirical study, collected and analyzed the data with the help of machine-learning algorithms. The results of the study are significant.
Keywords: Authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6151086 Combined Source and Channel Coding for Image Transmission Using Enhanced Turbo Codes in AWGN and Rayleigh Channel
Authors: N. S. Pradeep, M. Balasingh Moses, V. Aarthi
Abstract:
Any signal transmitted over a channel is corrupted by noise and interference. A host of channel coding techniques has been proposed to alleviate the effect of such noise and interference. Among these Turbo codes are recommended, because of increased capacity at higher transmission rates and superior performance over convolutional codes. The multimedia elements which are associated with ample amount of data are best protected by Turbo codes. Turbo decoder employs Maximum A-posteriori Probability (MAP) and Soft Output Viterbi Decoding (SOVA) algorithms. Conventional Turbo coded systems employ Equal Error Protection (EEP) in which the protection of all the data in an information message is uniform. Some applications involve Unequal Error Protection (UEP) in which the level of protection is higher for important information bits than that of other bits. In this work, enhancement to the traditional Log MAP decoding algorithm is being done by using optimized scaling factors for both the decoders. The error correcting performance in presence of UEP in Additive White Gaussian Noise channel (AWGN) and Rayleigh fading are analyzed for the transmission of image with Discrete Cosine Transform (DCT) as source coding technique. This paper compares the performance of log MAP, Modified log MAP (MlogMAP) and Enhanced log MAP (ElogMAP) algorithms used for image transmission. The MlogMAP algorithm is found to be best for lower Eb/N0 values but for higher Eb/N0 ElogMAP performs better with optimized scaling factors. The performance comparison of AWGN with fading channel indicates the robustness of the proposed algorithm. According to the performance of three different message classes, class3 would be more protected than other two classes. From the performance analysis, it is observed that ElogMAP algorithm with UEP is best for transmission of an image compared to Log MAP and MlogMAP decoding algorithms.Keywords: AWGN, BER, DCT, Fading, MAP, UEP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16781085 An Edge-based Text Region Extraction Algorithm for Indoor Mobile Robot Navigation
Authors: Jagath Samarabandu, Xiaoqing Liu
Abstract:
Using bottom-up image processing algorithms to predict human eye fixations and extract the relevant embedded information in images has been widely applied in the design of active machine vision systems. Scene text is an important feature to be extracted, especially in vision-based mobile robot navigation as many potential landmarks such as nameplates and information signs contain text. This paper proposes an edge-based text region extraction algorithm, which is robust with respect to font sizes, styles, color/intensity, orientations, and effects of illumination, reflections, shadows, perspective distortion, and the complexity of image backgrounds. Performance of the proposed algorithm is compared against a number of widely used text localization algorithms and the results show that this method can quickly and effectively localize and extract text regions from real scenes and can be used in mobile robot navigation under an indoor environment to detect text based landmarks.
Keywords: Landmarks, mobile robot navigation, scene text, text localization and extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29241084 DACS3:Embedding Individual Ant Behavior in Ant Colony System
Authors: Zulaiha Ali Othman, Helmi Md Rais, Abdul Razak Hamdan
Abstract:
Ants are fascinating creatures that demonstrate the ability to find food and bring it back to their nest. Their ability as a colony, to find paths to food sources has inspired the development of algorithms known as Ant Colony Systems (ACS). The principle of cooperation forms the backbone of such algorithms, commonly used to find solutions to problems such as the Traveling Salesman Problem (TSP). Ants communicate to each other through chemical substances called pheromones. Modeling individual ants- ability to manipulate this substance can help an ACS find the best solution. This paper introduces a Dynamic Ant Colony System with threelevel updates (DACS3) that enhance an existing ACS. Experiments were conducted to observe single ant behavior in a colony of Malaysian House Red Ants. Such behavior was incorporated into the DACS3 algorithm. We benchmark the performance of DACS3 versus DACS on TSP instances ranging from 14 to 100 cities. The result shows that the DACS3 algorithm can achieve shorter distance in most cases and also performs considerably faster than DACS.Keywords: Dynamic Ant Colony System (DACS), Traveling Salesmen Problem (TSP), Optimization, Swarm Intelligent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16141083 Optimized Detection in Multi-Antenna System using Particle Swarm Algorithm
Authors: A. A. Khan, M. Naeem, S. Bashir, S. I. Shah
Abstract:
In this paper we propose a Particle Swarm heuristic optimized Multi-Antenna (MA) system. Efficient MA systems detection is performed using a robust stochastic evolutionary computation algorithm based on movement and intelligence of swarms. This iterative particle swarm optimized (PSO) detector significantly reduces the computational complexity of conventional Maximum Likelihood (ML) detection technique. The simulation results achieved with this proposed MA-PSO detection algorithm show near optimal performance when compared with ML-MA receiver. The performance of proposed detector is convincingly better for higher order modulation schemes and large number of antennas where conventional ML detector becomes non-practical.Keywords: Multi Antenna (MA), Multi-input Multi-output(MIMO), Particle Swarm Optimization (PSO), ML detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15051082 Practical Applications and Connectivity Algorithms in Future Wireless Sensor Networks
Authors: Mohamed K. Watfa
Abstract:
Like any sentient organism, a smart environment relies first and foremost on sensory data captured from the real world. The sensory data come from sensor nodes of different modalities deployed on different locations forming a Wireless Sensor Network (WSN). Embedding smart sensors in humans has been a research challenge due to the limitations imposed by these sensors from computational capabilities to limited power. In this paper, we first propose a practical WSN application that will enable blind people to see what their neighboring partners can see. The challenge is that the actual mapping between the input images to brain pattern is too complex and not well understood. We also study the connectivity problem in 3D/2D wireless sensor networks and propose distributed efficient algorithms to accomplish the required connectivity of the system. We provide a new connectivity algorithm CDCA to connect disconnected parts of a network using cooperative diversity. Through simulations, we analyze the connectivity gains and energy savings provided by this novel form of cooperative diversity in WSNs.Keywords: Wireless Sensor Networks, Pervasive Computing, Eye Vision Application, 3D Connectivity, Clusters, Energy Efficient, Cooperative diversity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16271081 A Heuristic Algorithm Approach for Scheduling of Multi-criteria Unrelated Parallel Machines
Authors: Farhad Kolahan, Vahid Kayvanfar
Abstract:
In this paper we address a multi-objective scheduling problem for unrelated parallel machines. In unrelated parallel systems, the processing cost/time of a given job on different machines may vary. The objective of scheduling is to simultaneously determine the job-machine assignment and job sequencing on each machine. In such a way the total cost of the schedule is minimized. The cost function consists of three components, namely; machining cost, earliness/tardiness penalties and makespan related cost. Such scheduling problem is combinatorial in nature. Therefore, a Simulated Annealing approach is employed to provide good solutions within reasonable computational times. Computational results show that the proposed approach can efficiently solve such complicated problems.
Keywords: Makespan, Parallel machines, Scheduling, Simulated Annealing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16541080 Application of Exact String Matching Algorithms towards SMILES Representation of Chemical Structure
Authors: Ahmad Fadel Klaib, Zurinahni Zainol, Nurul Hashimah Ahamed, Rosma Ahmad, Wahidah Hussin
Abstract:
Bioinformatics and Cheminformatics use computer as disciplines providing tools for acquisition, storage, processing, analysis, integrate data and for the development of potential applications of biological and chemical data. A chemical database is one of the databases that exclusively designed to store chemical information. NMRShiftDB is one of the main databases that used to represent the chemical structures in 2D or 3D structures. SMILES format is one of many ways to write a chemical structure in a linear format. In this study we extracted Antimicrobial Structures in SMILES format from NMRShiftDB and stored it in our Local Data Warehouse with its corresponding information. Additionally, we developed a searching tool that would response to user-s query using the JME Editor tool that allows user to draw or edit molecules and converts the drawn structure into SMILES format. We applied Quick Search algorithm to search for Antimicrobial Structures in our Local Data Ware House.
Keywords: Exact String-matching Algorithms, NMRShiftDB, SMILES Format, Antimicrobial Structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223