Search results for: Feature Subset Selection
1370 Variance Based Component Analysis for Texture Segmentation
Authors: Zeinab Ghasemi, S. Amirhassan Monadjemi, Abbas Vafaei
Abstract:
This paper presents a comparative analysis of a new unsupervised PCA-based technique for steel plates texture segmentation towards defect detection. The proposed scheme called Variance Based Component Analysis or VBCA employs PCA for feature extraction, applies a feature reduction algorithm based on variance of eigenpictures and classifies the pixels as defective and normal. While the classic PCA uses a clusterer like Kmeans for pixel clustering, VBCA employs thresholding and some post processing operations to label pixels as defective and normal. The experimental results show that proposed algorithm called VBCA is 12.46% more accurate and 78.85% faster than the classic PCA. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19731369 Content-Based Image Retrieval Using HSV Color Space Features
Authors: Hamed Qazanfari, Hamid Hassanpour, Kazem Qazanfari
Abstract:
In this paper, a method is provided for content-based image retrieval. Content-based image retrieval system searches query an image based on its visual content in an image database to retrieve similar images. In this paper, with the aim of simulating the human visual system sensitivity to image's edges and color features, the concept of color difference histogram (CDH) is used. CDH includes the perceptually color difference between two neighboring pixels with regard to colors and edge orientations. Since the HSV color space is close to the human visual system, the CDH is calculated in this color space. In addition, to improve the color features, the color histogram in HSV color space is also used as a feature. Among the extracted features, efficient features are selected using entropy and correlation criteria. The final features extract the content of images most efficiently. The proposed method has been evaluated on three standard databases Corel 5k, Corel 10k and UKBench. Experimental results show that the accuracy of the proposed image retrieval method is significantly improved compared to the recently developed methods.
Keywords: Content-based image retrieval, color difference histogram, efficient features selection, entropy, correlation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6601368 Improved Tropical Wood Species Recognition System based on Multi-feature Extractor and Classifier
Authors: Marzuki Khalid, RubiyahYusof, AnisSalwaMohdKhairuddin
Abstract:
An automated wood recognition system is designed to classify tropical wood species.The wood features are extracted based on two feature extractors: Basic Grey Level Aura Matrix (BGLAM) technique and statistical properties of pores distribution (SPPD) technique. Due to the nonlinearity of the tropical wood species separation boundaries, a pre classification stage is proposed which consists ofKmeans clusteringand kernel discriminant analysis (KDA). Finally, Linear Discriminant Analysis (LDA) classifier and KNearest Neighbour (KNN) are implemented for comparison purposes. The study involves comparison of the system with and without pre classification using KNN classifier and LDA classifier.The results show that the inclusion of the pre classification stage has improved the accuracy of both the LDA and KNN classifiers by more than 12%.Keywords: Tropical wood species, nonlinear data, featureextractors, classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20001367 Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior Model
Authors: Youngjae Jin, Daeshik Kim
Abstract:
This paper describes a cycle accurate simulation results of weight values learned by an auto-encoder behavior model in terms of pre-route simulation. Given the results we visualized the first layer representations with natural images. Many common deep learning threads have focused on learning high-level abstraction of unlabeled raw data by unsupervised feature learning. However, in the process of handling such a huge amount of data, the learning method’s computation complexity and time limited advanced research. These limitations came from the fact these algorithms were computed by using only single core CPUs. For this reason, parallel-based hardware, FPGAs, was seen as a possible solution to overcome these limitations. We adopted and simulated the ready-made auto-encoder to design a behavior model in VerilogHDL before designing hardware. With the auto-encoder behavior model pre-route simulation, we obtained the cycle accurate results of the parameter of each hidden layer by using MODELSIM. The cycle accurate results are very important factor in designing a parallel-based digital hardware. Finally this paper shows an appropriate operation of behavior model based pre-route simulation. Moreover, we visualized learning latent representations of the first hidden layer with Kyoto natural image dataset.
Keywords: Auto-encoder, Behavior model simulation, Digital hardware design, Pre-route simulation, Unsupervised feature learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26901366 Cross Signal Identification for PSG Applications
Authors: Carmen Grigoraş, Victor Grigoraş, Daniela Boişteanu
Abstract:
The standard investigational method for obstructive sleep apnea syndrome (OSAS) diagnosis is polysomnography (PSG), which consists of a simultaneous, usually overnight recording of multiple electro-physiological signals related to sleep and wakefulness. This is an expensive, encumbering and not a readily repeated protocol, and therefore there is need for simpler and easily implemented screening and detection techniques. Identification of apnea/hypopnea events in the screening recordings is the key factor for the diagnosis of OSAS. The analysis of a solely single-lead electrocardiographic (ECG) signal for OSAS diagnosis, which may be done with portable devices, at patient-s home, is the challenge of the last years. A novel artificial neural network (ANN) based approach for feature extraction and automatic identification of respiratory events in ECG signals is presented in this paper. A nonlinear principal component analysis (NLPCA) method was considered for feature extraction and support vector machine for classification/recognition. An alternative representation of the respiratory events by means of Kohonen type neural network is discussed. Our prospective study was based on OSAS patients of the Clinical Hospital of Pneumology from Iaşi, Romania, males and females, as well as on non-OSAS investigated human subjects. Our computed analysis includes a learning phase based on cross signal PSG annotation.Keywords: Artificial neural networks, feature extraction, obstructive sleep apnea syndrome, pattern recognition, signalprocessing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15411365 Defect Detection of Tiles Using 2D-Wavelet Transform and Statistical Features
Authors: M.Ghazvini, S. A. Monadjemi, N. Movahhedinia, K. Jamshidi
Abstract:
In this article, a method has been offered to classify normal and defective tiles using wavelet transform and artificial neural networks. The proposed algorithm calculates max and min medians as well as the standard deviation and average of detail images obtained from wavelet filters, then comes by feature vectors and attempts to classify the given tile using a Perceptron neural network with a single hidden layer. In this study along with the proposal of using median of optimum points as the basic feature and its comparison with the rest of the statistical features in the wavelet field, the relational advantages of Haar wavelet is investigated. This method has been experimented on a number of various tile designs and in average, it has been valid for over 90% of the cases. Amongst the other advantages, high speed and low calculating load are prominent.Keywords: Defect detection, tile and ceramic quality inspection, wavelet transform, classification, neural networks, statistical features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23771364 Identifying New Sequence Features for Exon-Intron Discrimination by Rescaled-Range Frameshift Analysis
Authors: Sing-Wu Liou, Yin-Fu Huang
Abstract:
For identifying the discriminative sequence features between exons and introns, a new paradigm, rescaled-range frameshift analysis (RRFA), was proposed. By RRFA, two new sequence features, the frameshift sensitivity (FS) and the accumulative penta-mer complexity (APC), were discovered which were further integrated into a new feature of larger scale, the persistency in anti-mutation (PAM). The feature-validation experiments were performed on six model organisms to test the power of discrimination. All the experimental results highly support that FS, APC and PAM were all distinguishing features between exons and introns. These identified new sequence features provide new insights into the sequence composition of genes and they have great potentials of forming a new basis for recognizing the exonintron boundaries in gene sequences.Keywords: Exon-Intron Discrimination, Rescaled-Range Frameshift Analysis, Frameshift Sensitivity, Accumulative Sequence Complexity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11741363 Role of GIS in Distribution Power Systems
Authors: N. Rezaee, M Nayeripour, A. Roosta, T. Niknam
Abstract:
With the prevalence of computer and development of information technology, Geographic Information Systems (GIS) have long used for a variety of applications in electrical engineering. GIS are designed to support the analysis, management, manipulation and mapping of spatial data. This paper presents several usages of GIS in power utilities such as automated route selection for the construction of new power lines which uses a dynamic programming model for route optimization, load forecasting and optimizing planning of substation-s location and capacity with comprehensive algorithm which involves an accurate small-area electric load forecasting procedure and simulates the different cost functions of substations.
Keywords: Geographic information systems (GIS), optimallocation and capacity, power distribution planning, route selection, spatial load forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55051362 Study on Applying Fuzzy AHP and GRA in Selection of Agent Construction Enterprise
Authors: Shirong Li, Huan Yan
Abstract:
To help the client to select a competent agent construction enterprise (ACE), this study aims to investigate the selection standards by using the Fuzzy Analytic Hierarchy Process (FAHP) and build an evaluation mathematical model with Grey Relational Analysis (GRA). According to the outputs of literature review, four orderly levels are established within the model, taking the consideration of various agent construction models in practice. Then, the process of applying FAHP and GRA is discussed in detailed. Finally, through a case study, this paper illustrates how to apply these methods in getting the weights of each standard and the final assessment result.Keywords: agent construction enterprise, agent constructionmodel, fuzzy analytic hierarchy process, grey relational analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20431361 Suitable Partner Node Selection and Resource Allocation in Cooperative Wireless Communication Using the Trade-Off Game
Authors: Oluseye A. Adeleke, Mohd. F. M. Salleh
Abstract:
The performance of any cooperative communication system depends largely on the selection of a proper partner. Another important factor to consider is an efficient allocation of resource like power by the source node to help it in forwarding information to the destination. In this paper, we look at the concepts of partner selection and resource (power) allocation for a distributed communication network. A type of non-cooperative game referred to as Trade-Off game is employed so as to jointly consider the utilities of the source and relay nodes, where in this case, the source is the node that requires help with forwarding of its information while the partner is the node that is willing to help in forwarding the source node’s information, but at a price. The approach enables the source node to maximize its utility by selecting a partner node based on (i) the proximity of the partner node to the source and destination nodes, and (ii) the price the partner node will charge for the help being rendered. Our proposed scheme helps the source locate and select the relay nodes at ‘better’ locations and purchase power optimally from them. It also aids the contending relay nodes maximize their own utilities as well by asking proper prices. Our game scheme is seen to converge to unique equilibrium.
Keywords: Cooperative communication, game theory, node, power allocation, trade-off, utility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19381360 Sensitivity Analysis of Real-Time Systems
Authors: Benjamin Gorry, Andrew Ireland, Peter King
Abstract:
Verification of real-time software systems can be expensive in terms of time and resources. Testing is the main method of proving correctness but has been shown to be a long and time consuming process. Everyday engineers are usually unwilling to adopt formal approaches to correctness because of the overhead associated with developing their knowledge of such techniques. Performance modelling techniques allow systems to be evaluated with respect to timing constraints. This paper describes PARTES, a framework which guides the extraction of performance models from programs written in an annotated subset of C.Keywords: Performance Modelling, Real-time, SensitivityAnalysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15131359 Image Analysis for Obturator Foramen Based on Marker-Controlled Watershed Segmentation and Zernike Moments
Authors: Seda Sahin, Emin Akata
Abstract:
Obturator Foramen is a specific structure in Pelvic bone images and recognition of it is a new concept in medical image processing. Moreover, segmentation of bone structures such as Obturator Foramen plays an essential role for clinical research in orthopedics. In this paper, we present a novel method to analyze the similarity between the substructures of the imaged region and a hand drawn template as a preprocessing step for computation of Pelvic bone rotation on hip radiographs. This method consists of integrated usage of Marker-controlled Watershed segmentation and Zernike moment feature descriptor and it is used to detect Obturator Foramen accurately. Marker-controlled Watershed segmentation is applied to separate Obturator Foramen from the background effectively. Then, Zernike moment feature descriptor is used to provide matching between binary template image and the segmented binary image for final extraction of Obturator Foramens. Finally, Pelvic bone rotation rate calculation for each hip radiograph is performed automatically to select and eliminate hip radiographs for further studies which depend on Pelvic bone angle measurements. The proposed method is tested on randomly selected 100 hip radiographs. The experimental results demonstrated that the proposed method is able to segment Obturator Foramen with 96% accuracy.Keywords: Medical image analysis, marker-controlled watershed segmentation, segmentation of bone structures on hip radiographs, pelvic bone rotation rate, zernike moment feature descriptor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19931358 Comparative Study of Evolutionary Model and Clustering Methods in Circuit Partitioning Pertaining to VLSI Design
Authors: K. A. Sumitra Devi, N. P. Banashree, Annamma Abraham
Abstract:
Partitioning is a critical area of VLSI CAD. In order to build complex digital logic circuits its often essential to sub-divide multi -million transistor design into manageable Pieces. This paper looks at the various partitioning techniques aspects of VLSI CAD, targeted at various applications. We proposed an evolutionary time-series model and a statistical glitch prediction system using a neural network with selection of global feature by making use of clustering method model, for partitioning a circuit. For evolutionary time-series model, we made use of genetic, memetic & neuro-memetic techniques. Our work focused in use of clustering methods - K-means & EM methodology. A comparative study is provided for all techniques to solve the problem of circuit partitioning pertaining to VLSI design. The performance of all approaches is compared using benchmark data provided by MCNC standard cell placement benchmark net lists. Analysis of the investigational results proved that the Neuro-memetic model achieves greater performance then other model in recognizing sub-circuits with minimum amount of interconnections between them.
Keywords: VLSI, circuit partitioning, memetic algorithm, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16371357 Automatic Text Summarization
Authors: Mohamed Abdel Fattah, Fuji Ren
Abstract:
This work proposes an approach to address automatic text summarization. This approach is a trainable summarizer, which takes into account several features, including sentence position, positive keyword, negative keyword, sentence centrality, sentence resemblance to the title, sentence inclusion of name entity, sentence inclusion of numerical data, sentence relative length, Bushy path of the sentence and aggregated similarity for each sentence to generate summaries. First we investigate the effect of each sentence feature on the summarization task. Then we use all features score function to train genetic algorithm (GA) and mathematical regression (MR) models to obtain a suitable combination of feature weights. The proposed approach performance is measured at several compression rates on a data corpus composed of 100 English religious articles. The results of the proposed approach are promising.Keywords: Automatic Summarization, Genetic Algorithm, Mathematical Regression, Text Features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23361356 E-Procurement, the Golden Key to Optimizing the Supply Chains System
Authors: Somayeh Farzin, Hossein Teimoori Nezhad
Abstract:
Procurement is an important component in the field of operating resource management and e-procurement is the golden key to optimizing the supply chains system. Global firms are optimistic on the level of savings that can be achieved through full implementation of e-procurement strategies. E-procurement is an Internet-based business process for obtaining materials and services and managing their inflow into the organization. In this paper, the subjects of supply chains and e-procurement and its benefits to organizations have been studied. Also, e-procurement in construction and its drivers and barriers have been discussed and a framework of supplier selection in an e-procurement environment has been demonstrated. This paper also has addressed critical success factors in adopting e-procurement in supply chains.Keywords: E-Procurement, Supply Chain, Benefits, Construction, Drivers, Barriers, Supplier Selection, CFSs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32331355 Envelope-Wavelet Packet Transform for Machine Condition Monitoring
Authors: M. F. Yaqub, I. Gondal, J. Kamruzzaman
Abstract:
Wavelet transform has been extensively used in machine fault diagnosis and prognosis owing to its strength to deal with non-stationary signals. The existing Wavelet transform based schemes for fault diagnosis employ wavelet decomposition of the entire vibration frequency which not only involve huge computational overhead in extracting the features but also increases the dimensionality of the feature vector. This increase in the dimensionality has the tendency to 'over-fit' the training data and could mislead the fault diagnostic model. In this paper a novel technique, envelope wavelet packet transform (EWPT) is proposed in which features are extracted based on wavelet packet transform of the filtered envelope signal rather than the overall vibration signal. It not only reduces the computational overhead in terms of reduced number of wavelet decomposition levels and features but also improves the fault detection accuracy. Analytical expressions are provided for the optimal frequency resolution and decomposition level selection in EWPT. Experimental results with both actual and simulated machine fault data demonstrate significant gain in fault detection ability by EWPT at reduced complexity compared to existing techniques.Keywords: Envelope Detection, Wavelet Transform, Bearing Faults, Machine Health Monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19581354 Material Selection for Footwear Insole Using Analytical Hierarchal Process
Authors: Mohammed A. Almomani, Dina W. Al-Qudah
Abstract:
Product performance depends on the type and quality of its building material. Successful product must be made using high quality material, and using the right methods. Many foot problems took place as a result of using poor insole material. Therefore, selecting a proper insole material is crucial to eliminate these problems. In this study, the analytical hierarchy process (AHP) is used to provide a systematic procedure for choosing the best material adequate for this application among three material alternatives (polyurethane, poron, and plastzote). Several comparison criteria are used to build the AHP model including: density, stiffness, durability, energy absorption, and ease of fabrication. Poron was selected as the best choice. Inconsistency testing indicates that the model is reasonable, and the materials alternative ranking is effective.
Keywords: Materials selection, biomedical insole, footwear insole, AHP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23011353 A DCT-Based Secure JPEG Image Authentication Scheme
Authors: Mona F. M. Mursi, Ghazy M.R. Assassa, Hatim A. Aboalsamh, Khaled Alghathbar
Abstract:
The challenge in the case of image authentication is that in many cases images need to be subjected to non malicious operations like compression, so the authentication techniques need to be compression tolerant. In this paper we propose an image authentication system that is tolerant to JPEG lossy compression operations. A scheme for JPEG grey scale images is proposed based on a data embedding method that is based on a secret key and a secret mapping vector in the frequency domain. An encrypted feature vector extracted from the image DCT coefficients, is embedded redundantly, and invisibly in the marked image. On the receiver side, the feature vector from the received image is derived again and compared against the extracted watermark to verify the image authenticity. The proposed scheme is robust against JPEG compression up to a maximum compression of approximately 80%,, but sensitive to malicious attacks such as cutting and pasting.
Keywords: Authentication, DCT, JPEG, Watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17451352 A Mathematical Representation for Mechanical Model Assessment: Numerical Model Qualification Method
Authors: Keny Ordaz-Hernandez, Xavier Fischer, Fouad Bennis
Abstract:
This article illustrates a model selection management approach for virtual prototypes in interactive simulations. In those numerical simulations, the virtual prototype and its environment are modelled as a multiagent system, where every entity (prototype,human, etc.) is modelled as an agent. In particular, virtual prototyp ingagents that provide mathematical models of mechanical behaviour inform of computational methods are considered. This work argues that selection of an appropriate model in a changing environment,supported by models? characteristics, can be managed by the deter-mination a priori of specific exploitation and performance measures of virtual prototype models. As different models exist to represent a single phenomenon, it is not always possible to select the best one under all possible circumstances of the environment. Instead the most appropriate shall be selecting according to the use case. The proposed approach consists in identifying relevant metrics or indicators for each group of models (e.g. entity models, global model), formulate their qualification, analyse the performance, and apply the qualification criteria. Then, a model can be selected based on the performance prediction obtained from its qualification. The authors hope that this approach will not only help to inform engineers and researchers about another approach for selecting virtual prototype models, but also assist virtual prototype engineers in the systematic or automatic model selection.
Keywords: Virtual prototype models, domain, qualification criterion, model qualification, model assessment, environmental modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20391351 Selection of Wind Farms to Add Virtual Inertia Control to Assist the Power System Frequency Regulation
Authors: W. Du, X. Wang, Jun Cao, H. F. Wang
Abstract:
Due to the randomness and uncertainty of wind energy, modern power systems integrating large-scale wind generation will be significantly impacted in terms of system performance and technical challenges. System inertia with high wind penetration is decreasing when conventional thermal generators are gradually replaced by wind turbines, which do not naturally contribute to inertia response. The power imbalance caused by wind power or demand fluctuations leads to the instability of system frequency. Accordingly, the need to attach the supplementary virtual inertia control to wind farms (WFs) strongly arises. When multi-wind farms are connected to the grid simultaneously, the selection of which critical WFs to install the virtual inertia control is greatly important to enhance the stability of system frequency. By building the small signal model of wind power systems considering frequency regulation, the installation locations are identified by the geometric measures of the mode observability of WFs. In addition, this paper takes the impacts of grid topology and selection of feedback control signals into consideration. Finally, simulations are conducted on a multi-wind farms power system and the results demonstrate that the designed virtual inertia control method can effectively assist the frequency regulation.
Keywords: Frequency regulation, virtual inertia control, installation locations, observability, wind farms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21501350 Recognition of Grocery Products in Images Captured by Cellular Phones
Authors: Farshideh Einsele, Hassan Foroosh
Abstract:
In this paper, we present a robust algorithm to recognize extracted text from grocery product images captured by mobile phone cameras. Recognition of such text is challenging since text in grocery product images varies in its size, orientation, style, illumination, and can suffer from perspective distortion. Pre-processing is performed to make the characters scale and rotation invariant. Since text degradations can not be appropriately defined using well-known geometric transformations such as translation, rotation, affine transformation and shearing, we use the whole character black pixels as our feature vector. Classification is performed with minimum distance classifier using the maximum likelihood criterion, which delivers very promising Character Recognition Rate (CRR) of 89%. We achieve considerably higher Word Recognition Rate (WRR) of 99% when using lower level linguistic knowledge about product words during the recognition process.
Keywords: Camera-based OCR, Feature extraction, Document and image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24701349 Wideband Tunable RF Filters for Channel Selection in Crowded Spectral Bands
Authors: Sanghoon Park, Ki-Jin Kim, Kwang-Ho Ahn, Hyeon-Woo Lee
Abstract:
It is very effective way to utilize a very wide tunable filter in co-existing multi-standards wireless communications environment. Especially, as the long term evolution (LTE) communication era has come, the multi-band coverage is one of the important features required for the RF components. In this paper, we present the frequency conversion technique, and so generate two types of RF filters which are specially designed for the superb tunable ability to support multiple wireless communication standards. With the help of a complex mixing structure, the inherent image signal is suppressed. The RF band-pass filter (BPF) and notch filter achieve 1.8dB and 1.6dB insertion losses and 18 dB and 17 dB attenuations, respectively. The quality factor show greater than 30.
Keywords: RF filters, interference, wideband, tunable, channel selection, complex mixing, balanced mixer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23831348 Composite Programming for Electric Passenger Car Selection in Multiple Criteria Decision Making
Authors: C. Ardil
Abstract:
This paper discusses the use of the composite programming method to identify the optimum electric passenger automobile in multiple criteria decision making. With the composite programming approach, a set of alternatives are compared using an optimality measure that gauges how far apart they are from the optimum solution. In this paper, some key factors (range, battery, engine, maximum speed, acceleration) that customers should consider while purchasing an electric passenger car for daily use are discussed. A numerical illustration is provided to demonstrate the validity and applicability of the proximity measure approach
Keywords: electric passenger car selection, multiple criteria decision making, proximity measure method, composite programming, entropic weight method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3311347 Criminal Law Instruments to Counter Corporate Crimes in Poland
Authors: Dorota Habrat
Abstract:
The aim of study was to analyze the functioning the new model of criminal corporate responsibility in Poland. The need to introduce into the Polish legal system liability of corporate (collective entities) has resulted, among others, from the Polish Republic's international commitments, in particular related to membership in the European Union. The study showed that responsibility of collective entities under the Act has a criminal nature. The main question concerns the ability of the collective entity to be brought to guilt under criminal law sense. Polish criminal law knows only the responsibility of individual persons. So far, guilt as a personal feature of action, based on the ability of the offender to feel in his psyche, could be considered only in relation to the individual person, while the said Act destroyed this conviction. Guilt of collective entity must be proven under at least one of the three possible forms: the guilt in the selection or supervision and so called organizational guilt. In addition, research in article has resolved the issue how the principle of proportionality in relation to criminal measures in response of collective entities should be considered. It should be remembered that the legal subjectivity of collective entities, including their rights and freedoms, is an emanation of the rights and freedoms of individual persons which create collective entities and through these entities implement their rights and freedoms. The whole study was proved that the adopted Act largely reflects the international legal regulations but also contains the unknown and original legislative solutions.Keywords: Criminal corporate responsibility, Polish criminal law.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15591346 Feature Preserving Nonlinear Diffusion for Ultrasonic Image Denoising and Edge Enhancement
Authors: Shujun Fu, Qiuqi Ruan, Wenqia Wang, Yu Li
Abstract:
Utilizing echoic intension and distribution from different organs and local details of human body, ultrasonic image can catch important medical pathological changes, which unfortunately may be affected by ultrasonic speckle noise. A feature preserving ultrasonic image denoising and edge enhancement scheme is put forth, which includes two terms: anisotropic diffusion and edge enhancement, controlled by the optimum smoothing time. In this scheme, the anisotropic diffusion is governed by the local coordinate transformation and the first and the second order normal derivatives of the image, while the edge enhancement is done by the hyperbolic tangent function. Experiments on real ultrasonic images indicate effective preservation of edges, local details and ultrasonic echoic bright strips on denoising by our scheme.
Keywords: anisotropic diffusion, coordinate transformationdirectional derivatives, edge enhancement, hyperbolic tangentfunction, image denoising.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18131345 Selection of Rayleigh Damping Coefficients for Seismic Response Analysis of Soil Layers
Authors: Huai-Feng Wang, Meng-Lin Lou, Ru-Lin Zhang
Abstract:
One good analysis method in seismic response analysis is direct time integration, which widely adopts Rayleigh damping. An approach is presented for selection of Rayleigh damping coefficients to be used in seismic analyses to produce a response that is consistent with Modal damping response. In the presented approach, the expression of the error of peak response, acquired through complete quadratic combination method, and Rayleigh damping coefficients was set up and then the coefficients were produced by minimizing the error. Two finite element modes of soil layers, excited by 28 seismic waves, were used to demonstrate the feasibility and validity.Keywords: Rayleigh damping, modal damping, damping coefficients, seismic response analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29171344 Boosting Method for Automated Feature Space Discovery in Supervised Quantum Machine Learning Models
Authors: Vladimir Rastunkov, Jae-Eun Park, Abhijit Mitra, Brian Quanz, Steve Wood, Christopher Codella, Heather Higgins, Joseph Broz
Abstract:
Quantum Support Vector Machines (QSVM) have become an important tool in research and applications of quantum kernel methods. In this work we propose a boosting approach for building ensembles of QSVM models and assess performance improvement across multiple datasets. This approach is derived from the best ensemble building practices that worked well in traditional machine learning and thus should push the limits of quantum model performance even further. We find that in some cases, a single QSVM model with tuned hyperparameters is sufficient to simulate the data, while in others - an ensemble of QSVMs that are forced to do exploration of the feature space via proposed method is beneficial.
Keywords: QSVM, Quantum Support Vector Machines, quantum kernel, boosting, ensemble.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4391343 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life due to the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or COVID-19 induced pneumonia. The early prediction and classification of such lung diseases help reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans are pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publicly available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.
Keywords: CT scans, COVID-19, deep learning, image processing, pneumonia, lung disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6101342 Color View Synthesis for Animated Depth Security X-ray Imaging
Authors: O. Abusaeeda, J. P. O Evans, D. Downes
Abstract:
We demonstrate the synthesis of intermediary views within a sequence of color encoded, materials discriminating, X-ray images that exhibit animated depth in a visual display. During the image acquisition process, the requirement for a linear X-ray detector array is replaced by synthetic image. Scale Invariant Feature Transform, SIFT, in combination with material segmented morphing is employed to produce synthetic imagery. A quantitative analysis of the feature matching performance of the SIFT is presented along with a comparative study of the synthetic imagery. We show that the total number of matches produced by SIFT reduces as the angular separation between the generating views increases. This effect is accompanied by an increase in the total number of synthetic pixel errors. The trends observed are obtained from 15 different luggage items. This programme of research is in collaboration with the UK Home Office and the US Dept. of Homeland Security.Keywords: X-ray, kinetic depth, view synthesis, KDE
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16621341 Image Retrieval Using Fused Features
Authors: K. Sakthivel, R. Nallusamy, C. Kavitha
Abstract:
The system is designed to show images which are related to the query image. Extracting color, texture, and shape features from an image plays a vital role in content-based image retrieval (CBIR). Initially RGB image is converted into HSV color space due to its perceptual uniformity. From the HSV image, Color features are extracted using block color histogram, texture features using Haar transform and shape feature using Fuzzy C-means Algorithm. Then, the characteristics of the global and local color histogram, texture features through co-occurrence matrix and Haar wavelet transform and shape are compared and analyzed for CBIR. Finally, the best method of each feature is fused during similarity measure to improve image retrieval effectiveness and accuracy.
Keywords: Color Histogram, Haar Wavelet Transform, Fuzzy C-means, Co-occurrence matrix; Similarity measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127