Search results for: Carbon steel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1503

Search results for: Carbon steel

1023 Experimental and Theoretical Investigation on Notched Specimens Life Under Bending Loading

Authors: Nasim Daemi, Gholam Hossein Majzoobi

Abstract:

In this work, bending fatigue life of notched specimens with various notch geometries and dimensions is investigated by experiment and Manson-Caffin theoretical method. In this theoretical method, fatigue life of notched specimens is calculated using the fatigue life obtained from the experiments for plain specimens (without notch). Three notch geometries including ∪-shape, ∨-shape and C -shape notches are considered in this investigation. The experiments are conducted on a rotary bending Moore machine. The specimens are made of a low carbon steel alloy, which has wide application in industry. The stress- life curves are captured for all notched specimen by experiment. The results indicate that Manson-Caffin analytical method cannot adequately predict the fatigue life of notched specimen. However, it seems that the difference between the experiments and Manson-Caffin predictions can be compensated by a proportional factor.

Keywords: fatigue life, Mason-Caffin method, notchedspecimen, stress-life curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
1022 Adsorption Capacities of Activated Carbons Prepared from Bamboo by KOH Activation

Authors: Samorn Hirunpraditkoon, Nathaporn Tunthong, Anotai Ruangchai, Kamchai Nuithitikul

Abstract:

The production of activated carbon from low or zero cost of agricultural by-products or wastes has received great attention from academics and practitioners due to its economic and environmental benefits. In the production of bamboo furniture, a significant amount of bamboo waste is inevitably generated. Therefore, this research aimed to prepare activated carbons from bamboo furniture waste by chemical (KOH) activation and determine their properties and adsorption capacities for water treatment. The influence of carbonization time on the properties and adsorption capacities of activated carbons was also investigated. The finding showed that the bamboo-derived activated carbons had microporous characteristics. They exhibited high tendency for the reduction of impurities present in effluent water. Their adsorption capacities were comparable to the adsorption capacity of a commercial activated carbon regarding to the reduction in COD, TDS and turbidity of the effluent water.

Keywords: Activated carbon, Bamboo, Water treatment, Chemical activation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5129
1021 A Comparative Study on Biochar from Slow Pyrolysis of Corn Cob and Cassava Wastes

Authors: Adilah Shariff, Nurhidayah Mohamed Noor, Alexander Lau, Muhammad Azwan Mohd Ali

Abstract:

Biomass such as corn and cassava wastes if left to decay will release significant quantities of greenhouse gases (GHG) including carbon dioxide and methane. The biomass wastes can be converted into biochar via thermochemical process such as slow pyrolysis. This approach can reduce the biomass wastes as well as preserve its carbon content. Biochar has the potential to be used as a carbon sequester and soil amendment. The aim of this study is to investigate the characteristics of the corn cob, cassava stem, and cassava rhizome in order to identify their potential as pyrolysis feedstocks for biochar production. This was achieved by using the proximate and elemental analyses as well as calorific value and lignocellulosic determination. The second objective is to investigate the effect of pyrolysis temperature on the biochar produced. A fixed bed slow pyrolysis reactor was used to pyrolyze the corn cob, cassava stem, and cassava rhizome. The pyrolysis temperatures were varied between 400 °C and 600 °C, while the heating rate and the holding time were fixed at 5 °C/min and 1 hour, respectively. Corn cob, cassava stem, and cassava rhizome were found to be suitable feedstocks for pyrolysis process because they contained a high percentage of volatile matter more than 80 mf wt.%. All the three feedstocks contained low nitrogen and sulphur content less than 1 mf wt.%. Therefore, during the pyrolysis process, the feedstocks give off very low rate of GHG such as nitrogen oxides and sulphur oxides. Independent of the types of biomass, the percentage of biochar yield is inversely proportional to the pyrolysis temperature. The highest biochar yield for each studied temperature is from slow pyrolysis of cassava rhizome as the feedstock contained the highest percentage of ash compared to the other two feedstocks. The percentage of fixed carbon in all the biochars increased as the pyrolysis temperature increased. The increment of pyrolysis temperature from 400 °C to 600 °C increased the fixed carbon of corn cob biochar, cassava stem biochar and cassava rhizome biochar by 26.35%, 10.98%, and 6.20% respectively. Irrespective of the pyrolysis temperature, all the biochars produced were found to contain more than 60 mf wt.% fixed carbon content, much higher than its feedstocks.

Keywords: Biochar, biomass, cassava wastes, corn cob, pyrolysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
1020 Thermal Fatigue Behavior of 400 Series Ferritic Stainless Steels

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

In this study, thermal fatigue properties of 400 series ferritic stainless steels have been evaluated in the temperature ranges of 200-800oC and 200-900oC. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. It has been revealed that load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property. Thermal fatigue resistance of 430J1L stainless steel is found to be superior to the other steels.

Keywords: Ferritic stainless steel, automotive exhaust, thermal fatigue, microstructure, load relaxation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
1019 Fragility Assessment for Vertically Irregular Buildings with Soft Storey

Authors: N. Akhavan, Sh. Tavousi Tafreshi, A. Ghasemi

Abstract:

Seismic behavior of irregular structures through the past decades indicate that the stated buildings do not have appropriate performance. Among these subjects, the current paper has investigated the behavior of special steel moment frame with different configuration of soft storey vertically. The analyzing procedure has been evaluated with respect to incremental dynamic analysis (IDA), and numeric process was carried out by OpenSees finite element analysis package. To this end, nine 2D steel frames, with different numbers of stories and irregularity positions, which were subjected to seven pairs of ground motion records orthogonally with respect to Ibarra-Krawinkler deterioration model, have been investigated. This paper aims at evaluating the response of two-dimensional buildings incorporating soft storey which subjected to bi-directional seismic excitation. The IDAs were implemented for different stages of PGA with various ground motion records, in order to determine maximum inter-storey drift ratio. According to statistical elements and fracture range (standard deviation), the vulnerability or exceedance from above-mentioned cases has been examined. For this reason, fragility curves for different placement of soft storey in the first, middle and the last floor for 4, 8, and 16 storey buildings have been generated and compared properly.

Keywords: Special steel moment frame, soft storey, incremental dynamic analysis, fragility curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
1018 Foundation Retrofitting of Storage Tank under Seismic Load

Authors: Seyed Abolhasan Naeini, Mohammad Hossein Zade, E. Izadi, M. Hossein Zade

Abstract:

The different seismic behavior of liquid storage tanks rather than conventional structures makes their responses more complicated. Uplifting and excessive settlement due to liquid sloshing are the most frequent damages in cylindrical liquid tanks after shell bucking failure modes. As a matter of fact, uses of liquid storage tanks because of the simple construction on compact layer of soil as a foundation are very conventional, but in some cases need to retrofit are essential. The tank seismic behavior can be improved by modifying dynamic characteristic of tank with verifying seismic loads as well as retrofitting and improving base ground. This paper focuses on a typical steel tank on loose, medium and stiff sandy soil and describes an evaluation of displacement of the tank before and after retrofitting. The Abaqus program was selected for its ability to include shell and structural steel elements, soil-structure interaction, and geometrical nonlinearities and contact type elements. The result shows considerable decreasing in settlement and uplifting in the case of retrofitted tank. Also, by increasing shear strength parameter of soil, the performance of the liquid storage tank under the case of seismic load increased.

Keywords: Steel tank, soil-structure, sandy soil, seismic load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
1017 A New Brazilian Friction-Resistant Low Alloy High Strength Steel – A Life Testing Approach

Authors: D. I. De Souza, G. P. Azevedo, R. Rocha

Abstract:

In this paper we will develop a sequential life test approach applied to a modified low alloy-high strength steel part used in highway overpasses in Brazil.We will consider two possible underlying sampling distributions: the Normal and theInverse Weibull models. The minimum life will be considered equal to zero. We will use the two underlying models to analyze a fatigue life test situation, comparing the results obtained from both.Since a major chemical component of this low alloy-high strength steel part has been changed, there is little information available about the possible values that the parameters of the corresponding Normal and Inverse Weibull underlying sampling distributions could have. To estimate the shape and the scale parameters of these two sampling models we will use a maximum likelihood approach for censored failure data. We will also develop a truncation mechanism for the Inverse Weibull and Normal models. We will provide rules to truncate a sequential life testing situation making one of the two possible decisions at the moment of truncation; that is, accept or reject the null hypothesis H0. An example will develop the proposed truncated sequential life testing approach for the Inverse Weibull and Normal models.

Keywords: Sequential life testing, normal and inverse Weibull models, maximum likelihood approach, truncation mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
1016 Optimization of Material Removal Rate in Electrical Discharge Machining Using Fuzzy Logic

Authors: Amit Kohli, Aashim Wadhwa, Tapan Virmani, Ujjwal Jain

Abstract:

The objective of present work is to stimulate the machining of material by electrical discharge machining (EDM) to give effect of input parameters like discharge current (Ip), pulse on time (Ton), pulse off time (Toff) which can bring about changes in the output parameter, i.e. material removal rate. Experimental data was gathered from die sinking EDM process using copper electrode and Medium Carbon Steel (AISI 1040) as work-piece. The rules of membership function (MF) and the degree of closeness to the optimum value of the MMR are within the upper and lower range of the process parameters. It was found that proposed fuzzy model is in close agreement with the experimental results. By Intelligent, model based design and control of EDM process parameters in this study will help to enable dramatically decreased product and process development cycle times.

Keywords: Electrical discharge Machining (EDM), Fuzzy Logic, Material removal rate (MRR), Membership functions (MF).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2749
1015 Carbon Dioxide Recovery by Membrane Assisted Crystallization

Authors: Wenyuan Ye, Jiuyang Lin, Patricia Luis, Bart Van der Bruggen

Abstract:

This study addresses the effect of impurities on the crystallization of Na2CO3 produced within a strategy for capturing CO2 from flue gases by alkaline absorption. A novel technology - membrane assisted crystallization - is proposed for Na2CO3 crystallization from mother liquors containing impurities. High purity of Na2CO3•10H2O crystals was obtained without impacting the performance of the mass transfer of water vapor through membranes during crystallization.

Keywords: Carbon dioxide recovery, crystal morphology, membrane crystallization, purity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
1014 The Effect of Nylon and Kevlar Stitching on the Mode I Fracture of Carbon/Epoxy Composites

Authors: Nisrin R. Abdelal, Steven L. Donaldson

Abstract:

Composite materials are widely used in aviation industry due to their superior properties; however, they are susceptible to delamination. Through-thickness stitching is one of the techniques to alleviate delamination. Kevlar is one of the most common stitching materials; in contrast, it is expensive and presents stitching fabrication challenges. Therefore, this study compares the performance of Kevlar with an inexpensive and easy-to-use nylon fiber in stitching to alleviate delamination. Three laminates of unidirectional carbon fiber-epoxy composites were manufactured using vacuum assisted resin transfer molding process. One panel was stitched with Kevlar, one with nylon, and one unstitched. Mode I interlaminar fracture tests were carried out on specimens from the three composite laminates, and the results were compared. Fractographic analysis using optical and scanning electron microscope were conducted to reveal the differences between stitching with Kevlar and nylon on the internal microstructure of the composite with respect to the interlaminar fracture toughness values.

Keywords: Carbon, delamination, Kevlar, mode I, nylon, stitching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222
1013 Seismic Behaviour of Steel Frames Investigation with Knee Brace Based on Pushover Analysis

Authors: Mahmoud Miri, Abdolreza Zare, Hossein Abbas zadeh

Abstract:

The knee bracing steel frame (KBF) is a new kind of energy dissipating frame, which combines excellent ductility and lateral stiffness. In this framing system, a special form of diagonal brace connected to a knee element instead of beam-column joint, is investigated. Recently, a similar system was proposed and named as chevron knee bracing system (CKB) which in comparison with the former system has a better energy absorption characteristic and at the same time retains the elastic nature of the structures. Knee bracing can provide a stiffer bracing system but reduces the ductility of the steel frame. Chevron knee bracing can be employed to provide the desired ductility level for a design. In this article, relation between seismic performance and structural parameters of the two above mentioned systems are investigated and compared. Frames with similar dimensions but various heights in both systems are designed according to Iranian code of practice for seismic resistant design of building, and then based on a non-linear push over static analysis; the seismic parameters such as behavior factor and performance levels are compared.

Keywords: Seismic behaviour, ordinary knee bracing frame, Chevron knee brace, behaviour factor, performance level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4257
1012 Hydrogen Storage In Single-Walled Carbon Nanotubes Purified By Microwave Digestion Method

Authors: Neslihan Yuca, Nilgün Karatepe

Abstract:

The aim of this study was to synthesize the single walled carbon nanotubes (SWCNTs) and determine their hydrogen storage capacities. SWCNTs were firstly synthesized by chemical vapor deposition (CVD) of acetylene (C2H2) on a magnesium oxide (MgO) powder impregnated with an iron nitrate (Fe(NO3)3·9H2O) solution. The synthesis parameters were selected as: the synthesis temperature of 800°C, the iron content in the precursor of 5% and the synthesis time of 30 min. Purification process of SWCNTs was fulfilled by microwave digestion at three different temperatures (120, 150 and 200 °C), three different acid concentrations (0.5, 1 and 1.5 M) and for three different time intervals (15, 30 and 60 min). Nitric acid (HNO3) was used in the removal of the metal catalysts. The hydrogen storage capacities of the purified materials were measured using volumetric method at the liquid nitrogen temperature and gas pressure up to 100 bar. The effects of the purification conditions such as temperature, time and acid concentration on hydrogen adsorption were investigated.

Keywords: Carbon nanotubes, purification, microwavedigestion, hydrogen storage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2246
1011 Experiment Study on the Influence of Tool Materials on the Drilling of Thick Stacked Plate of 2219 Aluminum Alloy

Authors: G. H. Li, M. Liu, H. J. Qi, Q. Zhu, W. Z. He

Abstract:

The drilling and riveting processes are widely used in the assembly of carrier rocket, which makes the efficiency and quality of drilling become the important factor affecting the assembly process. According to the problem existing in the drilling of thick stacked plate (thickness larger than 10mm) of carrier rocket, such as drill break, large noise and burr etc., experimental study of the influence of tool material on the drilling was carried out. The cutting force was measured by a piezoelectric dynamometer, the aperture was measured with an outline projector, and the burr is observed and measured by a digital stereo microscope. Through the measurement, the effects of tool material on the drilling were analyzed from the aspects of drilling force, diameter, and burr. The results show that, compared with carbide drill and coated carbide one, the drilling force of high speed steel is larger. But, the application of high speed steel also has some advantages, e.g. a higher number of hole can be obtained, the height of burr is small, the exit is smooth and the slim burr is less, and the tool experiences wear but not fracture. Therefore, the high speed steel tool is suitable for the drilling of thick stacked plate of 2219 Aluminum alloy.

Keywords: 2219 aluminum alloy, thick stacked plate, drilling, tool material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283
1010 Immobilization of Lipase Enzyme by Low Cost Material: A Statistical Approach

Authors: Md. Z. Alam, Devi R. Asih, Md. N. Salleh

Abstract:

Immobilization of lipase enzyme produced from palm oil mill effluent (POME) by the activated carbon (AC) among the low cost support materials was optimized. The results indicated that immobilization of 94% was achieved by AC as the most suitable support material. A sequential optimization strategy based on a statistical experimental design, including one-factor-at-a-time (OFAT) method was used to determine the equilibrium time. Three components influencing lipase immobilization were optimized by the response surface methodology (RSM) based on the face-centered central composite design (FCCCD). On the statistical analysis of the results, the optimum enzyme concentration loading, agitation rate and carbon active dosage were found to be 30 U/ml, 300 rpm and 8 g/L respectively, with a maximum immobilization activity of 3732.9 U/g-AC after 2 hrs of immobilization. Analysis of variance (ANOVA) showed a high regression coefficient (R2) of 0.999, which indicated a satisfactory fit of the model with the experimental data. The parameters were statistically significant at p<0.05.

Keywords: Activated carbon, adsorption, immobilization, POME based lipase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
1009 Thermal Elastic Stress Analysis of Steel Fiber Reinforced Aluminum Composites

Authors: M. R. Haboğlu, A. Kurşun, Ş. Aksoy, H. Aykul, N. B. Bektaş

Abstract:

Athermal elastic stress analysis of steel fiber reinforced aluminum laminated composite plate is investigated. Four sides of the composite plate are clamped and subjected to a uniform temperature load. The analysis is performed both analytically and numerically. Laminated composite is manufactured via hot pressing method. The investigation of the effects of the orientation angle is provided. Different orientation angles are used such as [0°/90°]s, [30°/-30°]s, [45°/-45°]s, and [60/-60]s. The analytical solution is obtained via classical laminated composite theory and the numerical solution is obtained by applying finite element method via ANSYS.

Keywords: Laminated Composites, Thermo Elastic Stress, Finite Element Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2749
1008 An Analysis of Eco-efficiency and GHG Emission of Olive Oil Production in Northeast of Portugal

Authors: M. Feliciano, F. Maia, A. Gonçalves

Abstract:

Olive oil production sector plays an important role in Portuguese economy. It had a major growth over the last decade, increasing its weight in the overall national exports. International market penetration for Mediterranean traditional products is increasingly more demanding, especially in the Northern European markets, where consumers are looking for more sustainable products. Trying to support this growing demand this study addresses olive oil production under the environmental and eco-efficiency perspectives. The analysis considers two consecutive product life cycle stages: olive trees farming; and olive oil extraction in mills. Addressing olive farming, data collection covered two different organizations: a middle-size farm (~12ha) (F1) and a large-size farm (~100ha) (F2). Results from both farms show that olive collection activities are responsible for the largest amounts of Green House Gases (GHG) emissions. In this activities, estimate for the Carbon Footprint per olive was higher in F2 (188g CO2e/kgolive) than in F1 (148g CO2e/kgolive). Considering olive oil extraction, two different mills were considered: one using a two-phase system (2P) and other with a three-phase system (3P). Results from the study of two mills show that there is a much higher use of water in 3P. Energy intensity (EI) is similar in both mills. When evaluating the GHG generated, two conditions are evaluated: a biomass neutral condition resulting on a carbon footprint higher in 3P (184g CO2e/Lolive oil) than in 2P (92g CO2e/Lolive oil); and a non-neutral biomass condition in which 2P increase its carbon footprint to 273g CO2e/Lolive oil. When addressing the carbon footprint of possible combinations among studied subsystems, results suggest that olive harvesting is the major source for GHG.

Keywords: Carbon footprint, environmental indicators, farming subsystem, industrial subsystem, olive oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2917
1007 Application of Stabilized Polyaniline Microparticles for Better Protective Ability of Zinc Coatings

Authors: N. Boshkova, K. Kamburova, N. Tabakova, N. Boshkov, Ts. Radeva

Abstract:

Coatings based on polyaniline (PANI) can improve the resistance of steel against corrosion. In this work, the preparation of stable suspensions of colloidal PANI-SiO2 particles, suitable for obtaining of composite anticorrosive coating on steel, is described. Electrokinetic data as a function of pH are presented, showing that the zeta potentials of the PANI-SiO2 particles are governed primarily by the charged groups at the silica oxide surface. Electrosteric stabilization of the PANI-SiO2 particles’ suspension against aggregation is realized at pH>5.5 (EB form of PANI) by adsorption of positively charged polyelectrolyte molecules onto negatively charged PANI-SiO2 particles. The PANI-SiO2 particles are incorporated by electrodeposition into the metal matrix of zinc in order to obtain composite (hybrid) coatings. The latter are aimed to ensure sacrificial protection of steel mainly in aggressive media leading to local corrosion damages. The surface morphology of the composite zinc coatings is investigated with SEM. The influence of PANI-SiO2 particles on the cathodic and anodic processes occurring in the starting electrolyte for obtaining of the coatings is followed with cyclic voltammetry. The electrochemical and corrosion behavior is evaluated with potentiodynamic polarization curves and polarization resistance measurements. The beneficial effect of the stabilized PANI-SiO2 particles for the increased protective ability of the composites is commented and discussed.

Keywords: Corrosion, polyaniline particles, zinc, protective ability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 809
1006 A Comparative Study of Standard, Casted and Riveted Eye Design of a Mono Leaf Spring Using CAE Tools

Authors: Gian Bhushan, Vinkel Arora, M.L. Aggarwal

Abstract:

The objective of the present study is to determine better eye end design of a mono leaf spring used in light motor vehicle. A conventional 65Si7 spring steel leaf spring model with standard eye, casted and riveted eye end are considered. The CAD model of the leaf springs is prepared in CATIA and analyzed using ANSYS. The standard eye, casted and riveted eye leaf springs are subjected to similar loading conditions. The CAE analysis of the leaf spring is performed for various parameters like deflection and Von- Mises stress. Mass reduction of 62.9% is achieved in case of riveted eye mono leaf spring as compared to standard eye mono leaf spring for the same loading conditions.

Keywords: CAE, Leaf Spring, 65Si7 spring steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2380
1005 Fatigue Properties and Strength Degradation of Carbon Fibber Reinforced Composites

Authors: Pasquale Verde, Giuseppe Lamanna

Abstract:

A two-parameter fatigue model explicitly accounting for the cyclic as well as the mean stress was used to fit static and fatigue data available in literature concerning carbon fiber reinforced composite laminates subjected tension-tension fatigue. The model confirms the strength–life equal rank assumption and predicts reasonably the probability of failure under cyclic loading. The model parameters were found by best fitting procedures and required a minimum of experimental tests.

Keywords: Fatigue life, strength, composites, Weibull distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
1004 Application of CFD for Air Flow Analysis underneath Natural Ventilation with Forced Convection in Roof Attic

Authors: C. Nutphuang, S. Chirarattananon, V.D. Hien

Abstract:

In research on natural ventilation, and passive cooling with forced convection, is essential to know how heat flows in a solid object and the pattern of temperature distribution on their surfaces, and eventually how air flows through and convects heat from the surfaces of steel under roof. This paper presents some results from running the computational fluid dynamic program (CFD) by comparison between natural ventilation and forced convection within roof attic that is received directly from solar radiation. The CFD program for modeling air flow inside roof attic has been modified to allow as two cases. First case, the analysis under natural ventilation, is closed area in roof attic and second case, the analysis under forced convection, is opened area in roof attic. These extend of all cases to available predictions of variations such as temperature, pressure, and mass flow rate distributions in each case within roof attic. The comparison shows that this CFD program is an effective model for predicting air flow of temperature and heat transfer coefficient distribution within roof attic. The result shows that forced convection can help to reduce heat transfer through roof attic and an around area of steel core has temperature inner zone lower than natural ventilation type. The different temperature on the steel core of roof attic of two cases was 10-15 oK.

Keywords: CFD program, natural ventilation, forcedconvection, heat transfer, air flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223
1003 The Effects of Biomass Parameters on the Dissolved Organic Carbon Removal in a Sponge Submerged Membrane Bioreactor

Authors: M. F. R. Zuthi, H. H. Ngo, W. S. Guo, T. T. Nguyen

Abstract:

A novel sponge submerged membrane bioreactor (SSMBR) was developed to effectively remove organics and nutrients from wastewater. Sponge is introduced within the SSMBR as a medium for the attached growth of biomass. This paper evaluates the effects of new and acclimatized sponges for dissolved organic carbon (DOC) removal from wastewater at different mixed liquor suspended solids- (MLSS) concentration of the sludge. It was observed in a series of experimental studies that the acclimatized sponge performed better than the new sponge whilst the optimum DOC removal could be achieved at 10g/L of MLSS with the acclimatized sponge. Moreover, the paper analyses the relationships between the MLSSsponge/MLSSsludge and the DOC removal efficiency of SSMBR. The results showed a non-linear relationship between the biomass parameters of the sponge and the sludge, and the DOC removal efficiency of SSMBR. A second-order polynomial function could reasonably represent these relationships.

Keywords: Acclimatization, Dissolved organic carbon, Mathematical model, Sponge submerged membrane bioreactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
1002 Separation of Water/Organic Mixtures Using Micro- and Nanostructured Membranes of Special Type of Wettability

Authors: F. R. Sultanov Ch. Daulbayev, B. Bakbolat, Z. A. Mansurov, A. A. Zhurintaeva, R. I. Gadilshina, A. B. Dugali

Abstract:

Both hydrophilic-oleophobic and hydrophobic-oleophilic membranes were obtained by coating of the substrate of membranes, presented by stainless steel meshes with various dimensions of their openings, with a composition that forms the special type of their surface wettability via spray-coating method. The surface morphology of resulting membranes was studied using SEM, the type of their wettability was identified by measuring the contact angle between the surface of membrane and a drop of studied liquid (water or organic liquid) and efficiency of continuous separation of water and organic liquid was studied on self-assembled setup.

Keywords: Membrane, stainless steel mesh, oleophobicity, hydrophobicity, separation, water, organic liquids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 834
1001 Thixomixing as Novel Method for Fabrication Aluminum Composite with Carbon and Alumina Fibers

Authors: Ebrahim Akbarzadeh, Josep A. Picas Barrachina, Maite Baile Puig

Abstract:

This study focuses on a novel method for dispersion and distribution of reinforcement under high intensive shear stress to produce metal composites. The polyacrylonitrile (PAN)-based short carbon fiber (Csf) and Nextel 610 alumina fiber were dispersed under high intensive shearing at mushy zone in semi-solid of A356 by a novel method. The bundles and clusters were embedded by infiltration of slurry into the clusters, thus leading to a uniform microstructure. The fibers were embedded homogenously into the aluminum around 576-580°C with around 46% of solid fraction. Other experiments at 615°C and 568°C which are contained 0% and 90% solid respectively were not successful for dispersion and infiltration of aluminum into bundles of Csf. The alumina fiber has been cracked by high shearing load. The morphologies and crystalline phase were evaluated by SEM and XRD. The adopted thixo-process effectively improved the adherence and distribution of Csf into Al that can be developed to produce various composites by thixomixing.

Keywords: Aluminum, carbon fiber, alumina fiber, thixomixing, adhesion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2264
1000 Development of Equivalent Inelastic Springs to Model C-Devices

Authors: Oday Al-Mamoori, J. Enrique Martinez-Rueda

Abstract:

'C' shape yielding devices (C-devices) are effective tools for introducing supplemental sources of energy dissipation by hysteresis. Studies have shown that C-devices made of mild steel can be successfully applied as integral parts of seismic retrofitting schemes. However, explicit modelling of these devices can become cumbersome, expensive and time consuming. The device under study in this article has been previously used in non-invasive dissipative bracing for seismic retrofitting. The device is cut from a mild steel plate and has an overall shape that resembles that of a rectangular portal frame with circular interior corner transitions to avoid stress concentration and to control the extension of the dissipative region of the device. A number of inelastic finite element (FE) analyses using either inelastic 2D plane stress elements or inelastic fibre frame elements are reported and used to calibrate a 1D equivalent inelastic spring model that effectively reproduces the cyclic response of the device. The more elaborate FE model accounts for the frictional forces developed between the steel plate and the bolts used to connect the C-device to structural members. FE results also allow the visualization of the inelastic regions of the device where energy dissipation is expected to occur. FE analysis results are in a good agreement with experimental observations.

Keywords: C-device, equivalent nonlinear spring, FE analyses, reversed cyclic tests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 795
999 Corrosion Fatigue Crack Growth Studies in Ni-Cr-Mn Steel

Authors: Chinnaiah Madduri, Raghu V. Prakash

Abstract:

This paper presents the results of corrosion fatigue crack growth behaviour of a Ni-Cr-Mn steel commonly used in marine applications. The effect of mechanical variables such as frequency and load ratio on fatigue crack growth rate at various stages has been studied using compact tension (C(T)) specimens along the rolling direction of steel plate under 3.5% saturated NaCl aqueous environment. The significance of crack closure on corrosion fatigue, and the validity of Elber-s empirical linear crack closure model with the ASTM compliance offset method have been examined. Fatigue crack growth rate is higher and threshold stress intensities are lower in aqueous environment compared to the lab air conditions. It is also observed that the crack growth rate increases at lower frequencies. The higher stress ratio promotes the crack growth. The effect of oxidization and corrosion pit formation is very less as the stress ratio is increased. It is observed that as stress ratios are increased, the Elber-s crack closure model agrees well with the crack closure estimated by the ASTM compliance offset method for tests conducted at 5Hz frequency compared to tests conducted at 1Hz in corrosive environment.

Keywords: Corrosion fatigue, oxide induced crack closure, Elber's crack closure, ASTM compliance offset method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149
998 Effects of Ophiocordyceps dipterigena BCC 2073 β-Glucan as a Prebiotic on the in vitro Growth of Probiotic and Pathogenic Bacteria

Authors: Wai Prathumpai, Pranee Rachtawee, Sutamat Khajeeram, Pariya Na Nakorn

Abstract:

The  β-glucan produced by Ophiocordyceps dipterigena BCC 2073 is a (1, 3)-β-D-glucan with highly branching O-6-linkedside chains that is resistant to acid hydrolysis (by hydrochloric acid and porcine pancreatic alpha-amylase). This β-glucan can be utilized as a prebiotic due to its advantageous structural and biological properties. The effects of using this β-glucan as the sole carbon source for the in vitro growth of two probiotic bacteria (L. acidophilus BCC 13938 and B. animalis ATCC 25527) were investigated. Compared with the effect of using 1% glucose or fructo-oligosaccharide (FOS) as the sole carbon source, using 1% β-glucan for this purpose showed that this prebiotic supported and stimulated the growth of both types of probiotic bacteria and induced them to produce the highest levels of metabolites during their growth. The highest levels of lactic and acetic acid, 10.04 g·L-1 and 2.82 g·L-1, respectively, were observed at 2 h of cultivation using glucose as the sole carbon source. Furthermore, the fermentation broth obtained using 1% β-glucan as the sole carbon source had greater antibacterial activity against selected pathogenic bacteria (B. subtilis TISTR 008, E. coli TISTR 780, and S. typhimurium TISTR 292) than did the broths prepared using glucose or FOS as the sole carbon source. The fermentation broth obtained by growing L. acidophilus BCC 13938 in the presence of β-glucan inhibited the growth of B. subtilis TISTR 008 by more than 70% and inhibited the growth of both S. typhimurium TISTR 292 and E. coli TISTR 780 by more than 90%. In conclusion, O. dipterigena BCC 2073 is a potential source of a β-glucan prebiotic that could be used for commercial production in the near future.

Keywords: β-glucan, Ophiocordyceps dipterigena, prebiotic, probiotic, antimicrobial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 919
997 Carbon Sources Utilization Profiles of Thermophilic Phytase Producing Bacteria Isolated from Hot-spring in Malaysia

Authors: Noor Muzamil Mohamad, Abdul Manaf Ali, Hamzah Mohd Salleh

Abstract:

Phytases (myo-inositol hexakisphosphate phosphohydrolases; EC 3.1.3.8) catalyze the hydrolysis of phytic acid (myoinositol hexakisphosphate) to the mono-, di-, tri-, tetra-, and pentaphosphates of myo-inositol and inorganic phosphate. Therrmophilic bacteria isolated from water sampled from hot spring. About 120 isolates of bacteria were successfully isolated form hot spring water sample and tested for extracellular phytase producing. After 5 passages of the screening on the PSM media, 4 isolates were found stable in producing phytase enzyme. The 16s RDNA sequencing for identification of bacteria using molecular technique revealed that all isolates those positive in phytase producing are belong to Geobacillus spp. And Anoxybacillus spp. Anoxybacillus rupiensis UniSZA-7 were identified for their carbon source utilization using Phenotype Microarray Plate of Biolog and found they utilize several kind of carbon source provided.

Keywords: Phytase, Phytic Acid, Thermophilic Bacteria, PSM Media and Phytase Assay

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165
996 Thermal Regeneration of CO2 Spent Palm Shell-Polyetheretherketone Activated Carbon Sorbents

Authors: Usman D. Hamza, Noor S. Nasri, Mohammed Jibril, Husna Mohd Zain

Abstract:

Activated carbons (M4P0, M4P2, and M5P2) used in this research were produced from palm shell and polyetherether ketone (PEEK) via carbonization, impregnation and microwave activation. The adsorption/desorption process was carried out using static volumetric adsorption. Regeneration is important in the overall economy of the process and waste minimization. This work focuses on the thermal regeneration of the CO2 exhausted microwave activated carbons. The regeneration strategy adopted was thermal with nitrogen purge desorption with N2 feed flow rate of 20 ml/min for 1 h at atmospheric pressure followed by drying at 150oC.Seven successive adsorption/regeneration processes were carried out on the material. It was found that after seven adsorption regeneration cycles; the regeneration efficiency (RE) for CO2 activated carbon from palm shell only (M4P0) was more than 90% while that of hybrid palm shell-PEEK (M4P2, M5P2) was above 95%. The cyclic adsorption and regeneration shows the stability of the adsorbent materials.

Keywords: Activated carbon, Palm shell-PEEK, Regeneration, thermal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2409
995 Review of Carbon Materials: Application in Alternative Energy Sources and Catalysis

Authors: Marita Pigłowska, Beata Kurc, Maciej Galiński

Abstract:

The application of carbon materials in the branches of the electrochemical industry shows an increasing tendency each year due to the many interesting properties they possess. These are, among others, a well-developed specific surface, porosity, high sorption capacity, good adsorption properties, low bulk density, electrical conductivity and chemical resistance. All these properties allow for their effective use, among others in supercapacitors, which can store electric charges of the order of 100 F due to carbon electrodes constituting the capacitor plates. Coals (including expanded graphite, carbon black, graphite carbon fibers, activated carbon) are commonly used in electrochemical methods of removing oil derivatives from water after tanker disasters, e.g., phenols and their derivatives by their electrochemical anodic oxidation. Phenol can occupy practically the entire surface of carbon material and leave the water clean of hydrophobic impurities. Regeneration of such electrodes is also not complicated, it is carried out by electrochemical methods consisting in unblocking the pores and reducing resistances, and thus their reactivation for subsequent adsorption processes. Graphite is commonly used as an anode material in lithium-ion cells, while due to the limited capacity it offers (372 mAh g-1), new solutions are sought that meet both capacitive, efficiency and economic criteria. Increasingly, biodegradable materials, green materials, biomass, waste (including agricultural waste) are used in order to reuse them and reduce greenhouse effects and, above all, to meet the biodegradability criterion necessary for the production of lithium-ion cells as chemical power sources. The most common of these materials are cellulose, starch, wheat, rice, and corn waste, e.g., from agricultural, paper and pharmaceutical production. Such products are subjected to appropriate treatments depending on the desired application (including chemical, thermal, electrochemical). Starch is a biodegradable polysaccharide that consists of polymeric units such as amylose and amylopectin that build an ordered (linear) and amorphous (branched) structure of the polymer. Carbon is also used as a catalyst. Elemental carbon has become available in many nano-structured forms representing the hybridization combinations found in the primary carbon allotropes, and the materials can be enriched with a large number of surface functional groups. There are many examples of catalytic applications of coal in the literature, but the development of this field has been hampered by the lack of a conceptual approach combining structure and function and a lack of understanding of material synthesis. In the context of catalytic applications, the integrity of carbon environmental management properties and parameters such as metal conductivity range and bond sequence management should be characterized. Such data, along with surface and textured information, can form the basis for the provision of network support services.

Keywords: carbon materials, catalysis, BET, capacitors, lithium ion cell

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1166
994 A Life Cycle Assessment (LCA) of Aluminum Production Process

Authors: Alaa Al Hawari, Mohammad Khader, Wael El Hasan, Mahmoud Alijla, Ammar Manawi, Abdelbaki Benamour

Abstract:

The production of aluminum alloys and ingots – starting from the processing of alumina to aluminum, and the final cast product – was studied using a Life Cycle Assessment (LCA) approach. The studied aluminum supply chain consisted of a carbon plant, a reduction plant, a casting plant, and a power plant. In the LCA model, the environmental loads of the different plants for the production of 1 ton of aluminum metal were investigated. The impact of the aluminum production was assessed in eight impact categories. The results showed that for all of the impact categories the power plant had the highest impact only in the cases of Human Toxicity Potential (HTP) the reduction plant had the highest impact and in the Marine Aquatic Eco-Toxicity Potential (MAETP) the carbon plant had the highest impact. Furthermore, the impact of the carbon plant and the reduction plant combined was almost the same as the impact of the power plant in the case of the Acidification Potential (AP). The carbon plant had a positive impact on the environment when it come to the Eutrophication Potential (EP) due to the production of clean water in the process. The natural gas based power plant used in the case study had 8.4 times less negative impact on the environment when compared to the heavy fuel based power plant and 10.7 times less negative impact when compared to the hard coal based power plant.

Keywords: Life cycle assessment, aluminum production, Supply chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4647