Search results for: Average throughput
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1610

Search results for: Average throughput

1100 Smart Power Scheduling to Reduce Peak Demand and Cost of Energy in Smart Grid

Authors: Hemant I. Joshi, Vivek J. Pandya

Abstract:

This paper discusses the simulation and experimental work of small Smart Grid containing ten consumers. Smart Grid is characterized by a two-way flow of real-time information and energy. RTP (Real Time Pricing) based tariff is implemented in this work to reduce peak demand, PAR (peak to average ratio) and cost of energy consumed. In the experimental work described here, working of Smart Plug, HEC (Home Energy Controller), HAN (Home Area Network) and communication link between consumers and utility server are explained. Algorithms for Smart Plug, HEC, and utility server are presented and explained in this work. After receiving the Real Time Price for different time slots of the day, HEC interacts automatically by running an algorithm which is based on Linear Programming Problem (LPP) method to find the optimal energy consumption schedule. Algorithm made for utility server can handle more than one off-peak time period during the day. Simulation and experimental work are carried out for different cases. At the end of this work, comparison between simulation results and experimental results are presented to show the effectiveness of the minimization method adopted.

Keywords: Smart Grid, Real Time Pricing, Peak to Average Ratio, Home Area Network, Home Energy Controller, Smart Plug, Utility Server, Linear Programming Problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
1099 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling

Authors: Florin Leon, Silvia Curteanu

Abstract:

Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.

Keywords: Adaptive sampling, batch bulk methyl methacrylate polymerization, large margin nearest neighbor regression, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400
1098 A Construction Management Tool: Determining a Project Schedule Typical Behaviors Using Cluster Analysis

Authors: Natalia Rudeli, Elisabeth Viles, Adrian Santilli

Abstract:

Delays in the construction industry are a global phenomenon. Many construction projects experience extensive delays exceeding the initially estimated completion time. The main purpose of this study is to identify construction projects typical behaviors in order to develop a prognosis and management tool. Being able to know a construction projects schedule tendency will enable evidence-based decision-making to allow resolutions to be made before delays occur. This study presents an innovative approach that uses Cluster Analysis Method to support predictions during Earned Value Analyses. A clustering analysis was used to predict future scheduling, Earned Value Management (EVM), and Earned Schedule (ES) principal Indexes behaviors in construction projects. The analysis was made using a database with 90 different construction projects. It was validated with additional data extracted from literature and with another 15 contrasting projects. For all projects, planned and executed schedules were collected and the EVM and ES principal indexes were calculated. A complete linkage classification method was used. In this way, the cluster analysis made considers that the distance (or similarity) between two clusters must be measured by its most disparate elements, i.e. that the distance is given by the maximum span among its components. Finally, through the use of EVM and ES Indexes and Tukey and Fisher Pairwise Comparisons, the statistical dissimilarity was verified and four clusters were obtained. It can be said that construction projects show an average delay of 35% of its planned completion time. Furthermore, four typical behaviors were found and for each of the obtained clusters, the interim milestones and the necessary rhythms of construction were identified. In general, detected typical behaviors are: (1) Projects that perform a 5% of work advance in the first two tenths and maintain a constant rhythm until completion (greater than 10% for each remaining tenth), being able to finish on the initially estimated time. (2) Projects that start with an adequate construction rate but suffer minor delays culminating with a total delay of almost 27% of the planned time. (3) Projects which start with a performance below the planned rate and end up with an average delay of 64%, and (4) projects that begin with a poor performance, suffer great delays and end up with an average delay of a 120% of the planned completion time. The obtained clusters compose a tool to identify the behavior of new construction projects by comparing their current work performance to the validated database, thus allowing the correction of initial estimations towards more accurate completion schedules.

Keywords: Cluster analysis, construction management, earned value, schedule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200
1097 Exploring Students’ Self-Evaluation on Their Learning Outcomes through an Integrated Cumulative Grade Point Average Reporting Mechanism

Authors: Suriyani Ariffin, Nor Aziah Alias, Khairil Iskandar Othman, Haslinda Yusoff

Abstract:

An Integrated Cumulative Grade Point Average (iCGPA) is a mechanism and strategy to ensure the curriculum of an academic programme is constructively aligned to the expected learning outcomes and student performance based on the attainment of those learning outcomes that is reported objectively in a spider web. Much effort and time has been spent to develop a viable mechanism and trains academics to utilize the platform for reporting. The question is: How well do learners conceive the idea of their achievement via iCGPA and whether quality learner attributes have been nurtured through the iCGPA mechanism? This paper presents the architecture of an integrated CGPA mechanism purported to address a holistic evaluation from the evaluation of courses learning outcomes to aligned programme learning outcomes attainment. The paper then discusses the students’ understanding of the mechanism and evaluation of their achievement from the generated spider web. A set of questionnaires were distributed to a group of students with iCGPA reporting and frequency analysis was used to compare the perspectives of students on their performance. In addition, the questionnaire also explored how they conceive the idea of an integrated, holistic reporting and how it generates their motivation to improve. The iCGPA group was found to be receptive to what they have achieved throughout their study period. They agreed that the achievement level generated from their spider web allows them to develop intervention and enhance the programme learning outcomes before they graduate.

Keywords: Learning outcomes attainment, iCGPA, programme learning outcomes, spider web, iCGPA reporting skills.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 776
1096 An Energy Aware Data Aggregation in Wireless Sensor Network Using Connected Dominant Set

Authors: M. Santhalakshmi, P Suganthi

Abstract:

Wireless Sensor Networks (WSNs) have many advantages. Their deployment is easier and faster than wired sensor networks or other wireless networks, as they do not need fixed infrastructure. Nodes are partitioned into many small groups named clusters to aggregate data through network organization. WSN clustering guarantees performance achievement of sensor nodes. Sensor nodes energy consumption is reduced by eliminating redundant energy use and balancing energy sensor nodes use over a network. The aim of such clustering protocols is to prolong network life. Low Energy Adaptive Clustering Hierarchy (LEACH) is a popular protocol in WSN. LEACH is a clustering protocol in which the random rotations of local cluster heads are utilized in order to distribute energy load among all sensor nodes in the network. This paper proposes Connected Dominant Set (CDS) based cluster formation. CDS aggregates data in a promising approach for reducing routing overhead since messages are transmitted only within virtual backbone by means of CDS and also data aggregating lowers the ratio of responding hosts to the hosts existing in virtual backbones. CDS tries to increase networks lifetime considering such parameters as sensors lifetime, remaining and consumption energies in order to have an almost optimal data aggregation within networks. Experimental results proved CDS outperformed LEACH regarding number of cluster formations, average packet loss rate, average end to end delay, life computation, and remaining energy computation.

Keywords: Wireless sensor network, connected dominant set, clustering, data aggregation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1129
1095 Irrigation Scheduling for Maize and Indian-mustard based on Daily Crop Water Requirement in a Semi- Arid Region

Authors: Vijay Shankar, C.S.P. Ojha, K.S. Hari Prasad

Abstract:

Maize and Indian mustard are significant crops in semi-arid climate zones of India. Improved water management requires precise scheduling of irrigation, which in turn requires an accurate computation of daily crop evapotranspiration (ETc). Daily crop evapotranspiration comes as a product of reference evapotranspiration (ET0) and the growth stage specific crop coefficients modified for daily variation. The first objective of present study is to develop crop coefficients Kc for Maize and Indian mustard. The estimated values of Kc for maize at the four crop growth stages (initial, development, mid-season, and late season) are 0.55, 1.08, 1.25, and 0.75, respectively, and for Indian mustard the Kc values at the four growth stages are 0.3, 0.6, 1.12, and 0.35, respectively. The second objective of the study is to compute daily crop evapotranspiration from ET0 and crop coefficients. Average daily ETc of maize varied from about 2.5 mm/d in the early growing period to > 6.5 mm/d at mid season. The peak ETc of maize is 8.3 mm/d and it occurred 64 days after sowing at the reproductive growth stage when leaf area index was 4.54. In the case of Indian mustard, average ETc is 1 mm/d at the initial stage, >1.8 mm/d at mid season and achieves a peak value of 2.12 mm/d on 56 days after sowing. Improved schedules of irrigation have been simulated based on daily crop evapo-transpiration and field measured data. Simulation shows a close match between modeled and field moisture status prevalent during crop season.

Keywords: Crop coefficient, Crop evapotranspiration, Field moisture, Irrigation Scheduling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3332
1094 ZnS and Graphene Quantum Dots Nanocomposite as Potential Electron Acceptor for Photovoltaics

Authors: S. M. Giripunje, Shikha Jindal

Abstract:

Zinc sulphide (ZnS) quantum dots (QDs) were synthesized successfully via simple sonochemical method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) analysis revealed the average size of QDs of the order of 3.7 nm. The band gap of the QDs was tuned to 5.2 eV by optimizing the synthesis parameters. UV-Vis absorption spectra of ZnS QD confirm the quantum confinement effect. Fourier transform infrared (FTIR) analysis confirmed the formation of single phase ZnS QDs. To fabricate the diode, blend of ZnS QDs and P3HT was prepared and the heterojunction of PEDOT:PSS and the blend was formed by spin coating on indium tin oxide (ITO) coated glass substrate. The diode behaviour of the heterojunction was analysed, wherein the ideality factor was found to be 2.53 with turn on voltage 0.75 V and the barrier height was found to be 1.429 eV. ZnS-Graphene QDs nanocomposite was characterised for the surface morphological study. It was found that the synthesized ZnS QDs appear as quasi spherical particles on the graphene sheets. The average particle size of ZnS-graphene nanocomposite QDs was found to be 8.4 nm. From voltage-current characteristics of ZnS-graphene nanocomposites, it is observed that the conductivity of the composite increases by 104 times the conductivity of ZnS QDs. Thus the addition of graphene QDs in ZnS QDs enhances the mobility of the charge carriers in the composite material. Thus, the graphene QDs, with high specific area for a large interface, high mobility and tunable band gap, show a great potential as an electron-acceptors in photovoltaic devices.

Keywords: Graphene, mobility, nanocomposites, photovoltaics, quantum dots, zinc sulphide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
1093 Generative Adversarial Network Based Fingerprint Anti-Spoofing Limitations

Authors: Yehjune Heo

Abstract:

Fingerprint Anti-Spoofing approaches have been actively developed and applied in real-world applications. One of the main problems for Fingerprint Anti-Spoofing is not robust to unseen samples, especially in real-world scenarios. A possible solution will be to generate artificial, but realistic fingerprint samples and use them for training in order to achieve good generalization. This paper contains experimental and comparative results with currently popular GAN based methods and uses realistic synthesis of fingerprints in training in order to increase the performance. Among various GAN models, the most popular StyleGAN is used for the experiments. The CNN models were first trained with the dataset that did not contain generated fake images and the accuracy along with the mean average error rate were recorded. Then, the fake generated images (fake images of live fingerprints and fake images of spoof fingerprints) were each combined with the original images (real images of live fingerprints and real images of spoof fingerprints), and various CNN models were trained. The best performances for each CNN model, trained with the dataset of generated fake images and each time the accuracy and the mean average error rate, were recorded. We observe that current GAN based approaches need significant improvements for the Anti-Spoofing performance, although the overall quality of the synthesized fingerprints seems to be reasonable. We include the analysis of this performance degradation, especially with a small number of samples. In addition, we suggest several approaches towards improved generalization with a small number of samples, by focusing on what GAN based approaches should learn and should not learn.

Keywords: Anti-spoofing, CNN, fingerprint recognition, GAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 593
1092 A Hybridized Competency-Based Teacher Candidate Selection System

Authors: R. Ramli, M. I. Ghazali, H. Ibrahim, M. M. Kasim, F. M. Kamal, S.Vikneswari

Abstract:

Teachers form the backbone of any educational system, hence selecting qualified candidates is very crucial. In Malaysia, the decision making in the selection process involves a few stages: Initial filtering through academic achievement, taking entry examination and going through an interview session. The last stage is the most challenging since it highly depends on human judgment. Therefore, this study sought to identify the selection criteria for teacher candidates that form the basis for an efficient multi-criteria teacher-candidate selection model for that last stage. The relevant criteria were determined from the literature and also based on expert input that is those who were involved in interviewing teacher candidates from a public university offering the formal training program. There are three main competency criteria that were identified which are content of knowledge, communication skills and personality. Further, each main criterion was divided into a few subcriteria. The Analytical Hierarchy Process (AHP) technique was employed to allocate weights for the criteria and later, integrated a Simple Weighted Average (SWA) scoring approach to develop the selection model. Subsequently, a web-based Decision Support System was developed to assist in the process of selecting the qualified teacher candidates. The Teacher-Candidate Selection (TeCaS) system is able to assist the panel of interviewers during the selection process which involves a large amount of complex qualitative judgments.

Keywords: Analytic Hierarchy Process, Simple Weighted Average, Decision Support System, Multi-criteria decision making problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
1091 Characterization of Brewery Wastewater Composition

Authors: Abimbola M. Enitan, Josiah Adeyemo, Sheena Kumari, Feroz M. Swalaha, Faizal Bux

Abstract:

Industries produce millions of cubic meters of effluent every year and the wastewater produced may be released into the surrounding water bodies, treated on-site or at municipal treatment plants. The determination of organic matter in the wastewater generated is very important to avoid any negative effect on the aquatic ecosystem. The scope of the present work is to assess the physicochemical composition of the wastewater produced from one of the brewery industry in South Africa. This is to estimate the environmental impact of its discharge into the receiving water bodies or the municipal treatment plant. The parameters monitored for the quantitative analysis of brewery wastewater include biological oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids, volatile suspended solids, ammonia, total oxidized nitrogen, nitrate, nitrite, phosphorus and alkalinity content. In average, the COD concentration of the brewery effluent was 5340.97 mg/l with average pH values of 4.0 to 6.7. The BOD5 and the solids content of the wastewater from the brewery industry were high. This means that the effluent is very rich in organic content and its discharge into the water bodies or the municipal treatment plant could cause environmental pollution or damage the treatment plant. In addition, there were variations in the wastewater composition throughout the monitoring period. This might be as a result of different activities that take place during the production process, as well as the effects of peak period of beer production on the water usage.

Keywords: Brewery wastewater, environmental pollution, industrial effluents, physicochemical composition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10356
1090 Spanner Barb at Thepchana Waterfall, Khao Nan National Park, Thailand

Authors: S. Sutin, M. Pollar, M. Jaroensutasinee, K. Jaroensutasinee

Abstract:

This study investigated morphology of the Spanner Barb (Puntius lateristriga Valenciennes, 1842) and water quality at Thepchana waterfall. This study was conducted at Thepchana Waterfall, Khao Nan National Park from March to May 2007. There were 40 Spanner Barb collected with 20 males and 20 females. Males had an average of 5.57 cm in standard length, 6.62 cm in total length and 5.18 g in total body weight. Females had an average of 7.25 cm in standard length, 8.24 cm in total length and 10.96 g in total body weight. The length (L) – weight (W) relationships for combining sexes, males and females were LogW = -2.137 + 3.355logL, log W = -0.068 + 3.297logL, and log W = -2.068 + 3.297logL, respectively. The Spanner Barb were smaller size fish with a compressed form; terminal mouth; villiform teeth; ctenoid scale; concave tail; general body color yellowish olive, with slight reddish tint to fins; vertical band beginning below dorsal and horizontal stripe from base of tail almost to vertical band. They also had a vertical band midway between the eye and first vertical band. There was a black spot above anal fin. The bladder looked like J-shape. Inside of the bladder was found small insects and insect lava. The body length and the bowels length was 1:1 ratio. The water temperature ranged from 25.00 – 27.00 °C which was appropriate for their habitat characteristics. Acid - alkalinity ranged from 6.65 – 6.90 mg/l. Dissolved oxygen ranged from 4.55 – 4.70 mg/l. Water hardness ranged from 31.00 – 48.00 mg/l. The amount of ammonia was about 0.25 mg/l.

Keywords: Spanner barb, morphology, water quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
1089 A Preliminary Analysis of Sustainable Development in the Belgrade Metropolitan Area

Authors: S. Zeković, M. Vujošević, T. Maričić

Abstract:

The paper provides a comprehensive analysis of the sustainable development in the Belgrade Metropolitan Region - BMA (level NUTS 2) preliminary evaluating the three chosen components: 1) economic growth and developmental changes; 2) competitiveness; and 3) territorial concentration and industrial specialization. First, we identified the main results of development changes and economic growth by applying Shift-share analysis on the metropolitan level. Second, the empirical evaluation of competitiveness in the BMA is based on the analysis of absolute and relative values of eight indicators by Spider method. Paper shows that the consideration of the national share, industrial mix and metropolitan/regional share in total Shift share of the BMA, as well as economic/functional specialization of the BMA indicate very strong process of deindustrialization. Allocative component of the BMA economic growth has positive value, reflecting the above-average sector productivity compared to the national average. Third, the important positive role of metropolitan/regional component in decomposition of the BMA economic growth is highlighted as one of the key results. Finally, comparative analysis of the industrial territorial concentration in the BMA in relation to Serbia is based on location quotient (LQ) or Balassa index as a valid measure. The results indicate absolute and relative differences in decrease of industry territorial concentration as well as inefficiency of utilizing territorial capital in the BMA. Results are important for the increase of regional competitiveness and territorial distribution in this area as well as for improvement of sustainable metropolitan and sector policies, planning and governance on this level.

Keywords: Belgrade Metropolitan Area (BMA), Comprehensive analysis/evaluation, economic growth and competitiveness, sustainable development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
1088 Performance Analysis of MC-SS for the Indoor BPLC Systems

Authors: Justinian Anatory

Abstract:

power-line networks are promise infrastructure for broadband services provision to end users. However, the network performance is affected by stochastic channel changing which is due to load impedances, number of branches and branched line lengths. It has been proposed that multi-carrier modulations techniques such as orthogonal frequency division multiplexing (OFDM), Multi-Carrier Spread Spectrum (MC-SS), wavelet OFDM can be used in such environment. This paper investigates the performance of different indoor topologies of power-line networks that uses MC-SS modulation scheme.It is observed that when a branch is added in the link between sending and receiving end of an indoor channel an average of 2.5dB power loss is found. In additional, when the branch is added at a node an average of 1dB power loss is found. Additionally when the terminal impedances of the branch change from line characteristic impedance to impedance either higher or lower values the channel performances were tremendously improved. For example changing terminal load from characteristic impedance (85 .) to 5 . the signal to noise ratio (SNR) required to attain the same performances were decreased from 37dB to 24dB respectively. Also, changing the terminal load from channel characteristic impedance (85 .) to very higher impedance (1600 .) the SNR required to maintain the same performances were decreased from 37dB to 23dB. The result concludes that MC-SS performs better compared with OFDM techniques in all aspects and especially when the channel is terminated in either higher or lower impedances.

Keywords: Communication channel model; Broadband Powerlinecommunication; Branched network; OFDM; Delay Spread, MCSS;impulsive noise; load impedance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
1087 Foot Anthropometry of Primary School Children in the South of Thailand

Authors: S. Rawangwong, J. Chatthong, W. Boonchouytan

Abstract:

The objective of the research was to study of foot anthropometry of children aged 7-12 years in the South of Thailand Thirty-three dimensions were measured on 305 male and 295 female subjects with 3 age ranges (7-12 years old). The instrumentation consists of four types of anthropometer, digital vernier caliper, digital height gauge and measuring tape. The mean values and standard deviations of average age, height, and weight of the male subjects were 9.52(±1.70) years, 137.80(±11.55) cm, and 37.57(±11.65) kg. Female average age, height, and weight subjects were 9.53(±1.70) years, 137.88(±11.55) cm, and 34.90(±11.57) kg respectively. The comparison of the 33 comparison measured anthropometric. Between male and female subjects were sexual differences in size on women in almost all areas of significance (p<0.05). The comparison of size and proportion elementary school students 11-12 years old men in Southern of Thailand with Thai boys aged 11-12 years of industrial standards at stage 4 year A.D. 2000-2001 Number nine ratio. Concluded that students male in Southern of Thailand has a size different from the proportions of research Industrial Standards. Ministry of Industry, Phase 4, when every year from A.D. 2000-2001 ratio was significantly (p<0.05).All of the feet studied were classified into 4 categories according to the ratios of diagonal foot breadth to the maximum foot length and heel breadth to the foot breadth. They were short but thick, small but long, small, and large. The numbers of the males feet classified in these categories were 86, 64, 40, and 115 persons or 28.20, 20.98, 13.11, and 37.70% respectively. For the female feet, the same values were 46, 59, 81, and 109 persons or 15.59, 20.00, 27.46, and 36.95% respectively.

Keywords: Ergonomics, foot anthropometry, male and female, primary school children

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2924
1086 Opponent Color and Curvelet Transform Based Image Retrieval System Using Genetic Algorithm

Authors: Yesubai Rubavathi Charles, Ravi Ramraj

Abstract:

In order to retrieve images efficiently from a large database, a unique method integrating color and texture features using genetic programming has been proposed. Opponent color histogram which gives shadow, shade, and light intensity invariant property is employed in the proposed framework for extracting color features. For texture feature extraction, fast discrete curvelet transform which captures more orientation information at different scales is incorporated to represent curved like edges. The recent scenario in the issues of image retrieval is to reduce the semantic gap between user’s preference and low level features. To address this concern, genetic algorithm combined with relevance feedback is embedded to reduce semantic gap and retrieve user’s preference images. Extensive and comparative experiments have been conducted to evaluate proposed framework for content based image retrieval on two databases, i.e., COIL-100 and Corel-1000. Experimental results clearly show that the proposed system surpassed other existing systems in terms of precision and recall. The proposed work achieves highest performance with average precision of 88.2% on COIL-100 and 76.3% on Corel, the average recall of 69.9% on COIL and 76.3% on Corel. Thus, the experimental results confirm that the proposed content based image retrieval system architecture attains better solution for image retrieval.

Keywords: Content based image retrieval, Curvelet transform, Genetic algorithm, Opponent color histogram, Relevance feedback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
1085 The Effect of Cow Reproductive Traits on Lifetime Productivity and Longevity

Authors: Lāsma Cielava, Daina Jonkus, Līga Paura

Abstract:

The age of first calving (AFC) is one of the most important factors that have a significant impact on cow productivity in different lactations and its whole life. A belated AFC leads to reduced reproductive performance and it is one of the main reasons for reduced longevity. Cows that calved in time period from 2001-2007 and in this time finished at least four lactations were included in the database. Data were obtained from 68841 crossbred Holstein Black and White (HM), crossbred Latvian Brown (LB), and Latvian Brown genetic resources (LBGR) cows. Cows were distributed in four groups depending on age at first calving. The longest lifespan was conducted for LBGR cows, but they were also characterized with lowest lifetime milk yield and life day milk yield. HM breed cows had the shortest lifespan, but in the lifespan of 2862.2 days was obtained in average 37916.4 kg milk accordingly 13.2 kg milk in one life day. HM breed cows were also characterized with longer calving intervals (CI) in first four lactations, but LBGR cows had the shortest CI in the study group. Age at first calving significantly affected the length of CI in different lactations (p<0.05). HM cows that first time calved >30 months old in the fourth lactation had the longest CI in all study groups (421.4 days). The LBGR cows were characterized with the shortest CI, but there was slight increase in second and third lactation. Age at first calving had a significant impact on cows’ age in each calving time. In the analysis, cow group was conducted that cows with age at first calving <24 months or in average 580.5 days at the time of fifth calving were 2156.7 days (5.9 years) old, but cows with age at first calving >30 months (932.6 days) at the time of fifth calving were 2560.9 days (7.3 years) old.

Keywords: Age at first calving, calving interval, longevity, milk yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
1084 Nitrification Efficiency and Community Structure of Municipal Activated Sewage Sludge

Authors: Oluyemi O. Awolusi, Abimbola M. Enitan, Sheena Kumari, Faizal Bux

Abstract:

Nitrification is essential to biological processes designed to remove ammonia and/or total nitrogen. It removes excess nitrogenous compound in wastewater which could be very toxic to the aquatic fauna or cause serious imbalance of such aquatic ecosystem. Efficient nitrification is linked to an in-depth knowledge of the structure and dynamics of the nitrifying community structure within the wastewater treatment systems. In this study, molecular technique was employed for characterizing the microbial structure of activated sludge [ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB)] in a municipal wastewater treatment with intention of linking it to the plant efficiency. PCR based phylogenetic analysis was also carried out. The average operating and environmental parameters as well as specific nitrification rate of plant was investigated during the study. During the investigation the average temperature was 23±1.5oC. Other operational parameters such as mixed liquor suspended solids and chemical oxygen demand inversely correlated with ammonia removal. The dissolved oxygen level in the plant was constantly lower than the optimum (between 0.24 and 1.267 mg/l) during this study. The plant was treating wastewater with influent ammonia concentration of 31.69 and 24.47 mg/L. The influent flow rates (ML/Day) was 96.81 during period. The dominant nitrifiers include: Nitrosomonas spp. Nitrobacter spp. and Nitrospira spp. The AOB had correlation with nitrification efficiency and temperature. This study shows that the specific ammonia oxidizing rate and the specific nitrate formation rates can serve as good indicator of the plant overall nitrification performance.

Keywords: Ammonia monooxygenase α-subunit (amoA) gene, ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), specific nitrification rate, PCR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2324
1083 Sweetpotato Organic Cultivation with Wood Vinegar, Entomopathogenic Nematode and Fermented Organic Substance from Plants

Authors: U. Pangnakorn, P. Tayamanont, R. Kurubunjerdjit

Abstract:

The effect of wood vinegar, entomopathogenic nematodes ((Steinernema thailandensis n. sp.) and fermented organic substances from four plants such as: Derris elliptica Roxb, Stemona tuberosa Lour, Tinospora crispa Mier and Azadirachta indica J. were tested on the five varieties of sweetpotato with potential for bioethanol production ie. Taiwan, China, PROC No.65-16, Phichit 166-5, and Phichit 129-6. The experimental plots were located at Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand. The aim of this study was to compare the efficiency of the five treatments for growth, yield and insect infestation on the five varieties of sweetpotato. Treatment with entomopathogenic nematodes gave the highest average weight of sweetpotato tubers (1.3 kg/tuber), followed by wood vinegar, fermented organic substances and mixed treatment with yields of 0.88, 0.46 and 0.43 kg/tuber, respectively. Also the entomopathogenic nematode treatment gave significantly higher average width and length of sweet potato (9.82 cm and 9.45 cm, respectively). Additionally, the entomopathogenic nematode provided the best control of insect infestation on sweetpotato leaves and tubers. Comparison among the varieties of sweetpotato, PROC NO.65-16 showed the highest weight and length. However, Phichit 129-6 gave significantly higher weight of 0.94 kg/tuber. Lastly, the lowest sweet potato weevil infestation on leaves and tubers occurred on Taiwan and Phichit 129-6.

Keywords: Sweetpotato (Ipomoea batatas), sweetpotato weevil (Cylas formicarius Fabr), wood vinegar, Entomopathogenic nematode (Steinernema thailandensis n. sp.), fermented organic substances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3245
1082 The Potential Use of Nanofilters to Supply Potable Water in Persian Gulf and Oman Sea Watershed Basin

Authors: Sara Zamani, Mojtaba Fazeli, Abdollah Rashidi Mehrabadi

Abstract:

In a world worried about water resources with the shadow of drought and famine looming all around, the quality of water is as important as its quantity. The source of all concerns is the constant reduction of per capita quality water for different uses. Iran With an average annual precipitation of 250 mm compared to the 800 mm world average, Iran is considered a water scarce country and the disparity in the rainfall distribution, the limitations of renewable resources and the population concentration in the margins of desert and water scarce areas have intensified the problem. The shortage of per capita renewable freshwater and its poor quality in large areas of the country, which have saline, brackish or hard water resources, and the profusion of natural and artificial pollutant have caused the deterioration of water quality. Among methods of treatment and use of these waters one can refer to the application of membrane technologies, which have come into focus in recent years due to their great advantages. This process is quite efficient in eliminating multi-capacity ions; and due to the possibilities of production at different capacities, application as treatment process in points of use, and the need for less energy in comparison to Reverse Osmosis processes, it can revolutionize the water and wastewater sector in years to come. The article studied the different capacities of water resources in the Persian Gulf and Oman Sea watershed basins, and processes the possibility of using nanofiltration process to treat brackish and non-conventional waters in these basins.

Keywords: Membrane processes, saline waters, brackish waters, hard waters, zoning water quality in the Persian Gulf and the Oman Sea Watershed area, nanofiltration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
1081 Simulation of Organic Matter Variability on a Sugarbeet Field Using the Computer Based Geostatistical Methods

Authors: M. Rüstü Karaman, Tekin Susam, Fatih Er, Servet Yaprak, Osman Karkacıer

Abstract:

Computer based geostatistical methods can offer effective data analysis possibilities for agricultural areas by using vectorial data and their objective informations. These methods will help to detect the spatial changes on different locations of the large agricultural lands, which will lead to effective fertilization for optimal yield with reduced environmental pollution. In this study, topsoil (0-20 cm) and subsoil (20-40 cm) samples were taken from a sugar beet field by 20 x 20 m grids. Plant samples were also collected from the same plots. Some physical and chemical analyses for these samples were made by routine methods. According to derived variation coefficients, topsoil organic matter (OM) distribution was more than subsoil OM distribution. The highest C.V. value of 17.79% was found for topsoil OM. The data were analyzed comparatively according to kriging methods which are also used widely in geostatistic. Several interpolation methods (Ordinary,Simple and Universal) and semivariogram models (Spherical, Exponential and Gaussian) were tested in order to choose the suitable methods. Average standard deviations of values estimated by simple kriging interpolation method were less than average standard deviations (topsoil OM ± 0.48, N ± 0.37, subsoil OM ± 0.18) of measured values. The most suitable interpolation method was simple kriging method and exponantial semivariogram model for topsoil, whereas the best optimal interpolation method was simple kriging method and spherical semivariogram model for subsoil. The results also showed that these computer based geostatistical methods should be tested and calibrated for different experimental conditions and semivariogram models.

Keywords: Geostatistic, kriging, organic matter, sugarbeet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
1080 Cooperative Cross Layer Topology for Concurrent Transmission Scheduling Scheme in Broadband Wireless Networks

Authors: Gunasekaran Raja, Ramkumar Jayaraman

Abstract:

In this paper, we consider CCL-N (Cooperative Cross Layer Network) topology based on the cross layer (both centralized and distributed) environment to form network communities. Various performance metrics related to the IEEE 802.16 networks are discussed to design CCL-N Topology. In CCL-N topology, nodes are classified as master nodes (Master Base Station [MBS]) and serving nodes (Relay Station [RS]). Nodes communities are organized based on the networking terminologies. Based on CCL-N Topology, various simulation analyses for both transparent and non-transparent relays are tabulated and throughput efficiency is calculated. Weighted load balancing problem plays a challenging role in IEEE 802.16 network. CoTS (Concurrent Transmission Scheduling) Scheme is formulated in terms of three aspects – transmission mechanism based on identical communities, different communities and identical node communities. CoTS scheme helps in identifying the weighted load balancing problem. Based on the analytical results, modularity value is inversely proportional to that of the error value. The modularity value plays a key role in solving the CoTS problem based on hop count. The transmission mechanism for identical node community has no impact since modularity value is same for all the network groups. In this paper three aspects of communities based on the modularity value which helps in solving the problem of weighted load balancing and CoTS are discussed.

Keywords: Cross layer network topology, concurrent scheduling, modularity value, network communities and weighted load balancing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
1079 Green Synthesized Iron Oxide Nanoparticles: A Nano-Nutrient for the Growth and Enhancement of Flax (Linum usitatissimum L.) Plant

Authors: G. Karunakaran, M. Jagathambal, N. Van Minh, E. Kolesnikov, A. Gusev, O. V. Zakharova, E. V. Scripnikova, E. D. Vishnyakova, D. Kuznetsov

Abstract:

Iron oxide nanoparticles (Fe2O3NPs) are widely used in different applications due to its ecofriendly nature and biocompatibility. Hence, in this investigation, biosynthesized Fe2O3NPs influence on flax (Linum usitatissimum L.) plant was examined. The biosynthesized nanoparticles were found to be cubic phase which is confirmed by XRD analysis. FTIR analysis confirmed the presence of functional groups corresponding to the iron oxide nanoparticle. The elemental analysis also confirmed that the obtained nanoparticle is iron oxide nanoparticle. The scanning electron microscopy and the transmission electron microscopy confirm that the average particle size was around 56 nm. The effect of Fe2O3NPs on seed germination followed by biochemical analysis was carried out using standard methods. The results obtained after four days and 11 days of seed vigor studies showed that the seedling length (cm), average number of seedling with leaves, increase in root length (cm) was found to be enhanced on treatment with iron oxide nanoparticles when compared to control. A positive correlation was noticed with the dose of the nanoparticle and plant growth, which may be due to changes in metabolic activity. Hence, to evaluate the change in metabolic activity, peroxidase and catalase activities were estimated. It was clear from the observation that higher concentration of iron oxide nanoparticles (Fe2O3NPs 1000 mg/L) has enhanced peroxidase and catalase activities and in turn plant growth. Thus, this study clearly showed that biosynthesized iron oxide nanoparticles will be an effective nano-nutrient for agriculture applications.

Keywords: Catalase, fertilizer, iron oxide nanoparticles, Linum usitatissimum L., nano-nutrient, peroxidase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
1078 Lighting Consumption Analysis in Retail Industry: Comparative Study

Authors: Elena C. Tamaş, Grațiela M. Țârlea, Gianni Flamaropol, Dragoș Hera

Abstract:

This article is referring to a comparative study regarding the electrical energy consumption for lighting on diverse types of big sizes commercial buildings built in Romania after 2007, having 3, 4, 5 versus 8, 9, 10 operational years. Some buildings have installed building management systems (BMS) to monitor also the lighting performances starting with the opening days till the present days but some have chosen only local meters to implement. Firstly, for each analyzed building, the total required energy power and the energy power consumption for lighting were calculated depending on the lamps number, the unit power and the average daily running hours. All objects and installations were chosen depending on the destination/location of the lighting (exterior parking or access, interior or covering parking, building interior and building perimeter). Secondly, to all lighting objects and installations, mechanical counters were installed, and to the ones linked to BMS there were installed the digital meters as well for a better monitoring. Some efficient solutions are proposed to improve the power consumption, for example the 1/3 lighting functioning for the covered and exterior parking lighting to those buildings if can be done. This type of lighting share can be performed on each level, especially on the night shifts. Another example is to use the dimmers to reduce the light level, depending on the executed work in the respective area, and a 30% power energy saving can be achieved. Using the right BMS to monitor, the energy consumption depending on the average operational daily hours and changing the non-performant unit lights with the ones having LED technology or economical ones might increase significantly the energy performances and reduce the energy consumption of the buildings.

Keywords: Lighting consumption, commercial buildings, maintenance, energy performances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 977
1077 Screen of MicroRNA Targets in Zebrafish Using Heterogeneous Data Sources: A Case Study for Dre-miR-10 and Dre-miR-196

Authors: Yanju Zhang, Joost M. Woltering, Fons J. Verbeek

Abstract:

It has been established that microRNAs (miRNAs) play an important role in gene expression by post-transcriptional regulation of messengerRNAs (mRNAs). However, the precise relationships between microRNAs and their target genes in sense of numbers, types and biological relevance remain largely unclear. Dissecting the miRNA-target relationships will render more insights for miRNA targets identification and validation therefore promote the understanding of miRNA function. In miRBase, miRanda is the key algorithm used for target prediction for Zebrafish. This algorithm is high-throughput but brings lots of false positives (noise). Since validation of a large scale of targets through laboratory experiments is very time consuming, several computational methods for miRNA targets validation should be developed. In this paper, we present an integrative method to investigate several aspects of the relationships between miRNAs and their targets with the final purpose of extracting high confident targets from miRanda predicted targets pool. This is achieved by using the techniques ranging from statistical tests to clustering and association rules. Our research focuses on Zebrafish. It was found that validated targets do not necessarily associate with the highest sequence matching. Besides, for some miRNA families, the frequency of their predicted targets is significantly higher in the genomic region nearby their own physical location. Finally, in a case study of dre-miR-10 and dre-miR-196, it was found that the predicted target genes hoxd13a, hoxd11a, hoxd10a and hoxc4a of dre-miR- 10 while hoxa9a, hoxc8a and hoxa13a of dre-miR-196 have similar characteristics as validated target genes and therefore represent high confidence target candidates.

Keywords: MicroRNA targets validation, microRNA-target relationships, dre-miR-10, dre-miR-196.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
1076 Grassland Phenology in Different Eco-Geographic Regions over the Tibetan Plateau

Authors: Jiahua Zhang, Qing Chang, Fengmei Yao

Abstract:

Studying on the response of vegetation phenology to climate change at different temporal and spatial scales is important for understanding and predicting future terrestrial ecosystem dynamics and the adaptation of ecosystems to global change. In this study, the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) dataset and climate data were used to analyze the dynamics of grassland phenology as well as their correlation with climatic factors in different eco-geographic regions and elevation units across the Tibetan Plateau. The results showed that during 2003–2012, the start of the grassland greening season (SOS) appeared later while the end of the growing season (EOS) appeared earlier following the plateau’s precipitation and heat gradients from southeast to northwest. The multi-year mean value of SOS showed differences between various eco-geographic regions and was significantly impacted by average elevation and regional average precipitation during spring. Regional mean differences for EOS were mainly regulated by mean temperature during autumn. Changes in trends of SOS in the central and eastern eco-geographic regions were coupled to the mean temperature during spring, advancing by about 7d/°C. However, in the two southwestern eco-geographic regions, SOS was delayed significantly due to the impact of spring precipitation. The results also showed that the SOS occurred later with increasing elevation, as expected, with a delay rate of 0.66 d/100m. For 2003–2012, SOS showed an advancing trend in low-elevation areas, but a delayed trend in high-elevation areas, while EOS was delayed in low-elevation areas, but advanced in high-elevation areas. Grassland SOS and EOS changes may be influenced by a variety of other environmental factors in each eco-geographic region.

Keywords: Grassland, phenology, MODIS, eco-geographic regions, elevation, climatic factors, Tibetan Plateau.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2828
1075 Faster Pedestrian Recognition Using Deformable Part Models

Authors: Alessandro Preziosi, Antonio Prioletti, Luca Castangia

Abstract:

Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations.

Keywords: Autonomous vehicles, deformable part model, dpm, pedestrian recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
1074 Performance Analysis of Search Medical Imaging Service on Cloud Storage Using Decision Trees

Authors: González A. Julio, Ramírez L. Leonardo, Puerta A. Gabriel

Abstract:

Telemedicine services use a large amount of data, most of which are diagnostic images in Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7) formats. Metadata is generated from each related image to support their identification. This study presents the use of decision trees for the optimization of information search processes for diagnostic images, hosted on the cloud server. To analyze the performance in the server, the following quality of service (QoS) metrics are evaluated: delay, bandwidth, jitter, latency and throughput in five test scenarios for a total of 26 experiments during the loading and downloading of DICOM images, hosted by the telemedicine group server of the Universidad Militar Nueva Granada, Bogotá, Colombia. By applying decision trees as a data mining technique and comparing it with the sequential search, it was possible to evaluate the search times of diagnostic images in the server. The results show that by using the metadata in decision trees, the search times are substantially improved, the computational resources are optimized and the request management of the telemedicine image service is improved. Based on the experiments carried out, search efficiency increased by 45% in relation to the sequential search, given that, when downloading a diagnostic image, false positives are avoided in management and acquisition processes of said information. It is concluded that, for the diagnostic images services in telemedicine, the technique of decision trees guarantees the accessibility and robustness in the acquisition and manipulation of medical images, in improvement of the diagnoses and medical procedures in patients.

Keywords: Cloud storage, decision trees, diagnostic image, search, telemedicine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
1073 Chikungunya Protease Domain–High Throughput Virtual Screening

Authors: Surender Singh Jadav, Venkatesan Jayaprakash, Arijit Basu, Barij Nayan Sinha

Abstract:

Chikungunya virus (CHICKV) is an arboviruses belonging to family Tagoviridae and is transmitted to human through by mosquito (Aedes aegypti and Aedes albopictus) bite. A large outbreak of chikungunya has been reported in India between 2006 and 2007, along with several other countries from South-East Asia and for the first time in Europe. It was for the first time that the CHICKV outbreak has been reported with mortality from Reunion Island and increased mortality from Asian countries. CHICKV affects all age groups, and currently there are no specific drugs or vaccine to cure the disease. The need of antiviral agents for the treatment of CHICKV infection and the success of virtual screening against many therapeutically valuable targets led us to carry out the structure based drug design against Chikungunya nSP2 protease (PDB: 3TRK). Highthroughput virtual screening of publicly available databases, ZINC12 and BindingDB, has been carried out using the Openeye tools and Schrodinger LLC software packages. Openeye Filter program has been used to filter the database and the filtered outputs were docked using HTVS protocol implemented in GLIDE package of Schrodinger LLC. The top HITS were further used for enriching the similar molecules from the database through vROCS; a shape based screening protocol implemented in Openeye. The approach adopted has provided different scaffolds as HITS against CHICKV protease. Three scaffolds: Indole, Pyrazole and Sulphone derivatives were selected based on the docking score and synthetic feasibility. Derivatives of Pyrazole were synthesized and submitted for antiviral screening against CHICKV.

Keywords: Chikungunya, nsP2 protease, ADME filter, HTVS, Docking, Active site.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2496
1072 Analysis of the Operational Performance of Three Unconventional Arterial Intersection Designs: Median U-Turn, Superstreet and Single Quadrant

Authors: Hana Naghawi, Khair Jadaan, Rabab Al-Louzi, Taqwa Hadidi

Abstract:

This paper is aimed to evaluate and compare the operational performance of three Unconventional Arterial Intersection Designs (UAIDs) including Median U-Turn, Superstreet, and Single Quadrant Intersection using real traffic data. For this purpose, the heavily congested signalized intersection of Wadi Saqra in Amman was selected. The effect of implementing each of the proposed UAIDs was not only evaluated on the isolated Wadi Saqra signalized intersection, but also on the arterial road including both surrounding intersections. The operational performance of the isolated intersection was based on the level of service (LOS) expressed in terms of control delay and volume to capacity ratio. On the other hand, the measures used to evaluate the operational performance on the arterial road included traffic progression, stopped delay per vehicle, number of stops and the travel speed. The analysis was performed using SYNCHRO 8 microscopic software. The simulation results showed that all three selected UAIDs outperformed the conventional intersection design in terms of control delay but only the Single Quadrant Intersection design improved the main intersection LOS from F to B. Also, the results indicated that the Single Quadrant Intersection design resulted in an increase in average travel speed by 52%, and a decrease in the average stopped delay by 34% on the selected corridor when compared to the corridor with conventional intersection design. On basis of these results, it can be concluded that the Median U-Turn and the Superstreet do not perform the best under heavy traffic volumes.

Keywords: Median U-turn, single quadrant, superstreet, unconventional arterial intersection design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 863
1071 Copper Price Prediction Model for Various Economic Situations

Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin

Abstract:

Copper is an essential raw material used in the construction industry. During 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two hybrid price prediction models using artificial neural network and long short-term memory (ANN-LSTM), by Python, that can forecast the average monthly copper prices, traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022 and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices, and economic indicators of the three major exporting countries of copper depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation, and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-month prediction model is better than the 1-month prediction model; but still, both models can act as predicting tools for diverse economic situations.

Keywords: Copper prices, prediction model, neural network, time series forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187