Search results for: knowledge complexity
2103 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features
Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi
Abstract:
Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.
Keywords: Causal relation identification, convolutional neural networks, natural Language Processing, Machine Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22572102 Visual Preferences of Elementary School Children with Autism Spectrum Disorder: An Experimental Study
Authors: Larissa Pliska, Isabel Neitzel, Michael Buschermöhle, Olga Kunina-Habenicht, Ute Ritterfeld
Abstract:
Visual preferences, which can be assessed using eye tracking technologies, are considered one of the defining hallmarks of autism spectrum disorder (ASD). Specifically, children with ASD show a decreased preference for social images rather than geometric images compared to typically developed (TD) children. Such differences are already prevalent at a very early age and indicate the severity of the disorder: toddlers with ASD who preferred geometric images when confronted with social and geometric images showed higher ASD symptom severity than toddlers with ASD who showed higher social attention. Furthermore, the complexity of social images (one child playing vs. two children playing together) as well as the mode of stimulus presentation (video or image), are not decisive for the marker. The average age of diagnosis for ASD in Germany is 6.5 years, and visual preference data on this age group are missing. In the present study, we therefore investigated whether visual preferences persist into school age. We examined the visual preferences of 16 boys aged 6 to 11 years with ASD and unimpaired cognition as well as TD children (1:1 matching based on children's age and the parent's level of education) within an experimental setting. Different stimulus presentation formats (images vs. videos) and different levels of stimulus complexity were included. Children with and without ASD received pairs of social and non-social images and video stimuli on a screen while eye movements (i.e., eye position and gaze direction) were recorded. For this specific use case, KIZMO GmbH developed a customized, native iOS app (KIZMO Face-Analyzer) for use on iPads. Neither the format of stimulus presentation nor the complexity of the social images had a significant effect on the visual preference of children with and without ASD in this study. Despite the tendency for a difference between the groups for the video stimuli, there were no significant differences. Overall, no statistical differences in visual preference occurred between boys with and without ASD, suggesting that gaze preference in these groups is similar at elementary school age. One limitation is that the children with ASD were already receiving ASD-specific intervention. The potential of a visual preference task as an indicator of ASD can be emphasized. The article discusses the clinical relevance of this marker in elementary school children.
Keywords: Autism spectrum disorder, eye tracking, hallmark, visual preference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 272101 Testing a Flexible Manufacturing System Facility Production Capacity through Discrete Event Simulation: Automotive Case Study
Authors: Justyna Rybicka, Ashutosh Tiwari, Shane Enticott
Abstract:
In the age of automation and computation aiding manufacturing, it is clear that manufacturing systems have become more complex than ever before. Although technological advances provide the capability to gain more value with fewer resources, sometimes utilisation of the manufacturing capabilities available to organisations is difficult to achieve. Flexible manufacturing systems (FMS) provide a unique capability to manufacturing organisations where there is a need for product range diversification by providing line efficiency through production flexibility. This is very valuable in trend driven production set-ups or niche volume production requirements. Although FMS provides flexible and efficient facilities, its optimal set-up is key in achieving production performance. As many variables are interlinked due to the flexibility provided by the FMS, analytical calculations are not always sufficient to predict the FMS’ performance. Simulation modelling is capable of capturing the complexity and constraints associated with FMS. This paper demonstrates how discrete event simulation (DES) can address complexity in an FMS to optimise the production line performance. A case study of an automotive FMS is presented. The DES model demonstrates different configuration options depending on prioritising objectives: utilisation and throughput. Additionally, this paper provides insight into understanding the impact of system set-up constraints on the FMS performance and demonstrates the exploration into the optimal production set-up.
Keywords: Automotive, capacity performance, discrete event simulation, flexible manufacturing system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29322100 A New Fast Intra Prediction Mode Decision Algorithm for H.264/AVC Encoders
Authors: A. Elyousfi, A. Tamtaoui, E. Bouyakhf
Abstract:
The H.264/AVC video coding standard contains a number of advanced features. Ones of the new features introduced in this standard is the multiple intramode prediction. Its function exploits directional spatial correlation with adjacent block for intra prediction. With this new features, intra coding of H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standard, but computational complexity is increased significantly when brut force rate distortion optimization (RDO) algorithm is used. In this paper, we propose a new fast intra prediction mode decision method for the complexity reduction of H.264 video coding. for luma intra prediction, the proposed method consists of two step: in the first step, we make the RDO for four mode of intra 4x4 block, based the distribution of RDO cost of those modes and the idea that the fort correlation with adjacent mode, we select the best mode of intra 4x4 block. In the second step, we based the fact that the dominating direction of a smaller block is similar to that of bigger block, the candidate modes of 8x8 blocks and 16x16 macroblocks are determined. So, in case of chroma intra prediction, the variance of the chroma pixel values is much smaller than that of luma ones, since our proposed uses only the mode DC. Experimental results show that the new fast intra mode decision algorithm increases the speed of intra coding significantly with negligible loss of PSNR.
Keywords: Intra prediction, H264/AVC, video coding, encodercomplexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25062099 Target Concept Selection by Property Overlap in Ontology Population
Authors: Seong-Bae Park, Sang-Soo Kim, Sewook Oh, Zooyl Zeong, Hojin Lee, Seong Rae Park
Abstract:
An ontology is widely used in many kinds of applications as a knowledge representation tool for domain knowledge. However, even though an ontology schema is well prepared by domain experts, it is tedious and cost-intensive to add instances into the ontology. The most confident and trust-worthy way to add instances into the ontology is to gather instances from tables in the related Web pages. In automatic populating of instances, the primary task is to find the most proper concept among all possible concepts within the ontology for a given table. This paper proposes a novel method for this problem by defining the similarity between the table and the concept using the overlap of their properties. According to a series of experiments, the proposed method achieves 76.98% of accuracy. This implies that the proposed method is a plausible way for automatic ontology population from Web tables.
Keywords: Ontology population, domain knowledge consolidation, target concept selection, property overlap.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17202098 Forecasting US Dollar/Euro Exchange Rate with Genetic Fuzzy Predictor
Authors: R. Mechgoug, A. Titaouine
Abstract:
Fuzzy systems have been successfully used for exchange rate forecasting. However, fuzzy system is very confusing and complex to be designed by an expert, as there is a large set of parameters (fuzzy knowledge base) that must be selected, it is not a simple task to select the appropriate fuzzy knowledge base for an exchange rate forecasting. The researchers often look the effect of fuzzy knowledge base on the performances of fuzzy system forecasting. This paper proposes a genetic fuzzy predictor to forecast the future value of daily US Dollar/Euro exchange rate time’s series. A range of methodologies based on a set of fuzzy predictor’s which allow the forecasting of the same time series, but with a different fuzzy partition. Each fuzzy predictor is built from two stages, where each stage is performed by a real genetic algorithm.
Keywords: Foreign exchange rate, time series forecasting, Fuzzy System, and Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19972097 The Effects of Knowledge Management on Human Capital towards Organizational Innovation
Authors: Wan Norhayate Wan Daud, Fakhrul Anwar Zainol, Maslina Mansor
Abstract:
The study was conducted to produce case studies from the Malaysian public universities stands point East Coast of Malaysia. The aim of this study is to analyze the effects of knowledge management on human capital toward organizational innovation. The focus point of this study is on the management member in the faculties of these three Malaysian Public Universities in the East Coast state of Peninsular Malaysia. In this case, respondents who agreed to further participate in the research will be invited to a one-hour face-to-face semi-structured, in-depth interview. As a result, the sample size for this study was 3 deans of Faculty of Management. Lastly, this study tries to recommend the framework of organizational innovation in Malaysian Public Universities.
Keywords: Human Capital, Knowledge Management, Organizational Innovation, Public University.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33312096 A Two-Stage Expert System for Diagnosis of Leukemia Based on Type-2 Fuzzy Logic
Authors: Ali Akbar Sadat Asl
Abstract:
Diagnosis and deciding about diseases in medical fields is facing innate uncertainty which can affect the whole process of treatment. This decision is made based on expert knowledge and the way in which an expert interprets the patient's condition, and the interpretation of the various experts from the patient's condition may be different. Fuzzy logic can provide mathematical modeling for many concepts, variables, and systems that are unclear and ambiguous and also it can provide a framework for reasoning, inference, control, and decision making in conditions of uncertainty. In systems with high uncertainty and high complexity, fuzzy logic is a suitable method for modeling. In this paper, we use type-2 fuzzy logic for uncertainty modeling that is in diagnosis of leukemia. The proposed system uses an indirect-direct approach and consists of two stages: In the first stage, the inference of blood test state is determined. In this step, we use an indirect approach where the rules are extracted automatically by implementing a clustering approach. In the second stage, signs of leukemia, duration of disease until its progress and the output of the first stage are combined and the final diagnosis of the system is obtained. In this stage, the system uses a direct approach and final diagnosis is determined by the expert. The obtained results show that the type-2 fuzzy expert system can diagnose leukemia with the average accuracy about 97%.
Keywords: Expert system, leukemia, medical diagnosis, type-2 fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10532095 Variable Rough Set Model and Its Knowledge Reduction for Incomplete and Fuzzy Decision Information Systems
Authors: Da-kuan Wei, Xian-zhong Zhou, Dong-jun Xin, Zhi-wei Chen
Abstract:
The information systems with incomplete attribute values and fuzzy decisions commonly exist in practical problems. On the base of the notion of variable precision rough set model for incomplete information system and the rough set model for incomplete and fuzzy decision information system, the variable rough set model for incomplete and fuzzy decision information system is constructed, which is the generalization of the variable precision rough set model for incomplete information system and that of rough set model for incomplete and fuzzy decision information system. The knowledge reduction and heuristic algorithm, built on the method and theory of precision reduction, are proposed.Keywords: Rough set, Incomplete and fuzzy decision information system, Limited valued tolerance relation, Knowledge reduction, Variable rough set model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15852094 Organizational Decision Based on Business Intelligence
Authors: Pejman Hosseinioun, Rose Shayeghi, Ghasem Ghorbani Rostam
Abstract:
Nowadays, obtaining traditional statistics and reports is not adequate for the needs of organizational managers. The managers need to analyze and to transform the raw data into knowledge in the world filled with information. Therefore in this regard various processes have been developed. In the meantime the artificial intelligence-based processes are used and the new topics such as business intelligence and knowledge discovery have emerged. In the current paper it is sought to study the business intelligence and its applications in the organizations.Keywords: Business intelligence, business intelligence infrastructures, business processes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20302093 A Novel SVM-Based OOK Detector in Low SNR Infrared Channels
Authors: J. P. Dubois, O. M. Abdul-Latif
Abstract:
Support Vector Machine (SVM) is a recent class of statistical classification and regression techniques playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM is applied to an infrared (IR) binary communication system with different types of channel models including Ricean multipath fading and partially developed scattering channel with additive white Gaussian noise (AWGN) at the receiver. The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these channel stochastic models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to classical binary signal maximum likelihood detection using a matched filter driven by On-Off keying (OOK) modulation. We found that the performance of SVM is superior to that of the traditional optimal detection schemes used in statistical communication, especially for very low signal-to-noise ratio (SNR) ranges. For large SNR, the performance of the SVM is similar to that of the classical detectors. The implication of these results is that SVM can prove very beneficial to IR communication systems that notoriously suffer from low SNR at the cost of increased computational complexity.
Keywords: Least square-support vector machine, on-off keying, matched filter, maximum likelihood detector, wireless infrared communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19532092 Design of Low Power and High Speed Digital IIR Filter in 45nm with Optimized CSA for Digital Signal Processing Applications
Authors: G. Ramana Murthy, C. Senthilpari, P. Velrajkumar, Lim Tien Sze
Abstract:
In this paper, a design methodology to implement low-power and high-speed 2nd order recursive digital Infinite Impulse Response (IIR) filter has been proposed. Since IIR filters suffer from a large number of constant multiplications, the proposed method replaces the constant multiplications by using addition/subtraction and shift operations. The proposed new 6T adder cell is used as the Carry-Save Adder (CSA) to implement addition/subtraction operations in the design of recursive section IIR filter to reduce the propagation delay. Furthermore, high-level algorithms designed for the optimization of the number of CSA blocks are used to reduce the complexity of the IIR filter. The DSCH3 tool is used to generate the schematic of the proposed 6T CSA based shift-adds architecture design and it is analyzed by using Microwind CAD tool to synthesize low-complexity and high-speed IIR filters. The proposed design outperforms in terms of power, propagation delay, area and throughput when compared with MUX-12T, MCIT-7T based CSA adder filter design. It is observed from the experimental results that the proposed 6T based design method can find better IIR filter designs in terms of power and delay than those obtained by using efficient general multipliers.
Keywords: CSA Full Adder, Delay unit, IIR filter, Low-Power, PDP, Parametric Analysis, Propagation Delay, Throughput, VLSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38142091 M2LGP: Mining Multiple Level Gradual Patterns
Authors: Yogi Satrya Aryadinata, Anne Laurent, Michel Sala
Abstract:
Gradual patterns have been studied for many years as they contain precious information. They have been integrated in many expert systems and rule-based systems, for instance to reason on knowledge such as “the greater the number of turns, the greater the number of car crashes”. In many cases, this knowledge has been considered as a rule “the greater the number of turns → the greater the number of car crashes” Historically, works have thus been focused on the representation of such rules, studying how implication could be defined, especially fuzzy implication. These rules were defined by experts who were in charge to describe the systems they were working on in order to turn them to operate automatically. More recently, approaches have been proposed in order to mine databases for automatically discovering such knowledge. Several approaches have been studied, the main scientific topics being: how to determine what is an relevant gradual pattern, and how to discover them as efficiently as possible (in terms of both memory and CPU usage). However, in some cases, end-users are not interested in raw level knowledge, and are rather interested in trends. Moreover, it may be the case that no relevant pattern can be discovered at a low level of granularity (e.g. city), whereas some can be discovered at a higher level (e.g. county). In this paper, we thus extend gradual pattern approaches in order to consider multiple level gradual patterns. For this purpose, we consider two aggregation policies, namely horizontal and vertical.Keywords: Gradual Pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15002090 Patterns of Sports Supplement Use among Iranian Female Athletes
Authors: A. Golshanraz, L. Hakemi, L. Pourkazemi, E. Dadgostar, F. Moradzandi, R. Tabatabaee, F. Moradi, K. Hosseinihajiagha, N. Jazayeri, H. Abedifar, R. Fouladi, M. Khooban, H. Saboori, M. Kiani, M. Sajedi, E. Karooninejad, S.Moeen, M.Ghavam, F.Beiranvand, S.Mansoori, F.Gheisari, H.Barzegari
Abstract:
Supplement use is common in athletes. Besides their cost, they may have side effects on health and performance. 250 questionnaires were distributed among female athletes (mean age 27.08 years). The questionnaire aimed to explore the frequency, type, believes, attitudes and knowledge regarding dietary supplements. Knowledge was good in 30.3%, fair in 60.2%, and poor in 9.1% of respondents. 65.3% of athletes did not use supplements regularly. The most widely used supplements were vitamins (48.4%), minerals (42.9%), energy supplements (21.3%), and herbals (20.9%). 68.9% of athletes believed in their efficacy. 34.4% experienced performance enhancement and 6.8% of reported side effects. 68.2% reported little knowledge and 60.9% were eager to learn more. In conclusion, many of the female athletes believe in the efficacy of supplements and think they are an unavoidable part of competitive sports. However, their information is not sufficient. We have to stress on education, consulting sessions, and rational prescription.
Keywords: athlete, female, sports, supplement
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17442089 Distributed Coverage Control by Robot Networks in Unknown Environments Using a Modified EM Algorithm
Authors: Mohammadhosein Hasanbeig, Lacra Pavel
Abstract:
In this paper, we study a distributed control algorithm for the problem of unknown area coverage by a network of robots. The coverage objective is to locate a set of targets in the area and to minimize the robots’ energy consumption. The robots have no prior knowledge about the location and also about the number of the targets in the area. One efficient approach that can be used to relax the robots’ lack of knowledge is to incorporate an auxiliary learning algorithm into the control scheme. A learning algorithm actually allows the robots to explore and study the unknown environment and to eventually overcome their lack of knowledge. The control algorithm itself is modeled based on game theory where the network of the robots use their collective information to play a non-cooperative potential game. The algorithm is tested via simulations to verify its performance and adaptability.Keywords: Distributed control, game theory, multi-agent learning, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9732088 A Literature Review on the Effect of Industrial Clusters and the Absorptive Capacity on Innovation
Authors: Enrique Claver Cortés, Bartolomé Marco Lajara, Eduardo Sánchez García, Pedro Seva Larrosa, Encarnación Manresa Marhuenda, Lorena Ruiz Fernández, Esther Poveda Pareja
Abstract:
In recent decades, the analysis of the effects of clustering as an essential factor for the development of innovations and the competitiveness of enterprises has raised great interest in different areas. Nowadays, companies have access to almost all tangible and intangible resources located and/or developed in any country in the world. However, despite the obvious advantages that this situation entails for companies, their geographical location has shown itself, increasingly clearly, to be a fundamental factor that positively influences their innovative performance and competitiveness. Industrial clusters could represent a unique level of analysis, positioned between the individual company and the industry, which makes them an ideal unit of analysis to determine the effects derived from company membership of a cluster. Also, the absorptive capacity (hereinafter 'AC') can mediate the process of innovation development by companies located in a cluster. The transformation and exploitation of knowledge could have a mediating effect between knowledge acquisition and innovative performance. The main objective of this work is to determine the key factors that affect the degree of generation and use of knowledge from the environment by companies and, consequently, their innovative performance and competitiveness. The elements analyzed are the companies' membership of a cluster and the AC. To this end, 30 most relevant papers published on this subject in the "Web of Science" database have been reviewed. Our findings show that, within a cluster, the knowledge coming from the companies' environment can significantly influence their innovative performance and competitiveness, although in this relationship, the degree of access and exploitation of the companies to this knowledge plays a fundamental role, which depends on a series of elements both internal and external to the company.
Keywords: Absorptive capacity, clusters, innovation, knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8962087 Sustainability Assessment of Agriculture and Biodiversity Issues through an Innovative Knowledge Mediation System Using Deliberation Support Tools and INTEGRAAL Method Based on Stakeholder Involvement
Authors: Ashiquer Rahman
Abstract:
The cutting edge knowledge mediation system called ‘ePLANETe’ provides a framework for building knowledge, tools, and methods for education, research, and sustainable practices, as well as the deliberative assessment support for Higher Education, Research Institutions, and elsewhere e.g., the collaborative learning and research on sustainability and biodiversity issues of territorial development sectors. The paper is to present the analytical perspective of the ‘ePLANETe’ concept and functionalities as an experimental platform for contributing to sustainability assessment. Now the ‘ePLANETe’ can be seen as experimentation of the challenges of “ICT for Green”. The digital technologies of ‘ePLANETe’ are exploited (i) to facilitate collaborative research, learning tools, and knowledge for sustainability challenges, and (ii) as deliberation support tools in pursuing of sustainability performance and practices in territorial governance, public policy, and business strategy, as well as in the higher education sectors itself. The paper investigates the dealing capacity of qualitative and quantitative assessment of agriculture sustainability through the stakeholder-based integrated assessment. Specifically, this paper focuses on integrating system methodologies with Deliberation Support Tools (DST) and INTEGRAAL method for collective assessment and decision-making in implementing regional plans. The report aims to identify the effective knowledge and tools to enable deliberations methodologies regarding practices on the sustainability of agriculture and biodiversity issues, societal responsibilities, and regional planning, concentrating on the question: “How to effectively mobilize resources (knowledge, tools, and methods) from different sources and at different scales regarding on agriculture and biodiversity issues to address sustainability challenges” that will create the scope for qualitative and quantitative assessments of sustainability as a new landmark of the agriculture sector.
Keywords: Biodiversity, Deliberation Support Tools, INTEGRAAL, stakeholder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2692086 Mobile Phone Banking Applies and Customer Intention - A Case Study in Libya
Authors: Iman E. Bouthahab, Badea B. Geador
Abstract:
Aim of this paper is to explore the prospect of a new approach of mobile phone banking in Libya. This study evaluates customer knowledge on commercial mobile banking in Libya. To examine the relationship between age, occupation and intention for using mobile banking for commercial purpose, a survey was conducted to gather information from one hundred Libyan bank clients. The results indicate that Libyan customers have accepted the new technology and they are ready to use it. There is no significant joint relationship between age and occupation found in intention to use mobile banking in Libya. On the other hand, the customers’ knowledge about mobile banking has a greater relationship with the intention. This study has implications for demographic researches and consumer behaviour disciplines. It also has profitable implications for banks and managers in Libya, as it will assist in better understanding of the Libyan consumers and their activities, when they develop their market strategies and new service.
Keywords: Banks in Libya, Customer Knowledge, Intention, Mobile banking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26372085 A New Variant of RC4 Stream Cipher
Authors: Lae Lae Khine
Abstract:
RC4 was used as an encryption algorithm in WEP(Wired Equivalent Privacy) protocol that is a standardized for 802.11 wireless network. A few attacks followed, indicating certain weakness in the design. In this paper, we proposed a new variant of RC4 stream cipher. The new version of the cipher does not only appear to be more secure, but its keystream also has large period, large complexity and good statistical properties.
Keywords: Cryptography, New variant, RC4, Stream Cipher.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19112084 A Survey of Response Generation of Dialogue Systems
Authors: Yifan Fan, Xudong Luo, Pingping Lin
Abstract:
An essential task in the field of artificial intelligence is to allow computers to interact with people through natural language. Therefore, researches such as virtual assistants and dialogue systems have received widespread attention from industry and academia. The response generation plays a crucial role in dialogue systems, so to push forward the research on this topic, this paper surveys various methods for response generation. We sort out these methods into three categories. First one includes finite state machine methods, framework methods, and instance methods. The second contains full-text indexing methods, ontology methods, vast knowledge base method, and some other methods. The third covers retrieval methods and generative methods. We also discuss some hybrid methods based knowledge and deep learning. We compare their disadvantages and advantages and point out in which ways these studies can be improved further. Our discussion covers some studies published in leading conferences such as IJCAI and AAAI in recent years.Keywords: Retrieval, generative, deep learning, response generation, knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12042083 A Novel VLSI Architecture for Image Compression Model Using Low power Discrete Cosine Transform
Authors: Vijaya Prakash.A.M, K.S.Gurumurthy
Abstract:
In Image processing the Image compression can improve the performance of the digital systems by reducing the cost and time in image storage and transmission without significant reduction of the Image quality. This paper describes hardware architecture of low complexity Discrete Cosine Transform (DCT) architecture for image compression[6]. In this DCT architecture, common computations are identified and shared to remove redundant computations in DCT matrix operation. Vector processing is a method used for implementation of DCT. This reduction in computational complexity of 2D DCT reduces power consumption. The 2D DCT is performed on 8x8 matrix using two 1-Dimensional Discrete cosine transform blocks and a transposition memory [7]. Inverse discrete cosine transform (IDCT) is performed to obtain the image matrix and reconstruct the original image. The proposed image compression algorithm is comprehended using MATLAB code. The VLSI design of the architecture is implemented Using Verilog HDL. The proposed hardware architecture for image compression employing DCT was synthesized using RTL complier and it was mapped using 180nm standard cells. . The Simulation is done using Modelsim. The simulation results from MATLAB and Verilog HDL are compared. Detailed analysis for power and area was done using RTL compiler from CADENCE. Power consumption of DCT core is reduced to 1.027mW with minimum area[1].Keywords: Discrete Cosine Transform (DCT), Inverse DiscreteCosine Transform (IDCT), Joint Photographic Expert Group (JPEG), Low Power Design, Very Large Scale Integration (VLSI) .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31392082 A Distributed Approach to Extract High Utility Itemsets from XML Data
Authors: S. Kannimuthu, K. Premalatha
Abstract:
This paper investigates a new data mining capability that entails mining of High Utility Itemsets (HUI) in a distributed environment. Existing research in data mining deals with only presence or absence of an items and do not consider the semantic measures like weight or cost of the items. Thus, HUI mining algorithm has evolved. HUI mining is the one kind of utility mining concept, aims to identify itemsets whose utility satisfies a given threshold. Although, the approach of mining HUIs in a distributed environment and mining of the same from XML data have not explored yet. In this work, a novel approach is proposed to mine HUIs from the XML based data in a distributed environment. This work utilizes Service Oriented Computing (SOC) paradigm which provides Knowledge as a Service (KaaS). The interesting patterns are provided via the web services with the help of knowledge server to answer the queries of the consumers. The performance of the approach is evaluated on various databases using execution time and memory consumption.
Keywords: Data mining, Knowledge as a Service, service oriented computing, utility mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24542081 Introducing a Platform for Encryption Algorithms
Authors: Ahmad Habibizad Navin, Yasaman Hashemi, Omid Mirmotahari
Abstract:
In this paper, we introduce a novel platform encryption method, which modify its keys and random number generators step by step during encryption algorithms. According to complexity of the proposed algorithm, it was safer than any other method.Keywords: Decryption, Encryption, Algorithm, security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14352080 Nonlinear Sensitive Control of Centrifugal Compressor
Authors: F. Laaouad, M. Bouguerra, A. Hafaifa, A. Iratni
Abstract:
In this work, we treat the problems related to chemical and petrochemical plants of a certain complex process taking the centrifugal compressor as an example, a system being very complex by its physical structure as well as its behaviour (surge phenomenon). We propose to study the application possibilities of the recent control approaches to the compressor behaviour, and consequently evaluate their contribution in the practical and theoretical fields. Facing the studied industrial process complexity, we choose to make recourse to fuzzy logic for analysis and treatment of its control problem owing to the fact that these techniques constitute the only framework in which the types of imperfect knowledge can jointly be treated (uncertainties, inaccuracies, etc..) offering suitable tools to characterise them. In the particular case of the centrifugal compressor, these imperfections are interpreted by modelling errors, the neglected dynamics, no modelisable dynamics and the parametric variations. The purpose of this paper is to produce a total robust nonlinear controller design method to stabilize the compression process at its optimum steady state by manipulating the gas rate flow. In order to cope with both the parameter uncertainty and the structured non linearity of the plant, the proposed method consists of a linear steady state regulation that ensures robust optimal control and of a nonlinear compensation that achieves the exact input/output linearization.
Keywords: Compressor, Fuzzy logic, Surge control, Bilinearcontroller, Stability analysis, Nonlinear plant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21442079 An Overview of the Advice Process and the Scientific Production of the Adviser-Advised Relationship in the Areas of Engineering
Authors: Tales H. J. Moreira, Thiago M. R. Dias, Gray F. Moita
Abstract:
The adviser-advised relationship, in addition to the evident propagation of knowledge, can provide an increase in the scientific production of the advisors. Specifically, in post-graduate programs, in which the advised submit diverse papers in different means of publication, these end up boosting the production of their advisor, since in general the advisors appear as co-authors, responsible for instructing and assisting in the development of the work. Therefore, to visualize the orientation process and the scientific production resulting from this relation is another important way of analyzing the scientific collaboration in the different areas of knowledge. In this work, are used the data of orientations and postgraduate supervisions from the Lattes curricula, from the main advisors who work in the Engineering area, to obtain an overview of the process of orientation of this group, and even, to produce Academic genealogical trees, where it is possible to verify how knowledge has spread in the diverse areas of engineering.Keywords: Academic genealogy, advice, engineering, lattes platform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7652078 How Prior Knowledge Affects User's Understanding of System Requirements?
Authors: Balsam Mustafa, Safaai Deris
Abstract:
Requirements are critical to system validation as they guide all subsequent stages of systems development. Inadequately specified requirements generate systems that require major revisions or cause system failure entirely. Use Cases have become the main vehicle for requirements capture in many current Object Oriented (OO) development methodologies, and a means for developers to communicate with different stakeholders. In this paper we present the results of a laboratory experiment that explored whether different types of use case format are equally effective in facilitating high knowledge user-s understanding. Results showed that the provision of diagrams along with the textual use case descriptions significantly improved user comprehension of system requirements in both familiar and unfamiliar application domains. However, when comparing groups that received models of textual description accompanied with diagrams of different level of details (simple and detailed) we found no significant difference in performance.
Keywords: Prior knowledge, requirement specification, usecase format, user understanding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12392077 Knowledge Mining in Web-based Learning Environments
Authors: Nittaya Kerdprasop, Kittisak Kerdprasop
Abstract:
The state of the art in instructional design for computer-assisted learning has been strongly influenced by advances in information technology, Internet and Web-based systems. The emphasis of educational systems has shifted from training to learning. The course delivered has also been changed from large inflexible content to sequential small chunks of learning objects. The concepts of learning objects together with the advanced technologies of Web and communications support the reusability, interoperability, and accessibility design criteria currently exploited by most learning systems. These concepts enable just-in-time learning. We propose to extend theses design criteria further to include the learnability concept that will help adapting content to the needs of learners. The learnability concept offers a better personalization leading to the creation and delivery of course content more appropriate to performance and interest of each learner. In this paper we present a new framework of learning environments containing knowledge discovery as a tool to automatically learn patterns of learning behavior from learners' profiles and history.Keywords: Knowledge mining, Web-based learning, Learning environments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17862076 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine
Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li
Abstract:
Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.
Keywords: Machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9482075 Incremental Mining of Shocking Association Patterns
Authors: Eiad Yafi, Ahmed Sultan Al-Hegami, M. A. Alam, Ranjit Biswas
Abstract:
Association rules are an important problem in data mining. Massively increasing volume of data in real life databases has motivated researchers to design novel and incremental algorithms for association rules mining. In this paper, we propose an incremental association rules mining algorithm that integrates shocking interestingness criterion during the process of building the model. A new interesting measure called shocking measure is introduced. One of the main features of the proposed approach is to capture the user background knowledge, which is monotonically augmented. The incremental model that reflects the changing data and the user beliefs is attractive in order to make the over all KDD process more effective and efficient. We implemented the proposed approach and experiment it with some public datasets and found the results quite promising.Keywords: Knowledge discovery in databases (KDD), Data mining, Incremental Association rules, Domain knowledge, Interestingness, Shocking rules (SHR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18672074 Complexity of Multivalued Maps
Authors: David Sherwell, Vivien Visaya
Abstract:
We consider the topological entropy of maps that in general, cannot be described by one-dimensional dynamics. In particular, we show that for a multivalued map F generated by singlevalued maps, the topological entropy of any of the single-value map bounds the topological entropy of F from below.Keywords: Multivalued maps, Topological entropy, Selectors
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1250