Search results for: positive count data.
8016 RFID-ready Master Data Management for Reverse Logistics
Authors: Jincheol Han, Hyunsun Ju, Jonghoon Chun
Abstract:
Sharing consistent and correct master data among disparate applications in a reverse-logistics chain has long been recognized as an intricate problem. Although a master data management (MDM) system can surely assume that responsibility, applications that need to co-operate with it must comply with proprietary query interfaces provided by the specific MDM system. In this paper, we present a RFID-ready MDM system which makes master data readily available for any participating applications in a reverse-logistics chain. We propose a RFID-wrapper as a part of our MDM. It acts as a gateway between any data retrieval request and query interfaces that process it. With the RFID-wrapper, any participating applications in a reverse-logistics chain can easily retrieve master data in a way that is analogous to retrieval of any other RFID-based logistics transactional data.Keywords: Reverse Logistics, Master Data Management, RFID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19748015 Dynamic Models versus Frailty Models for Recurrent Event Data
Authors: Entisar A. Elgmati
Abstract:
Recurrent event data is a special type of multivariate survival data. Dynamic and frailty models are one of the approaches that dealt with this kind of data. A comparison between these two models is studied using the empirical standard deviation of the standardized martingale residual processes as a way of assessing the fit of the two models based on the Aalen additive regression model. Here we found both approaches took heterogeneity into account and produce residual standard deviations close to each other both in the simulation study and in the real data set.Keywords: Dynamic, frailty, misspecification, recurrent events.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23508014 Assessment of the Environmental Destructive Effects of Building Dams
Authors: Mohammad Reza Pirestani, Mehdi Shafaghati, Amir Ahmad Dehghani
Abstract:
From the beginning of creation, human being has ever fought against the ecosystem by changes has made in environment. The most environmental changes on the nature have been done after starting the concentrated life in the same region. Dams are one of the most important buildings in water resources and transferring. These buildings have been made from old times without access to hydrological, hydraulically, hydro mechanical information. Dams have positive and negative effects on environment. Constructing a dam relatively causes equal ecological consequences. According to different criteria, environmental effects of dams can lead short term and long term damages. These effects may influence on the situation and treatment of meteorology, biology, culture, ancient works, etc and severely causes to change and complicate it. So considering importance of positive effects of dam construction, it is necessary to minimize negative environmental effects of dams to achieve a stable development. In this article the considered effects and their solutions in influencing on assessment of destructive environmental effects of dams construction have been surveyed and presented.Keywords: Dam, Environment, Water Resources, Assessment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36098013 An Application of Self-Health Risk Assessment among Populations Living in the Vicinity of a Fiber-Cement Roofing Factory
Authors: Phayong Thepaksorn
Abstract:
The objective of this study was to assess whether living in proximity to a roofing fiber cement factory in southern Thailand was associated with physical, mental, social, and spiritual health domains measured in a self-reported health risk assessment (HRA) questionnaire. A cross-sectional study was conducted among community members divided into two groups: near population (living within 0-2km of factory) and far population (living within 2-5km of factory) (N=198). A greater proportion of those living far from the factory (65.34%) reported physical health problems than the near group (51.04%) (p =0.032). This study has demonstrated that the near population group had higher proportion of participants with positive ratings on mental assessment (30.34%) and social health impacts (28.42%) than far population group (10.59% and 16.67%, respectively) (p <0.001). The near population group (29.79%) had similar proportion of participants with positive ratings in spiritual health impacts compared with far population group (27.08%). Among females, but not males, this study demonstrated that a higher proportion of the near population had a positive summative score for the self-HRA, which included all four health domain, compared to the far population (p<0.001 for females; p = 0.154 for males). In conclusion, this self-HRA of physical, mental, social, and spiritual health domains reflected the risk perceptions of populations living in the vicinity of the roofing fiber cement factory. This type of tool can bring attention to population concerns and complaints in the factory’s surrounding community. Our findings may contribute to future development of self-HRA for HIA development procedure in Thailand.
Keywords: Cement dust, health impact assessment, risk assessment, walk-though survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19228012 Issues and Architecture for Supporting Data Warehouse Queries in Web Portals
Authors: Minsoo Lee, Yoon-kyung Lee, Hyejung Yoon, Soo-kyung Song, Sujeong Cheong
Abstract:
Data Warehousing tools have become very popular and currently many of them have moved to Web-based user interfaces to make it easier to access and use the tools. The next step is to enable these tools to be used within a portal framework. The portal framework consists of pages having several small windows that contain individual data warehouse query results. There are several issues that need to be considered when designing the architecture for a portal enabled data warehouse query tool. Some issues need special techniques that can overcome the limitations that are imposed by the nature of data warehouse queries. Issues such as single sign-on, query result caching and sharing, customization, scheduling and authorization need to be considered. This paper discusses such issues and suggests an architecture to support data warehouse queries within Web portal frameworks.
Keywords: Data Warehousing tools, data warehousing queries, web portal frameworks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21218011 Media Pedagogy - The Medium is the Message
Authors: Syed Sultan Ahmed
Abstract:
The current education system in India is adept in equipping and assessing the scholastic development of children. However, there is an immediate need to strengthen co-scholastic areas like life-skills, values and attitudes to equip students to face real life challenges. Audio-visual technology and their respective media can make a significant contribution to a value based learning curriculum. Thus, co-scholastic skills need to be effectively nurtured by a medium that is entertaining and impactful. Films in general have a tremendous impact in our society. Films with a positive message make a formidable learning experience that can influence and inspire generations of learners. Leveraging on this powerful medium, EduMedia India Pvt. Ltd. has introduced School Cinema a well researched film-based learning module supported by a fun and exciting workbook, designed to introduce and reaffirm life-skills and values to children, thereby having a positive influence on their attitudes.Keywords: Co-Scholastics, Entertaining, Educative, Holistic- Development
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16778010 Data Mining Using Learning Automata
Authors: M. R. Aghaebrahimi, S. H. Zahiri, M. Amiri
Abstract:
In this paper a data miner based on the learning automata is proposed and is called LA-miner. The LA-miner extracts classification rules from data sets automatically. The proposed algorithm is established based on the function optimization using learning automata. The experimental results on three benchmarks indicate that the performance of the proposed LA-miner is comparable with (sometimes better than) the Ant-miner (a data miner algorithm based on the Ant Colony optimization algorithm) and CNZ (a well-known data mining algorithm for classification).Keywords: Data mining, Learning automata, Classification rules, Knowledge discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19358009 Secure and Efficient Transmission of Aggregated Data for Mobile Wireless Sensor Networks
Authors: A. Krishna Veni, R.Geetha
Abstract:
Wireless Sensor Networks (WSNs) are suitable for many scenarios in the real world. The retrieval of data is made efficient by the data aggregation techniques. Many techniques for the data aggregation are offered and most of the existing schemes are not energy efficient and secure. However, the existing techniques use the traditional clustering approach where there is a delay during the packet transmission since there is no proper scheduling. The presented system uses the Velocity Energy-efficient and Link-aware Cluster-Tree (VELCT) scheme in which there is a Data Collection Tree (DCT) which improves the lifetime of the network. The VELCT scheme and the construction of DCT reduce the delay and traffic. The network lifetime can be increased by avoiding the frequent change in cluster topology. Secure and Efficient Transmission of Aggregated data (SETA) improves the security of the data transmission via the trust value of the nodes prior the aggregation of data. Since SETA considers the data only from the trustworthy nodes for aggregation, it is more secure in transmitting the data thereby improving the accuracy of aggregated data.
Keywords: Aggregation, lifetime, network security, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12178008 Development of Greenhouse Analysis Tools for Home Agriculture Project
Authors: M. Amir Abas, M. Dahlui
Abstract:
This paper presents the development of analysis tools for Home Agriculture project. The tools are required for monitoring the condition of greenhouse which involves two components: measurement hardware and data analysis engine. Measurement hardware is functioned to measure environment parameters such as temperature, humidity, air quality, dust and etc while analysis tool is used to analyse and interpret the integrated data against the condition of weather, quality of health, irradiance, quality of soil and etc. The current development of the tools is completed for off-line data recorded technique. The data is saved in MMC and transferred via ZigBee to Environment Data Manager (EDM) for data analysis. EDM converts the raw data and plot three combination graphs. It has been applied in monitoring three months data measurement for irradiance, temperature and humidity of the greenhouse..Keywords: Monitoring, Environment, Greenhouse, Analysis tools
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20188007 Interventions and Supervision in Mental Health Services: Experiences of a Working Group in Brazil
Authors: Sonia Alberti
Abstract:
The Regional Conference to Restructure Psychiatric Care in Latin America, convened by the Pan American Health Organization (PAHO) in 1990, oriented the Brazilian Federal Act in 2001 that stipulated the psychiatric reform which requires deinstitutionalization and community-based treatment. Since then, the 15 years’ experience of different working teams in mental health led an academic working group – supervisors from personal practices, professors and researchers – to discuss certain clinical issues, as well as supervisions, and to organize colloquia in different cities as a methodology. These colloquia count on the participation of different working teams from the cities in which they are held, with team members with different levels of educational degrees and prior experiences, in order to increase dialogue right where it does not always appear to be possible. The principal aim of these colloquia is to gain interlocution between practitioners and academics. Working with the theory of case constructions, this methodology revealed itself helpful in unfolding new solutions. The paper also observes that there is not always harmony between what the psychiatric reform demands and clinical ethics.
Keywords: Mental health, supervision, clinical cases, Brazilian experience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7858006 One-Class Support Vector Machines for Protein-Protein Interactions Prediction
Authors: Hany Alashwal, Safaai Deris, Razib M. Othman
Abstract:
Predicting protein-protein interactions represent a key step in understanding proteins functions. This is due to the fact that proteins usually work in context of other proteins and rarely function alone. Machine learning techniques have been applied to predict protein-protein interactions. However, most of these techniques address this problem as a binary classification problem. Although it is easy to get a dataset of interacting proteins as positive examples, there are no experimentally confirmed non-interacting proteins to be considered as negative examples. Therefore, in this paper we solve this problem as a one-class classification problem using one-class support vector machines (SVM). Using only positive examples (interacting protein pairs) in training phase, the one-class SVM achieves accuracy of about 80%. These results imply that protein-protein interaction can be predicted using one-class classifier with comparable accuracy to the binary classifiers that use artificially constructed negative examples.Keywords: Bioinformatics, Protein-protein interactions, One-Class Support Vector Machines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19898005 A Robust Data Hiding Technique based on LSB Matching
Authors: Emad T. Khalaf, Norrozila Sulaiman
Abstract:
Many researchers are working on information hiding techniques using different ideas and areas to hide their secrete data. This paper introduces a robust technique of hiding secret data in image based on LSB insertion and RSA encryption technique. The key of the proposed technique is to encrypt the secret data. Then the encrypted data will be converted into a bit stream and divided it into number of segments. However, the cover image will also be divided into the same number of segments. Each segment of data will be compared with each segment of image to find the best match segment, in order to create a new random sequence of segments to be inserted then in a cover image. Experimental results show that the proposed technique has a high security level and produced better stego-image quality.Keywords: steganography; LSB Matching; RSA Encryption; data segments
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22208004 Impact of Financial System’s Development on Economic Development: An Empirical Investigation
Authors: Vilma Deltuvaitė
Abstract:
Comparisons of financial development across countries are central to answering many of the questions on factors leading to economic development. For this reason this study analyzes the implications of financial system’s development on country’s economic development. The aim of the article: to analyze the impact of financial system’s development on economic development. The following research methods were used: systemic, logical and comparative analysis of scientific literature, analysis of statistical data, time series model (Autoregressive Distributed Lag (ARDL) Model). The empirical results suggest about positive short and long term effect of stock market development on GDP per capita.
Keywords: Banking sector, economic development, financial system’s development, stock market, private bond market.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21248003 Students’ Attitudes Toward Seeking Psychological Help
Authors: P. Gudelj, E. Franić, M. Kolega
Abstract:
Mental health is crucial for personal, social, and socio-economic development, becoming an increasingly relevant topic, especially in the post-global pandemic era. One vulnerable demographic comprises students who, during the pandemic, faced challenges such as adapting to new educational methods, societal or residential changes, heightened stress, responsibilities, and entering the job market. These life challenges proved insurmountable for some individuals during this phase. This research aimed to examine students' attitudes towards individuals seeking psychological help. By gaining a better understanding of young people's perceptions of seeking psychological assistance, a clearer insight into how to make psychological support more accessible and acceptable can be achieved. A questionnaire was completed by 210 students from various disciplines at the University of Zagreb. While the majority of students expressed a positive attitude towards seeking psychological help, a very small percentage reported having sought it. One of the most common obstacles to seeking appropriate help was a lack of financial means, with the most significant motivators being the positive experiences of those who sought help and an affordable cost.
Keywords: Mental health, students, psychological support, attitudes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888002 Comprehensive Analysis of Data Mining Tools
Authors: S. Sarumathi, N. Shanthi
Abstract:
Due to the fast and flawless technological innovation there is a tremendous amount of data dumping all over the world in every domain such as Pattern Recognition, Machine Learning, Spatial Data Mining, Image Analysis, Fraudulent Analysis, World Wide Web etc., This issue turns to be more essential for developing several tools for data mining functionalities. The major aim of this paper is to analyze various tools which are used to build a resourceful analytical or descriptive model for handling large amount of information more efficiently and user friendly. In this survey the diverse tools are illustrated with their extensive technical paradigm, outstanding graphical interface and inbuilt multipath algorithms in which it is very useful for handling significant amount of data more indeed.
Keywords: Classification, Clustering, Data Mining, Machine learning, Visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24398001 A Prediction of Attractive Evaluation Objects Based On Complex Sequential Data
Authors: Shigeaki Sakurai, Makino Kyoko, Shigeru Matsumoto
Abstract:
This paper proposes a method that predicts attractive evaluation objects. In the learning phase, the method inductively acquires trend rules from complex sequential data. The data is composed of two types of data. One is numerical sequential data. Each evaluation object has respective numerical sequential data. The other is text sequential data. Each evaluation object is described in texts. The trend rules represent changes of numerical values related to evaluation objects. In the prediction phase, the method applies new text sequential data to the trend rules and evaluates which evaluation objects are attractive. This paper verifies the effect of the proposed method by using stock price sequences and news headline sequences. In these sequences, each stock brand corresponds to an evaluation object. This paper discusses validity of predicted attractive evaluation objects, the process time of each phase, and the possibility of application tasks.
Keywords: Trend rule, frequent pattern, numerical sequential data, text sequential data, evaluation object.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12358000 Methods for Distinction of Cattle Using Supervised Learning
Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl
Abstract:
Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.
Keywords: Genetic data, Pinzgau cattle, supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23187999 A Comparative Study of Fine Grained Security Techniques Based on Data Accessibility and Inference
Authors: Azhar Rauf, Sareer Badshah, Shah Khusro
Abstract:
This paper analyzes different techniques of the fine grained security of relational databases for the two variables-data accessibility and inference. Data accessibility measures the amount of data available to the users after applying a security technique on a table. Inference is the proportion of information leakage after suppressing a cell containing secret data. A row containing a secret cell which is suppressed can become a security threat if an intruder generates useful information from the related visible information of the same row. This paper measures data accessibility and inference associated with row, cell, and column level security techniques. Cell level security offers greatest data accessibility as it suppresses secret data only. But on the other hand, there is a high probability of inference in cell level security. Row and column level security techniques have least data accessibility and inference. This paper introduces cell plus innocent security technique that utilizes the cell level security method but suppresses some innocent data to dodge an intruder that a suppressed cell may not necessarily contain secret data. Four variations of the technique namely cell plus innocent 1/4, cell plus innocent 2/4, cell plus innocent 3/4, and cell plus innocent 4/4 respectively have been introduced to suppress innocent data equal to 1/4, 2/4, 3/4, and 4/4 percent of the true secret data inside the database. Results show that the new technique offers better control over data accessibility and inference as compared to the state-of-theart security techniques. This paper further discusses the combination of techniques together to be used. The paper shows that cell plus innocent 1/4, 2/4, and 3/4 techniques can be used as a replacement for the cell level security.
Keywords: Fine Grained Security, Data Accessibility, Inference, Row, Cell, Column Level Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14717998 Effects of Market Share and Diversification on Nonlife Insurers- Performance
Authors: M. Pervan, T. Pavic Kramaric
Abstract:
The aim of this paper is to investigate the influence of market share and diversification on the nonlife insurers- performance. The underlying relationships have been investigated in different industries and different disciplines (economics, management...), still, no consistency exists either in the magnitude or statistical significance of the relationship between market share (and diversification as well) on one side and companies- performance on the other side. Moreover, the direction of the relationship is also somewhat questionable. While some authors find this relationship to be positive, the others reveal its negative association. In order to test the influence of market share and diversification on companies- performance in Croatian nonlife insurance industry for the period from 1999 to 2009, we designed an empirical model in which we included the following independent variables: firms- profitability from previous years, market share, diversification and control variables (i.e. ownership, industrial concentration, GDP per capita, inflation). Using the two-step generalized method of moments (GMM) estimator we found evidence of a positive and statistically significant influence of both, market share and diversification, on insurers- profitability.Keywords: Diversification, market share, nonlife insurance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16877997 Classification of Political Affiliations by Reduced Number of Features
Authors: Vesile Evrim, Aliyu Awwal
Abstract:
By the evolvement in technology, the way of expressing opinions switched direction to the digital world. The domain of politics, as one of the hottest topics of opinion mining research, merged together with the behavior analysis for affiliation determination in texts, which constitutes the subject of this paper. This study aims to classify the text in news/blogs either as Republican or Democrat with the minimum number of features. As an initial set, 68 features which 64 were constituted by Linguistic Inquiry and Word Count (LIWC) features were tested against 14 benchmark classification algorithms. In the later experiments, the dimensions of the feature vector reduced based on the 7 feature selection algorithms. The results show that the “Decision Tree”, “Rule Induction” and “M5 Rule” classifiers when used with “SVM” and “IGR” feature selection algorithms performed the best up to 82.5% accuracy on a given dataset. Further tests on a single feature and the linguistic based feature sets showed the similar results. The feature “Function”, as an aggregate feature of the linguistic category, was found as the most differentiating feature among the 68 features with the accuracy of 81% in classifying articles either as Republican or Democrat.Keywords: Politics, machine learning, feature selection, LIWC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23657996 Weka Based Desktop Data Mining as Web Service
Authors: Sujala.D.Shetty, S.Vadivel, Sakshi Vaghella
Abstract:
Data mining is the process of sifting through large volumes of data, analyzing data from different perspectives and summarizing it into useful information. One of the widely used desktop applications for data mining is the Weka tool which is nothing but a collection of machine learning algorithms implemented in Java and open sourced under the General Public License (GPL). A web service is a software system designed to support interoperable machine to machine interaction over a network using SOAP messages. Unlike a desktop application, a web service is easy to upgrade, deliver and access and does not occupy any memory on the system. Keeping in mind the advantages of a web service over a desktop application, in this paper we are demonstrating how this Java based desktop data mining application can be implemented as a web service to support data mining across the internet.Keywords: desktop application, Weka mining, web service
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40817995 The Effect of Binahong to Hematoma
Authors: Sri Sumartiningsih
Abstract:
In elevating performance in competetive sports, an athlete must continously train in achieving maximum performance,but needs to pay attention to recovery therapy, that is to recover from fatigue as well as injury.The correct recovery therapy will assist in process of recovery and helps in the training in achieving better performace. Binahong (Anredera cordifolia) was proven empirically by the locals in assisting speedy recovery from an injury.Clinical research with lab animals receiving blunt trauma injury, microscopically shown signs of: 1) redness, 2) heatiness, 3) swelling and, 4) lack of activity. There is also microscopic indication of: 1) infiltration of inflame cells (migration of cells to the trauma area), 2) Cells necrosis, 3) Congestion (as a result of dead red blood cells), 4) uedema. On administration of Binahong for 3 days, there is a significant drop of 5% in cell inflammation, 2% increase of fibroblast (cell membrance) count.Conclutin: Binahong do assist in reducing cell inflammation and increase counts of cells fibroblast. Suggestion: In helping athlete's to recover from force injury, we need study about Binahong's roots to inflammation cell and healing of injuried cell.Keywords: Binahong, sport injury, hematoma
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29917994 Experimental and Numerical Investigation of Flow Control Using a Novel Active Slat
Authors: Basman Elhadidi, Islam Elqatary, Osama Mohamady, Hesham Othman
Abstract:
An active slat is developed to increase the lift and delay the separation for a DU96-W180 airfoil. The active slat is a fixed slat that can be closed, fully opened or intermittently opened by a rotating vane depending on the need. Experimental results show that the active slat has reduced the mean pressure and increased the mean velocity on the suction side of the airfoil for all positive angles of attack, indicating an increase of lift. The experimental data and numerical simulations also show that the direction of actuator vane rotation can influence the mixing of the flow streams on the suction side and hence influence the aerodynamic performance.
Keywords: Active slat, flow control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27787993 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method
Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri
Abstract:
Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.
Keywords: Local nonlinear estimation, LWPR algorithm, Online training method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16017992 Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests
Authors: Julius Onyancha, Valentina Plekhanova
Abstract:
One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.Keywords: Web log data, web user profile, user interest, noise web data learning, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17347991 Role of Customers in Stakeholders- Approach in Company Corporate Governance
Authors: Kolis Karel, Kubicek Ales
Abstract:
The purpose of this paper is to explore the relationship between the customers- issues in company corporate governance and the financial performance. At the beginning theoretical background consisting stakeholder theory and corporate governance is presented. On this theoretical background, the empirical research is built, collecting data of 60 Czech joint stock companies- boards considering their relationships with customers. Correlation analysis and multivariate regression analysis were employed to test the sample on two hypotheses. The weak positive correlation between stakeholder approach and the company size was identified. But both hypotheses were not supported, because there was no significant relation of independent variables to financial performance.Keywords: customers, stakeholder theory, corporate governance, financial performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46767990 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning
Authors: Walid Cherif
Abstract:
Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.
Keywords: Data mining, knowledge discovery, machine learning, similarity measurement, supervised classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15277989 A Quantitative Study on the Effects of School Development on Character Development
Authors: Merve Gücen
Abstract:
One of the aims of education is to educate individuals who have embraced universal moral principles and transform universal moral principles into moral values. Character education aims to educate behaviors of individuals in their mental activities to transform moral principles into moral values in their lives. As the result of this education, individuals are expected to develop positive character traits and become morally indifferent individuals. What are the characteristics of the factors that influence character education at this stage? How should character education help individuals develop positive character traits? Which methods are more effective? These questions come to mind when studying character education. Our research was developed within the framework of these questions. The aim of our study is to provide the most effective use of the education factor that affects character. In this context, we tried to explain character definition, character development, character education and the factors affecting character education using qualitative research methods. At this stage, character education programs applied in various countries were examined and a character education program consisting of Islamic values was prepared and implemented in an International Imam Hatip High School in Istanbul. Our application was carried out with the collaboration of school and families. Various seminars were organized in the school and participation of families was ensured. In the last phase of our study, we worked with the students and their families on the effectiveness of the events held during the program. In this study, it was found that activities such as storytelling and theater in character education programs were effective in recognizing wrong behaviors in individuals. It was determined that our program had a positive effect on the quality of education. It was seen that applications of this educational program affected the behavior of the employees in the educational institution.
Keywords: Character development, values education, family activities, education program.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10417988 Moving Data Mining Tools toward a Business Intelligence System
Authors: Nittaya Kerdprasop, Kittisak Kerdprasop
Abstract:
Data mining (DM) is the process of finding and extracting frequent patterns that can describe the data, or predict unknown or future values. These goals are achieved by using various learning algorithms. Each algorithm may produce a mining result completely different from the others. Some algorithms may find millions of patterns. It is thus the difficult job for data analysts to select appropriate models and interpret the discovered knowledge. In this paper, we describe a framework of an intelligent and complete data mining system called SUT-Miner. Our system is comprised of a full complement of major DM algorithms, pre-DM and post-DM functionalities. It is the post-DM packages that ease the DM deployment for business intelligence applications.Keywords: Business intelligence, data mining, functionalprogramming, intelligent system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17427987 Analysis of Diverse Clustering Tools in Data Mining
Authors: S. Sarumathi, N. Shanthi, M. Sharmila
Abstract:
Clustering in data mining is an unsupervised learning technique of aggregating the data objects into meaningful groups such that the intra cluster similarity of objects are maximized and inter cluster similarity of objects are minimized. Over the past decades several clustering tools were emerged in which clustering algorithms are inbuilt and are easier to use and extract the expected results. Data mining mainly deals with the huge databases that inflicts on cluster analysis and additional rigorous computational constraints. These challenges pave the way for the emergence of powerful expansive data mining clustering softwares. In this survey, a variety of clustering tools used in data mining are elucidated along with the pros and cons of each software.
Keywords: Cluster Analysis, Clustering Algorithms, Clustering Techniques, Association, Visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2201