Search results for: Lifting wavelet transform
443 Performance Analysis of Brain Tumor Detection Based On Image Fusion
Authors: S. Anbumozhi, P. S. Manoharan
Abstract:
Medical Image fusion plays a vital role in medical field to diagnose the brain tumors which can be classified as benign or malignant. It is the process of integrating multiple images of the same scene into a single fused image to reduce uncertainty and minimizing redundancy while extracting all the useful information from the source images. Fuzzy logic is used to fuse two brain MRI images with different vision. The fused image will be more informative than the source images. The texture and wavelet features are extracted from the fused image. The multilevel Adaptive Neuro Fuzzy Classifier classifies the brain tumors based on trained and tested features. The proposed method achieved 80.48% sensitivity, 99.9% specificity and 99.69% accuracy. Experimental results obtained from fusion process prove that the use of the proposed image fusion approach shows better performance while compared with conventional fusion methodologies.
Keywords: Image fusion, Fuzzy rules, Neuro-fuzzy classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3058442 Augmented Reality on Android
Authors: Chunghan Li, Chang-Shyh Peng, Daisy F. Sang
Abstract:
Augmented Reality is an application which combines a live view of real-world environment and computer-generated images. This paper studies and demonstrates an efficient Augmented Reality development in the mobile Android environment with the native Java language and Android SDK. Major components include Barcode Reader, File Loader, Marker Detector, Transform Matrix Generator, and a cloud database.
Keywords: Augmented Reality, Android.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2979441 A Nonoblivious Image Watermarking System Based on Singular Value Decomposition and Texture Segmentation
Authors: Soroosh Rezazadeh, Mehran Yazdi
Abstract:
In this paper, a robust digital image watermarking scheme for copyright protection applications using the singular value decomposition (SVD) is proposed. In this scheme, an entropy masking model has been applied on the host image for the texture segmentation. Moreover, the local luminance and textures of the host image are considered for watermark embedding procedure to increase the robustness of the watermarking scheme. In contrast to all existing SVD-based watermarking systems that have been designed to embed visual watermarks, our system uses a pseudo-random sequence as a watermark. We have tested the performance of our method using a wide variety of image processing attacks on different test images. A comparison is made between the results of our proposed algorithm with those of a wavelet-based method to demonstrate the superior performance of our algorithm.Keywords: Watermarking, copyright protection, singular value decomposition, entropy masking, texture segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763440 On Fourier Type Integral Transform for a Class of Generalized Quotients
Authors: A. S. Issa, S. K. Q. AL-Omari
Abstract:
In this paper, we investigate certain spaces of generalized functions for the Fourier and Fourier type integral transforms. We discuss convolution theorems and establish certain spaces of distributions for the considered integrals. The new Fourier type integral is well-defined, linear, one-to-one and continuous with respect to certain types of convergences. Many properties and an inverse problem are also discussed in some details.Keywords: Fourier type integral, Fourier integral, generalized quotient, Boehmian, distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1182439 GA Based Optimal Feature Extraction Method for Functional Data Classification
Authors: Jun Wan, Zehua Chen, Yingwu Chen, Zhidong Bai
Abstract:
Classification is an interesting problem in functional data analysis (FDA), because many science and application problems end up with classification problems, such as recognition, prediction, control, decision making, management, etc. As the high dimension and high correlation in functional data (FD), it is a key problem to extract features from FD whereas keeping its global characters, which relates to the classification efficiency and precision to heavens. In this paper, a novel automatic method which combined Genetic Algorithm (GA) and classification algorithm to extract classification features is proposed. In this method, the optimal features and classification model are approached via evolutional study step by step. It is proved by theory analysis and experiment test that this method has advantages in improving classification efficiency, precision and robustness whereas using less features and the dimension of extracted classification features can be controlled.Keywords: Classification, functional data, feature extraction, genetic algorithm, wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555438 A New Definition of the Intrinsic Mode Function
Authors: Zhihua Yang, Lihua Yang
Abstract:
This paper makes a detailed analysis regarding the definition of the intrinsic mode function and proves that Condition 1 of the intrinsic mode function can really be deduced from Condition 2. Finally, an improved definition of the intrinsic mode function is given.
Keywords: Empirical Mode Decomposition (EMD), Hilbert-Huang transform(HHT), Intrinsic Mode Function(IMF).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3591437 Impedance of an Encircling Coil due to a Cylindrical Tube with Varying Properties
Authors: Valentina Koliskina
Abstract:
Change in impedance of an encircling coil is obtained in the present paper for the case where the electric conductivity and magnetic permeability of a metal cylindrical tube depend on the radial coordinate. The system of equations for the vector potential is solved by means of the Fourier cosine transform. The solution is expressed in terms of improper integral containing modified Bessel functions of complex order.Keywords: Eddy currents, magnetic permeability, Besselfunctions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773436 Modified Scaling-Free CORDIC Based Pipelined Parallel MDC FFT and IFFT Architecture for Radix 2^2 Algorithm
Authors: C. Paramasivam, K. B. Jayanthi
Abstract:
An innovative approach to develop modified scaling free CORDIC based two parallel pipelined Multipath Delay Commutator (MDC) FFT and IFFT architectures for radix 22 FFT algorithm is presented. Multipliers and adders are the most important data paths in FFT and IFFT architectures. Multipliers occupy high area and consume more power. In order to optimize the area and power overhead, modified scaling-free CORDIC based complex multiplier is utilized in the proposed design. In general twiddle factor values are stored in RAM block. In the proposed work, modified scaling-free CORDIC based twiddle factor generator unit is used to generate the twiddle factor and efficient switching units are used. In addition to this, four point FFT operations are performed without complex multiplication which helps to reduce area and power in the last two stages of the pipelined architectures. The design proposed in this paper is based on multipath delay commutator method. The proposed design can be extended to any radix 2n based FFT/IFFT algorithm to improve the throughput. The work is synthesized using Synopsys design Compiler using TSMC 90-nm library. The proposed method proves to be better compared to the reference design in terms of area, throughput and power consumption. The comparative analysis of the proposed design with Xilinx FPGA platform is also discussed in the paper.Keywords: Coordinate Rotational Digital Computer(CORDIC), Complex multiplier, Fast Fourier transform (FFT), Inverse fast Fourier transform (IFFT), Multipath delay Commutator (MDC), modified scaling free CORDIC, complex multiplier, pipelining, parallel processing, radix-2^2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818435 Certain Estimates of Oscillatory Integrals and Extrapolation
Authors: Hussain Al-Qassem
Abstract:
In this paper we study the boundedness properties of certain oscillatory integrals with polynomial phase. We obtain sharp estimates for these oscillatory integrals. By the virtue of these estimates and extrapolation we obtain Lp boundedness for these oscillatory integrals under rather weak size conditions on the kernel function.Keywords: Fourier transform, oscillatory integrals, Orlicz spaces, Block spaces, Extrapolation, Lp boundedness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300434 Neural Network based Texture Analysis of Liver Tumor from Computed Tomography Images
Authors: K.Mala, V.Sadasivam, S.Alagappan
Abstract:
Advances in clinical medical imaging have brought about the routine production of vast numbers of medical images that need to be analyzed. As a result an enormous amount of computer vision research effort has been targeted at achieving automated medical image analysis. Computed Tomography (CT) is highly accurate for diagnosing liver tumors. This study aimed to evaluate the potential role of the wavelet and the neural network in the differential diagnosis of liver tumors in CT images. The tumors considered in this study are hepatocellular carcinoma, cholangio carcinoma, hemangeoma and hepatoadenoma. Each suspicious tumor region was automatically extracted from the CT abdominal images and the textural information obtained was used to train the Probabilistic Neural Network (PNN) to classify the tumors. Results obtained were evaluated with the help of radiologists. The system differentiates the tumor with relatively high accuracy and is therefore clinically useful.
Keywords: Fuzzy c means clustering, texture analysis, probabilistic neural network, LVQ neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2988433 Multi-Sensor Image Fusion for Visible and Infrared Thermal Images
Authors: Amit Kr. Happy
Abstract:
This paper is motivated by the importance of multi-sensor image fusion with specific focus on Infrared (IR) and Visible image (VI) fusion for various applications including military reconnaissance. Image fusion can be defined as the process of combining two or more source images into a single composite image with extended information content that improves visual perception or feature extraction. These images can be from different modalities like Visible camera & IR Thermal Imager. While visible images are captured by reflected radiations in the visible spectrum, the thermal images are formed from thermal radiation (IR) that may be reflected or self-emitted. A digital color camera captures the visible source image and a thermal IR camera acquires the thermal source image. In this paper, some image fusion algorithms based upon Multi-Scale Transform (MST) and region-based selection rule with consistency verification have been proposed and presented. This research includes implementation of the proposed image fusion algorithm in MATLAB along with a comparative analysis to decide the optimum number of levels for MST and the coefficient fusion rule. The results are presented, and several commonly used evaluation metrics are used to assess the suggested method's validity. Experiments show that the proposed approach is capable of producing good fusion results. While deploying our image fusion algorithm approaches, we observe several challenges from the popular image fusion methods. While high computational cost and complex processing steps of image fusion algorithms provide accurate fused results, but they also make it hard to become deployed in system and applications that require real-time operation, high flexibility and low computation ability. So, the methods presented in this paper offer good results with minimum time complexity.
Keywords: Image fusion, IR thermal imager, multi-sensor, Multi-Scale Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 430432 Detecting Defects in Textile Fabrics with Optimal Gabor Filters
Abstract:
This paper investigates the problem of automated defect detection for textile fabrics and proposes a new optimal filter design method to solve this problem. Gabor Wavelet Network (GWN) is chosen as the major technique to extract the texture features from textile fabrics. Based on the features extracted, an optimal Gabor filter can be designed. In view of this optimal filter, a new semi-supervised defect detection scheme is proposed, which consists of one real-valued Gabor filter and one smoothing filter. The performance of the scheme is evaluated by using an offline test database with 78 homogeneous textile images. The test results exhibit accurate defect detection with low false alarm, thus showing the effectiveness and robustness of the proposed scheme. To evaluate the detection scheme comprehensively, a prototyped detection system is developed to conduct a real time test. The experiment results obtained confirm the efficiency and effectiveness of the proposed detection scheme.Keywords: Defect detection, Filtering, Gabor function, Gaborwavelet networks, Textile fabrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2356431 Rigorous Electromagnetic Model of Fourier Transform Infrared (FT-IR) Spectroscopic Imaging Applied to Automated Histology of Prostate Tissue Specimens
Authors: Rohith K Reddy, David Mayerich, Michael Walsh, P Scott Carney, Rohit Bhargava
Abstract:
Fourier transform infrared (FT-IR) spectroscopic imaging is an emerging technique that provides both chemically and spatially resolved information. The rich chemical content of data may be utilized for computer-aided determinations of structure and pathologic state (cancer diagnosis) in histological tissue sections for prostate cancer. FT-IR spectroscopic imaging of prostate tissue has shown that tissue type (histological) classification can be performed to a high degree of accuracy [1] and cancer diagnosis can be performed with an accuracy of about 80% [2] on a microscopic (≈ 6μm) length scale. In performing these analyses, it has been observed that there is large variability (more than 60%) between spectra from different points on tissue that is expected to consist of the same essential chemical constituents. Spectra at the edges of tissues are characteristically and consistently different from chemically similar tissue in the middle of the same sample. Here, we explain these differences using a rigorous electromagnetic model for light-sample interaction. Spectra from FT-IR spectroscopic imaging of chemically heterogeneous samples are different from bulk spectra of individual chemical constituents of the sample. This is because spectra not only depend on chemistry, but also on the shape of the sample. Using coupled wave analysis, we characterize and quantify the nature of spectral distortions at the edges of tissues. Furthermore, we present a method of performing histological classification of tissue samples. Since the mid-infrared spectrum is typically assumed to be a quantitative measure of chemical composition, classification results can vary widely due to spectral distortions. However, we demonstrate that the selection of localized metrics based on chemical information can make our data robust to the spectral distortions caused by scattering at the tissue boundary.Keywords: Infrared, Spectroscopy, Imaging, Tissue classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634430 Sparse-View CT Reconstruction Based on Nonconvex L1 − L2 Regularizations
Authors: Ali Pour Yazdanpanah, Farideh Foroozandeh Shahraki, Emma Regentova
Abstract:
The reconstruction from sparse-view projections is one of important problems in computed tomography (CT) limited by the availability or feasibility of obtaining of a large number of projections. Traditionally, convex regularizers have been exploited to improve the reconstruction quality in sparse-view CT, and the convex constraint in those problems leads to an easy optimization process. However, convex regularizers often result in a biased approximation and inaccurate reconstruction in CT problems. Here, we present a nonconvex, Lipschitz continuous and non-smooth regularization model. The CT reconstruction is formulated as a nonconvex constrained L1 − L2 minimization problem and solved through a difference of convex algorithm and alternating direction of multiplier method which generates a better result than L0 or L1 regularizers in the CT reconstruction. We compare our method with previously reported high performance methods which use convex regularizers such as TV, wavelet, curvelet, and curvelet+TV (CTV) on the test phantom images. The results show that there are benefits in using the nonconvex regularizer in the sparse-view CT reconstruction.Keywords: Computed tomography, sparse-view reconstruction, L1 −L2 minimization, non-convex, difference of convex functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030429 Organizational Decision Based on Business Intelligence
Authors: Pejman Hosseinioun, Rose Shayeghi, Ghasem Ghorbani Rostam
Abstract:
Nowadays, obtaining traditional statistics and reports is not adequate for the needs of organizational managers. The managers need to analyze and to transform the raw data into knowledge in the world filled with information. Therefore in this regard various processes have been developed. In the meantime the artificial intelligence-based processes are used and the new topics such as business intelligence and knowledge discovery have emerged. In the current paper it is sought to study the business intelligence and its applications in the organizations.Keywords: Business intelligence, business intelligence infrastructures, business processes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030428 A Generalized Approach for State Analysis and Parameter Estimation of Bilinear Systems using Haar Connection Coefficients
Authors: Monika Garg, Lillie Dewan
Abstract:
Three novel and significant contributions are made in this paper Firstly, non-recursive formulation of Haar connection coefficients, pioneered by the present authors is presented, which can be computed very efficiently and avoid stack and memory overflows. Secondly, the generalized approach for state analysis of singular bilinear time-invariant (TI) and time-varying (TV) systems is presented; vis-˜a-vis diversified and complex works reported by different authors. Thirdly, a generalized approach for parameter estimation of bilinear TI and TV systems is also proposed. The unified framework of the proposed method is very significant in that the digital hardware once-designed can be used to perform the complex tasks of state analysis and parameter estimation of different types of bilinear systems single-handedly. The simplicity, effectiveness and generalized nature of the proposed method is established by applying it to different types of bilinear systems for the two tasks.Keywords: Bilinear Systems, Haar Wavelet, Haar ConnectionCoefficients, Parameter Estimation, Singular Bilinear Systems, StateAnalysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578427 [Ca(2,2'-bipyridine)3]2+ -Montmorillonite: A Potentiometric Sensor for Sulfide ion
Authors: Sunan Payungsak, Atchana Wongchaisuwat, Ladda Meesuk
Abstract:
Sulfide ion (S2-) is one of the most important ions to be monitored due to its high toxicity, especially for aquatic organisms. In this work, [Ca(2,2'-bipyridine)3]2+-intercalated montmorillonite was prepared and used as a sensor to construct a potentiometric electrode to measure sulfide ion in solution. The formation of [Ca(2,2'- bipyridine)3]2+ in montmorillonite was confirmed by Fourier Transform Infrared spectra. The electrode worked well at pH 4-12 and 4-10 in sulfide solution 10-2 M and 10-3 M, respectively, in terms of Nernstian slope. The sensor gave good precision and low cost.Keywords: 2, 2'-bipyridine complexes, montmorillonite potentiometry, sulfide ion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565426 Oral Cancer Screening Intentions of Residents in Eastern Taiwan
Authors: Chi-Shan Chen, Mao-Chou Hsu, Feng-Chuan Pan
Abstract:
The incidence of oral cancer in Taiwan increased year by year. It replaced the nasopharyngeal as the top incurrence among head and neck cancers since 1994. Early examination and earlier identification for earlier treatment is the most effective medical treatment for these cancers. Although the government fully subsidized the expenses with tremendous promotion program for oral cancer screening, the citizen-s participation remained low. Purpose of this study is to understand the factors affecting the citizens- behavior intensions of taking an oral cancer screening. Based on the Theory of Planned Behavior, this study adopted four distinctive variables in explaining the captioned behavior intentions.700 questionnaires were dispatched with 500 valid responses or 71.4% returned by the citizens with an age 30 or above from the eastern counties of Taiwan. Test results has shown that attitude toward, subjective norms of, and perceived behavioral control over the oral cancer screening varied from some demographic factors to another. The study proofed that attitude toward, subjective norms of, and perceived behavioral control over the oral cancer screening had positive impacts on the corresponding behavior intention. The test concluded that the theory of planned behavior was appropriate as a theoretical framework in explaining the influencing factors of intentions of taking oral cancer screening. This study suggested the healthcare professional should provide high accessibility of screening services other than just delivering knowledge on oral cancer to promote the citizens- intentions of taking the captioned screening. This research also provided a practical implication to the healthcare professionals when formulating and implementing promotion instruments for lifting the screening rate of oral cancer.Keywords: Theory of planned behavior, oral cancer, cancer screening
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953425 Fractal Patterns for Power Quality Detection Using Color Relational Analysis Based Classifier
Authors: Chia-Hung Lin, Mei-Sung Kang, Cong-Hui Huang, Chao-Lin Kuo
Abstract:
This paper proposes fractal patterns for power quality (PQ) detection using color relational analysis (CRA) based classifier. Iterated function system (IFS) uses the non-linear interpolation in the map and uses similarity maps to construct various fractal patterns of power quality disturbances, including harmonics, voltage sag, voltage swell, voltage sag involving harmonics, voltage swell involving harmonics, and voltage interruption. The non-linear interpolation functions (NIFs) with fractal dimension (FD) make fractal patterns more distinguishing between normal and abnormal voltage signals. The classifier based on CRA discriminates the disturbance events in a power system. Compared with the wavelet neural networks, the test results will show accurate discrimination, good robustness, and faster processing time for detecting disturbing events.Keywords: Power Quality (PQ), Color Relational Analysis(CRA), Iterated Function System (IFS), Non-linear InterpolationFunction (NIF), Fractal Dimension (FD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648424 Self-adaptation of Ontologies to Folksonomies in Semantic Web
Authors: Francisco Echarte, José Javier Astrain, Alberto Córdoba, Jesús Villadangos
Abstract:
Ontologies and tagging systems are two different ways to organize the knowledge present in the current Web. In this paper we propose a simple method to model folksonomies, as tagging systems, with ontologies. We show the scalability of the method using real data sets. The modeling method is composed of a generic ontology that represents any folksonomy and an algorithm to transform the information contained in folksonomies to the generic ontology. The method allows representing folksonomies at any instant of time.
Keywords: Folksonomies, ontologies, OWL, semantic web.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627423 Union is Strength in Lossy Image Compression
Authors: Mario Mastriani
Abstract:
In this work, we present a comparison between different techniques of image compression. First, the image is divided in blocks which are organized according to a certain scan. Later, several compression techniques are applied, combined or alone. Such techniques are: wavelets (Haar's basis), Karhunen-Loève Transform, etc. Simulations show that the combined versions are the best, with minor Mean Squared Error (MSE), and higher Peak Signal to Noise Ratio (PSNR) and better image quality, even in the presence of noise.Keywords: Haar's basis, Image compression, Karhunen-LoèveTransform, Morton's scan, row-rafter scan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746422 Person Identification using Gait by Combined Features of Width and Shape of the Binary Silhouette
Authors: M.K. Bhuyan, Aragala Jagan.
Abstract:
Current image-based individual human recognition methods, such as fingerprints, face, or iris biometric modalities generally require a cooperative subject, views from certain aspects, and physical contact or close proximity. These methods cannot reliably recognize non-cooperating individuals at a distance in the real world under changing environmental conditions. Gait, which concerns recognizing individuals by the way they walk, is a relatively new biometric without these disadvantages. The inherent gait characteristic of an individual makes it irreplaceable and useful in visual surveillance. In this paper, an efficient gait recognition system for human identification by extracting two features namely width vector of the binary silhouette and the MPEG-7-based region-based shape descriptors is proposed. In the proposed method, foreground objects i.e., human and other moving objects are extracted by estimating background information by a Gaussian Mixture Model (GMM) and subsequently, median filtering operation is performed for removing noises in the background subtracted image. A moving target classification algorithm is used to separate human being (i.e., pedestrian) from other foreground objects (viz., vehicles). Shape and boundary information is used in the moving target classification algorithm. Subsequently, width vector of the outer contour of binary silhouette and the MPEG-7 Angular Radial Transform coefficients are taken as the feature vector. Next, the Principal Component Analysis (PCA) is applied to the selected feature vector to reduce its dimensionality. These extracted feature vectors are used to train an Hidden Markov Model (HMM) for identification of some individuals. The proposed system is evaluated using some gait sequences and the experimental results show the efficacy of the proposed algorithm.Keywords: Gait Recognition, Gaussian Mixture Model, PrincipalComponent Analysis, MPEG-7 Angular Radial Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911421 A Simple Chemical Precipitation Method of Titanium Dioxide Nanoparticles Using Polyvinyl Pyrrolidone as a Capping Agent and Their Characterization
Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar
Abstract:
In this paper, a simple chemical precipitation route for the preparation of titanium dioxide nanoparticles, synthesized by using titanium tetra isopropoxide as a precursor and polyvinyl pyrrolidone (PVP) as a capping agent, is reported. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) of the samples were recorded and the phase transformation temperature of titanium hydroxide, Ti(OH)4 to titanium oxide, TiO2 was investigated. The as-prepared Ti(OH)4 precipitate was annealed at 800°C to obtain TiO2 nanoparticles. The thermal, structural, morphological and textural characterizations of the TiO2 nanoparticle samples were carried out by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM) techniques. The as-prepared precipitate was characterized using DSC-TGA and confirmed the mass loss of around 30%. XRD results exhibited no diffraction peaks attributable to anatase phase, for the reaction products, after the solvent removal. The results indicate that the product is purely rutile. The vibrational frequencies of two main absorption bands of prepared samples are discussed from the results of the FTIR analysis. The formation of nanosphere of diameter of the order of 10 nm, has been confirmed by FESEM. The optical band gap was found by using UV-Visible spectrum. From photoluminescence spectra, a strong emission was observed. The obtained results suggest that this method provides a simple, efficient and versatile technique for preparing TiO2 nanoparticles and it has the potential to be applied to other systems for photocatalytic activity.
Keywords: TiO2 nanoparticles, chemical precipitation route, phase transition, Fourier Transform Infra-Red spectroscopy, micro Raman spectroscopy, UV-Visible absorption spectroscopy, Photoluminescence spectroscopy, Field Effect Scanning Electron Microscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4278420 Comparison of Process Slaughtered on Beef Cattle Based on Level of Cortisol and Fourier Transform Infrared Spectroscopy (FTIR)
Authors: Pudji Astuti, C. P. C. Putro, C. M. Airin, L. Sjahfirdi, S. Widiyanto, H. Maheshwari
Abstract:
Stress of slaughter animals starting long before until at the time of process of slaughtering which cause misery and decrease of meat quality. Meanwhile, determination of animal stress using hormonal such as cortisol is expensive and less practical so that portable stress indicator for cows based on Fourier Transform Infrared Spectroscopy (FTIR) must be provided. The aims of this research are to find out the comparison process of slaughter between Rope Casting Local (RCL) and Restraining Box Method (RBM) by measuring of cortisol and wavelength in FTIR methods. Thirty two of male Ongole crossbred cattle were used in this experiment. Blood sampling was taken from jugular vein when they were rested and repeated when slaughtered. All of blood samples were centrifuged at 3000 rpm for 20 minutes to get serum, and then divided into two parts for cortisol assayed using ELISA and for measuring the wavelength using FTIR. The serum then measured at the wavelength between 4000-400 cm-1 using MB3000 FTIR. Band data absorption in wavelength of FTIR is analyzed descriptively by using FTIR Horizon MBTM. For RCL, average of serum cortisol when the animals rested were 11.47 ± 4.88 ng/mL, when the time of slaughter were 23.27 ± 7.84 ng/mL. For RBM, level of cortisol when rested animals were 13.67 ± 3.41 ng/mL and 53.47 ± 20.25 ng/mL during the slaughter. Based on student t-Test, there were significantly different between RBM and RCL methods when beef cattle were slaughtered (P<0.05), but no significantly different when animals were rested (P>0.05). Result of FTIR with the various of wavelength such as methyl group (=CH3 ) 2986cm-1, methylene (=CH2 ) 2827 cm-1, hydroxyl (- OH) 3371 cm-1, carbonyl (ketones) (C=O) 1636 cm-1, carboxyl (COO-1) 1408 cm-1, glucosa 1057 cm-1, urea 1011 cm-1have been obtained. It can be concluded that the RCL slaughtered method is better than the RBM method based on the increase of cortisol as an indicator of stress in beef cattle (P<0.05). FTIR is really possible to be used as stub of stress tool due to differentiate of resting and slaughter condition by recognizing the increase of absorption and the separation of component group at the wavelength.
Keywords: Cows, cortisol, FTIR, RBM, RCL, stress indicator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2463419 Super Resolution Blind Reconstruction of Low Resolution Images using Wavelets based Fusion
Authors: Liyakathunisa, V. K. Ananthashayana
Abstract:
Crucial information barely visible to the human eye is often embedded in a series of low resolution images taken of the same scene. Super resolution reconstruction is the process of combining several low resolution images into a single higher resolution image. The ideal algorithm should be fast, and should add sharpness and details, both at edges and in regions without adding artifacts. In this paper we propose a super resolution blind reconstruction technique for linearly degraded images. In our proposed technique the algorithm is divided into three parts an image registration, wavelets based fusion and an image restoration. In this paper three low resolution images are considered which may sub pixels shifted, rotated, blurred or noisy, the sub pixel shifted images are registered using affine transformation model; A wavelet based fusion is performed and the noise is removed using soft thresolding. Our proposed technique reduces blocking artifacts and also smoothens the edges and it is also able to restore high frequency details in an image. Our technique is efficient and computationally fast having clear perspective of real time implementation.Keywords: Affine Transforms, Denoiseing, DWT, Fusion, Image registration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2670418 A Two-Stage Multi-Agent System to Predict the Unsmoothed Monthly Sunspot Numbers
Authors: Mak Kaboudan
Abstract:
A multi-agent system is developed here to predict monthly details of the upcoming peak of the 24th solar magnetic cycle. While studies typically predict the timing and magnitude of cycle peaks using annual data, this one utilizes the unsmoothed monthly sunspot number instead. Monthly numbers display more pronounced fluctuations during periods of strong solar magnetic activity than the annual sunspot numbers. Because strong magnetic activities may cause significant economic damages, predicting monthly variations should provide different and perhaps helpful information for decision-making purposes. The multi-agent system developed here operates in two stages. In the first, it produces twelve predictions of the monthly numbers. In the second, it uses those predictions to deliver a final forecast. Acting as expert agents, genetic programming and neural networks produce the twelve fits and forecasts as well as the final forecast. According to the results obtained, the next peak is predicted to be 156 and is expected to occur in October 2011- with an average of 136 for that year.Keywords: Computational techniques, discrete wavelet transformations, solar cycle prediction, sunspot numbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328417 A Two-Channel Secure Communication Using Fractional Chaotic Systems
Authors: Long Jye Sheu, Wei Ching Chen, Yen Chu Chen, Wei Tai Weng
Abstract:
In this paper, a two-channel secure communication using fractional chaotic systems is presented. Conditions for chaos synchronization have been investigated theoretically by using Laplace transform. To illustrate the effectiveness of the proposed scheme, a numerical example is presented. The keys, key space, key selection rules and sensitivity to keys are discussed in detail. Results show that the original plaintexts have been well masked in the ciphertexts yet recovered faithfully and efficiently by the present schemes.Keywords: fractional chaotic systems, synchronization, securecommunication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749416 A New Dimension of Business Intelligence: Location-based Intelligence
Authors: Zeljko Panian
Abstract:
Through the course of this paper we define Locationbased Intelligence (LBI) which is outgrowing from process of amalgamation of geolocation and Business Intelligence. Amalgamating geolocation with traditional Business Intelligence (BI) results in a new dimension of BI named Location-based Intelligence. LBI is defined as leveraging unified location information for business intelligence. Collectively, enterprises can transform location data into business intelligence applications that will benefit all aspects of the enterprise. Expectations from this new dimension of business intelligence are great and its future is obviously bright.Keywords: Business intelligence, geolocation, location-based intelligence, innovation, location-intelligent business
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199415 Manual Pit Emptiers and Their Heath: Profiles, Determinants and Interventions
Authors: Ivy Chumo, Sheillah Simiyu, Hellen Gitau, Isaac Kisiangani, Caroline Kabaria Kanyiva Muindi, Blessing Mberu
Abstract:
The global sanitation workforce bridges the gap between sanitation infrastructure and the provision of sanitation services through essential public service work. Manual pit emptiers often perform the work at the cost of their dignity, safety, and health as their work requires repeated heavy physical activities such as lifting, carrying, pulling, and pushing. This exposes them to occupational and environmental health hazards and risking illness, injury, and death. The study will extend the studies by presenting occupational health risks and suggestions for improvement in informal settlements of Nairobi, Kenya. This is a qualitative study conducted among sanitation stakeholders in Korogocho, Mukuru and Kibera informal settlements in Nairobi. Data were captured using digital voice recorders, transcribed and thematically analysed. The discussion notes were further supported by observational notes made during the interviews. These formed the basis for a robust picture of occupational health of manual pit emptiers; a lack or inappropriate use of protective clothing, and prolonged duration of working hours were described to contribute to the occupational health hazard. To continue working, manual pit emptiers had devised coping strategies which include working in groups, improvised protective clothing, sharing the available protective clothing, working at night and consuming alcohol drinks while at work. Many of these strategies are detrimental to their health. Occupational health hazards among pit emptiers are key for effective working and is as a result of a lack of collaboration amongst stakeholders linked to health, safety and lack of PPE of pit emptiers. Collaborations amongst sanitation stakeholders is paramount for health, safety, and in ensuring the provision and use of personal protective devices.
Keywords: Sanitation, occupational health, manual emptiers, informal settlements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 881414 Synthesis and Characterization of Surface Functionalized Nanobiocomposite by Nano Hydroxyapatite
Authors: M. Meskinfam , M. S. Sadjadi , H. Jazdarreh
Abstract:
In this study, synthesis of biomemitic patterned nano hydroxyapatite-starch biocomposites using different concentration of starch to evaluate effect of polymer alteration on biocomposites structural properties has been reported. Formation of hydroxyapatite nano particles was confirmed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Size and morphology of the samples were characterized using scanning and transmission electron microscopy (SEM and TEM). It seems that by increasing starch content, the more active site of polymer (oxygen atoms) can be provided for interaction with Ca2+ followed by phosphate and hydroxyl group.Keywords: Biocomposite, Biomimetic, Nano hydroxyapatite, Starch
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386