Search results for: cancer prediction
841 Rail Degradation Modelling Using ARMAX: A Case Study Applied to Melbourne Tram System
Authors: M. Karimpour, N. Elkhoury, L. Hitihamillage, S. Moridpour, R. Hesami
Abstract:
There is a necessity among rail transportation authorities for a superior understanding of the rail track degradation overtime and the factors influencing rail degradation. They need an accurate technique to identify the time when rail tracks fail or need maintenance. In turn, this will help to increase the level of safety and comfort of the passengers and the vehicles as well as improve the cost effectiveness of maintenance activities. An accurate model can play a key role in prediction of the long-term behaviour of railroad tracks. An accurate model can decrease the cost of maintenance. In this research, the rail track degradation is predicted using an autoregressive moving average with exogenous input (ARMAX). An ARMAX has been implemented on Melbourne tram data to estimate the values for the tram track degradation. Gauge values and rail usage in Million Gross Tone (MGT) are the main parameters used in the model. The developed model can accurately predict the future status of the tram tracks.
Keywords: ARMAX, Dynamic systems, MGT, Prediction, Rail degradation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1066840 Solid State Drive End to End Reliability Prediction, Characterization and Control
Authors: Mohd Azman Abdul Latif, Erwan Basiron
Abstract:
A flaw or drift from expected operational performance in one component (NAND, PMIC, controller, DRAM, etc.) may affect the reliability of the entire Solid State Drive (SSD) system. Therefore, it is important to ensure the required quality of each individual component through qualification testing specified using standards or user requirements. Qualification testing is time-consuming and comes at a substantial cost for product manufacturers. A highly technical team, from all the eminent stakeholders is embarking on reliability prediction from beginning of new product development, identify critical to reliability parameters, perform full-blown characterization to embed margin into product reliability and establish control to ensure the product reliability is sustainable in the mass production. The paper will discuss a comprehensive development framework, comprehending SSD end to end from design to assembly, in-line inspection, in-line testing and will be able to predict and to validate the product reliability at the early stage of new product development. During the design stage, the SSD will go through intense reliability margin investigation with focus on assembly process attributes, process equipment control, in-process metrology and also comprehending forward looking product roadmap. Once these pillars are completed, the next step is to perform process characterization and build up reliability prediction modeling. Next, for the design validation process, the reliability prediction specifically solder joint simulator will be established. The SSD will be stratified into Non-Operating and Operating tests with focus on solder joint reliability and connectivity/component latent failures by prevention through design intervention and containment through Temperature Cycle Test (TCT). Some of the SSDs will be subjected to the physical solder joint analysis called Dye and Pry (DP) and Cross Section analysis. The result will be feedbacked to the simulation team for any corrective actions required to further improve the design. Once the SSD is validated and is proven working, it will be subjected to implementation of the monitor phase whereby Design for Assembly (DFA) rules will be updated. At this stage, the design change, process and equipment parameters are in control. Predictable product reliability at early product development will enable on-time sample qualification delivery to customer and will optimize product development validation, effective development resource and will avoid forced late investment to bandage the end-of-life product failures. Understanding the critical to reliability parameters earlier will allow focus on increasing the product margin that will increase customer confidence to product reliability.
Keywords: e2e reliability prediction, SSD, TCT, Solder Joint Reliability, NUDD, connectivity issues, qualifications, characterization and control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 400839 Computational Fluid Dynamics Expert System using Artificial Neural Networks
Authors: Gonzalo Rubio, Eusebio Valero, Sven Lanzan
Abstract:
The design of a modern aircraft is based on three pillars: theoretical results, experimental test and computational simulations. As a results of this, Computational Fluid Dynamic (CFD) solvers are widely used in the aeronautical field. These solvers require the correct selection of many parameters in order to obtain successful results. Besides, the computational time spent in the simulation depends on the proper choice of these parameters. In this paper we create an expert system capable of making an accurate prediction of the number of iterations and time required for the convergence of a computational fluid dynamic (CFD) solver. Artificial neural network (ANN) has been used to design the expert system. It is shown that the developed expert system is capable of making an accurate prediction the number of iterations and time required for the convergence of a CFD solver.Keywords: Artificial Neural Network, Computational Fluid Dynamics, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2957838 Estimation of Functional Response Model by Supervised Functional Principal Component Analysis
Authors: Hyon I. Paek, Sang Rim Kim, Hyon A. Ryu
Abstract:
In functional linear regression, one typical problem is to reduce dimension. Compared with multivariate linear regression, functional linear regression is regarded as an infinite-dimensional case, and the main task is to reduce dimensions of functional response and functional predictors. One common approach is to adapt functional principal component analysis (FPCA) on functional predictors and then use a few leading functional principal components (FPC) to predict the functional model. The leading FPCs estimated by the typical FPCA explain a major variation of the functional predictor, but these leading FPCs may not be mostly correlated with the functional response, so they may not be significant in the prediction for response. In this paper, we propose a supervised FPCA method for a functional response model with FPCs obtained by considering the correlation of the functional response. Our method would have a better prediction accuracy than the typical FPCA method.
Keywords: Supervised, functional principal component analysis, functional response, functional linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10837 Predicting Bridge Pier Scour Depth with SVM
Authors: Arun Goel
Abstract:
Prediction of maximum local scour is necessary for the safety and economical design of the bridges. A number of equations have been developed over the years to predict local scour depth using laboratory data and a few pier equations have also been proposed using field data. Most of these equations are empirical in nature as indicated by the past publications. In this paper attempts have been made to compute local depth of scour around bridge pier in dimensional and non-dimensional form by using linear regression, simple regression and SVM (Poly & Rbf) techniques along with few conventional empirical equations. The outcome of this study suggests that the SVM (Poly & Rbf) based modeling can be employed as an alternate to linear regression, simple regression and the conventional empirical equations in predicting scour depth of bridge piers. The results of present study on the basis of non-dimensional form of bridge pier scour indicate the improvement in the performance of SVM (Poly & Rbf) in comparison to dimensional form of scour.Keywords: Modeling, pier scour, regression, prediction, SVM (Poly & Rbf kernels).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545836 Designing Social Care Plans Considering Cause-Effect Relationships: A Study in Scotland
Authors: Sotirios N. Raptis
Abstract:
The paper links social needs to social classes by the creation of cohorts of public services matched as causes to other ones as effects using cause-effect (CE) models. It then compares these associations using CE and typical regression methods (LR, ARMA). The paper discusses such public service groupings offered in Scotland in the long term to estimate the risk of multiple causes or effects that can ultimately reduce the healthcare cost by linking the next services to the likely causes of them. The same generic goal can be achieved using LR or ARMA and differences are discussed. The work uses Health and Social Care (H&Sc) public services data from 11 service packs offered by Public Health Services (PHS) Scotland that boil down to 110 single-attribute year series, called ’factors’. The study took place at Macmillan Cancer Support, UK and Abertay University, Dundee, from 2020 to 2023. The paper discusses CE relationships as a main method and compares sample findings with Linear Regression (LR), ARMA, to see how the services are linked. Relationships found were between smoking-related healthcare provision, mental-health-related services, and epidemiological weight in Primary-1-Education Body-Mass-Index (BMI) in children as CE models. Insurance companies and public policymakers can pack CE-linked services in plans such as those for the elderly, low-income people, in the long term. The linkage of services was confirmed allowing more accurate resource planning.
Keywords: Probability, regression, cause-effect cohorts, data frames, services, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58835 Semantic Enhanced Social Media Sentiments for Stock Market Prediction
Authors: K. Nirmala Devi, V. Murali Bhaskaran
Abstract:
Traditional document representation for classification follows Bag of Words (BoW) approach to represent the term weights. The conventional method uses the Vector Space Model (VSM) to exploit the statistical information of terms in the documents and they fail to address the semantic information as well as order of the terms present in the documents. Although, the phrase based approach follows the order of the terms present in the documents rather than semantics behind the word. Therefore, a semantic concept based approach is used in this paper for enhancing the semantics by incorporating the ontology information. In this paper a novel method is proposed to forecast the intraday stock market price directional movement based on the sentiments from Twitter and money control news articles. The stock market forecasting is a very difficult and highly complicated task because it is affected by many factors such as economic conditions, political events and investor’s sentiment etc. The stock market series are generally dynamic, nonparametric, noisy and chaotic by nature. The sentiment analysis along with wisdom of crowds can automatically compute the collective intelligence of future performance in many areas like stock market, box office sales and election outcomes. The proposed method utilizes collective sentiments for stock market to predict the stock price directional movements. The collective sentiments in the above social media have powerful prediction on the stock price directional movements as up/down by using Granger Causality test.
Keywords: Bag of Words, Collective Sentiments, Ontology, Semantic relations, Sentiments, Social media, Stock Prediction, Twitter, Vector Space Model and wisdom of crowds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2800834 Biorecognizable Nanoparticles Based On Hyaluronic Acid/Poly(ε-Caprolactone) Block Copolymer
Authors: Jong Ho Hwang, Dae Hwan Kang, Young-IL Jeong
Abstract:
Since hyaluronic acid (HA) receptor such as CD44 is over-expressed at sites of cancer cells, HA can be used as a targeting vehicles for anti-cancer drugs. The aim of this study is to synthesize block copolymer composed of hyaluronic acid and poly(ε-caprolactone) (HAPCL) and to fabricate polymeric micelles for anticancer drug targeting against CD44 receptor of tumor cells. Chemical composition of HAPCL was confirmed using 1H NMR spectroscopy. Doxorubicin (DOX) was incorporated into polymeric micelles of HAPCL. The diameters of HAPHS polymeric micelles were changed around 80nm and have spherical shapes. Targeting potential was investigated using CD44-overexpressing. When DOX-incorporated polymeric micelles was added to KB cells, they revealed strong red fluorescence color while blocking of CD44 receptor by pretreatment of free HA resulted in reduced intensity, indicating that HAPCL polymeric micelles have targetability against CD44 receptor.
Keywords: Hyaluronic acid, CD44 receptor, biorecognizable nanoparticles, block copolymer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6002833 Prediction of in situ Permeability for Limestone Rock Using Rock Quality Designation Index
Authors: Ahmed T. Farid, Muhammed Rizwan
Abstract:
Geotechnical study for evaluating soil or rock permeability is a highly important parameter. Permeability values for rock formations are more difficult for determination than soil formation as it is an effect of the rock quality and its fracture values. In this research, the prediction of in situ permeability of limestone rock formations was predicted. The limestone rock permeability was evaluated using Lugeon tests (in-situ packer permeability). Different sites which spread all over the Riyadh region of Saudi Arabia were chosen to conduct our study of predicting the in-situ permeability of limestone rock. Correlations were deducted between the values of in-situ permeability of the limestone rock with the value of the rock quality designation (RQD) calculated during the execution of the boreholes of the study areas. The study was performed for different ranges of RQD values measured during drilling of the sites boreholes. The developed correlations are recommended for the onsite determination of the in-situ permeability of limestone rock only. For the other sedimentary formations of rock, more studies are needed for predicting the actual correlations related to each type.
Keywords: Packer, permeability, rock, quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553832 A Study on Performance Prediction in Early Design Stage of Apartment Housing Using Machine Learning
Authors: Seongjun Kim, Sanghoon Shim, Jinwooung Kim, Jaehwan Jung, Sung-Ah Kim
Abstract:
As the development of information and communication technology, the convergence of machine learning of the ICT area and design is attempted. In this way, it is possible to grasp the correlation between various design elements, which was difficult to grasp, and to reflect this in the design result. In architecture, there is an attempt to predict the performance, which is difficult to grasp in the past, by finding the correlation among multiple factors mainly through machine learning. In architectural design area, some attempts to predict the performance affected by various factors have been tried. With machine learning, it is possible to quickly predict performance. The aim of this study is to propose a model that predicts performance according to the block arrangement of apartment housing through machine learning and the design alternative which satisfies the performance such as the daylight hours in the most similar form to the alternative proposed by the designer. Through this study, a designer can proceed with the design considering various design alternatives and accurate performances quickly from the early design stage.
Keywords: Apartment housing, machine learning, multi-objective optimization, performance prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1131831 PMF, Cesium and Rubidium Nanoparticles Induce Apoptosis in A549 Cells
Authors: Faten. A. Khorshid, Gehan. A. Raouf, Salem. M. El-Hamidy, Gehan. S. Al-amri, Nourah. A. Alotaibi, Taha A. Kumosani
Abstract:
Cancer becomes one of the leading cause of death in many countries over the world. Fourier-transform infrared (FTIR) spectra of human lung cancer cells (A549) treated with PMF (natural product extracted from PM 701) for different time intervals were examined. Second derivative and difference method were taken in comparison studies. Cesium (Cs) and Rubidium (Rb) nanoparticles in PMF were detected by Energy Dispersive X-ray attached to Scanning Electron Microscope SEM-EDX. Characteristic changes in protein secondary structure, lipid profile and changes in the intensities of DNA bands were identified in treated A549 cells spectra. A characteristic internucleosomal ladder of DNA fragmentation was also observed after 30 min of treatment. Moreover, the pH values were significantly increases upon treatment due to the presence of Cs and Rb nanoparticles in the PMF fraction. These results support the previous findings that PMF is selective anticancer agent and can produce apoptosis to A549 cells.Keywords: Apoptosis, FTIR spectroscopy, pH therapy, Scanning Electron Microscope- Energy Dispersive X-ray (SEMEDX).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4333830 Improved Technique of Non-viral Gene Delivery into Cancer Cells
Authors: D. Vainauska, S. Kozireva, A. Karpovs, M. Chistyakovs, M. Baryshev
Abstract:
Liposomal magnetofection is a simple, highly efficient technology for cell transfection, demonstrating better outcome than a number of other common gene delivery methods. However, aggregate complexes distribution over the cell surface is non-uniform due to the gradient of the permanent magnetic field. The aim of this study was to estimate the efficiency of liposomal magnetofection for prostate carcinoma PC3 cell line using newly designed device, “DynaFECTOR", ensuring magnetofection in a dynamic gradient magnetic field. Liposomal magnetofection in a dynamic gradient magnetic field demonstrated the highest transfection efficiency for PC3 cells – it increased for 21% in comparison with liposomal magnetofection and for 42% in comparison with lipofection alone. The optimal incubation time under dynamic magnetic field for PC3 cell line was 5 minutes and the optimal rotation frequency of magnets – 5 rpm. The new approach also revealed lower cytotoxic effect to cells than liposomal magnetofection.Keywords: Dynamic gradient magnetic field, gene delivery, liposomal magnetofection, prostate cancer cell line
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664829 Forecasting Foreign Direct Investment with Modified Diffusion Model
Authors: Bi-Huei Tsai
Abstract:
Prior research has not effectively investigated how the profitability of Chinese branches affect FDIs in China [1, 2], so this study for the first time incorporates realistic earnings information to systematically investigate effects of innovation, imitation, and profit factors of FDI diffusions from Taiwan to China. Our nonlinear least square (NLS) model, which incorporates earnings factors, forms a nonlinear ordinary differential equation (ODE) in numerical simulation programs. The model parameters are obtained through a genetic algorithms (GA) technique and then optimized with the collected data for the best accuracy. Particularly, Taiwanese regulatory FDI restrictions are also considered in our modified model to meet the realistic conditions. To validate the model-s effectiveness, this investigation compares the prediction accuracy of modified model with the conventional diffusion model, which does not take account of the profitability factors. The results clearly demonstrate the internal influence to be positive, as early FDI adopters- consistent praises of FDI attract potential firms to make the same move. The former erects a behavior model for the latter to imitate their foreign investment decision. Particularly, the results of modified diffusion models show that the earnings from Chinese branches are positively related to the internal influence. In general, the imitating tendency of potential consumers is substantially hindered by the losses in the Chinese branches, and these firms would invest less into China. The FDI inflow extension depends on earnings of Chinese branches, and companies will adjust their FDI strategies based on the returns. Since this research has proved that earning is an influential factor on FDI dynamics, our revised model explicitly performs superior in prediction ability than conventional diffusion model.Keywords: diffusion model, genetic algorithms, nonlinear leastsquares (NLS) model, prediction error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613828 Prediction Modeling of Compression Properties of a Knitted Sportswear Fabric Using Response Surface Method
Authors: Jawairia Umar, Tanveer Hussain, Zulfiqar Ali, Muhammad Maqsood
Abstract:
Different knitted structures and knitted parameters play a vital role in the stretch and recovery management of compression sportswear in addition to the materials use to generate this stretch and recovery behavior of the fabric. The present work was planned to predict the different performance indicators of a compression sportswear fabric with some ground parameters i.e. base yarn stitch length (polyester as base yarn and spandex as plating yarn involve to make a compression fabric) and linear density of the spandex which is a key material of any sportswear fabric. The prediction models were generated by response surface method for performance indicators such as stretch & recovery percentage, compression generated by the garment on body, total elongation on application of high power force and load generated on certain percentage extension in fabric. Certain physical properties of the fabric were also modeled using these two parameters.Keywords: Compression, sportswear, stretch and recovery, statistical model, kikuhime.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053827 Development of Analytical Model of Bending Force during 3-Roller Conical Bending Process and Its Experimental Verification
Authors: Mahesh Chudasama, Harit Raval
Abstract:
Conical sections and shells made from metal plates are widely used in various industrial applications. 3-roller conical bending process is preferably used to produce such conical sections and shells. Bending mechanics involved in the process is complex and little work is done in this area. In the present paper an analytical model is developed to predict bending force which will be acting during 3-roller conical bending process. To verify the developed model, conical bending experiments are performed. Analytical results and experimental results were compared. Force predicted by analytical model is in close proximity of the experimental results. The error in the prediction is ±10%. Hence the model gives quite satisfactory results. Present model is also compared with the previously published bending force prediction model and it is found that the present model gives better results. The developed model can be used to estimate the bending force during 3-roller bending process and can be useful to the designers for designing the 3-roller conical bending machine.
Keywords: Bending-force, Experimental-verification, Internal-moment, Roll-bending.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4025826 New Device for Enhancement of Liposomal Magnetofection Efficiency of Cancer Cells
Authors: M. Baryshev, D.Vainauska, S. Kozireva, A.Karpovs
Abstract:
Liposomal magnetofection is the most powerful nonviral method for the nucleic acid delivery into the cultured cancer cells and widely used for in vitro applications. Use of the static magnetic field condition may result in non-uniform distribution of aggregate complexes on the surface of cultured cells. To prevent this, we developed the new device which allows to concentrate aggregate complexes under dynamic magnetic field, assisting more contact of these complexes with cellular membrane and, possibly, stimulating endocytosis. Newly developed device for magnetofection under dynamic gradient magnetic field, “DynaFECTOR", was used to compare transfection efficiency of human liver hepatocellular carcinoma cell line HepG2 with that obtained by lipofection and magnetofection. The effect of two parameters on transfection efficiency, incubation time under dynamic magnetic field and rotation frequency of magnet, was estimated. Liposomal magnetofection under dynamic gradient magnetic field showed the highest transfection efficiency for HepG2 cells.
Keywords: Dynamic magnetic field, Lipofection, Magnetofection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762825 Combining Fuzzy Logic and Data Miningto Predict the Result of an EIA Review
Authors: Kevin Fong-Rey Liu, Jia-Shen Chen, Han-Hsi Liang, Cheng-Wu Chen, Yung-Shuen Shen
Abstract:
The purpose of determining impact significance is to place value on impacts. Environmental impact assessment review is a process that judges whether impact significance is acceptable or not in accordance with the scientific facts regarding environmental, ecological and socio-economical impacts described in environmental impact statements (EIS) or environmental impact assessment reports (EIAR). The first aim of this paper is to summarize the criteria of significance evaluation from the past review results and accordingly utilize fuzzy logic to incorporate these criteria into scientific facts. The second aim is to employ data mining technique to construct an EIS or EIAR prediction model for reviewing results which can assist developers to prepare and revise better environmental management plans in advance. The validity of the previous prediction model proposed by authors in 2009 is 92.7%. The enhanced validity in this study can attain 100.0%.Keywords: Environmental impact assessment review, impactsignificance, fuzzy logic, data mining, classification tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944824 Prediction of the Total Decay Heat from Fast Neutron Fission of 235U and 239Pu
Authors: Sherif. S. Nafee, Ameer. K. Al-Ramady, Salem. A. Shaheen
Abstract:
The analytical prediction of the decay heat results from the fast neutron fission of actinides was initiated under a project, 10-MAT1134-3, funded by king Abdulaziz City of Science and Technology (KASCT), Long-Term Comprehensive National Plan for Science, Technology and Innovations, managed by a team from King Abdulaziz University (KAU), Saudi Arabia, and supervised by Argonne National Laboratory (ANL) has collaborated with KAU's team to assist in the computational analysis. In this paper, the numerical solution of coupled linear differential equations that describe the decays and buildups of minor fission product MFA, has been used to predict the total decay heat and its components from the fast neutron fission of 235U and 239Pu. The reliability of the present approach is illustrated via systematic comparisons with the measurements reported by the University of Tokyo, in YAYOI reactor.Keywords: Decay heat, fast neutron fission, and Numerical Solution of Linear Differential Equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491823 Prediction of Compressive Strength Using Artificial Neural Network
Authors: Vijay Pal Singh, Yogesh Chandra Kotiyal
Abstract:
Structures are a combination of various load carrying members which transfer the loads to the foundation from the superstructure safely. At the design stage, the loading of the structure is defined and appropriate material choices are made based upon their properties, mainly related to strength. The strength of materials kept on reducing with time because of many factors like environmental exposure and deformation caused by unpredictable external loads. Hence, to predict the strength of materials used in structures, various techniques are used. Among these techniques, Non-destructive techniques (NDT) are the one that can be used to predict the strength without damaging the structure. In the present study, the compressive strength of concrete has been predicted using Artificial Neural Network (ANN). The predicted strength was compared with the experimentally obtained actual compressive strength of concrete and equations were developed for different models. A good co-relation has been obtained between the predicted strength by these models and experimental values. Further, the co-relation has been developed using two NDT techniques for prediction of strength by regression analysis. It was found that the percentage error has been reduced between the predicted strength by using combined techniques in place of single techniques.
Keywords: Rebound, ultra-sonic pulse, penetration, ANN, NDT, regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4385822 Prediction of Rubberised Concrete Strength by Using Artificial Neural Networks
Authors: A. M. N. El-Khoja, A. F. Ashour, J. Abdalhmid, X. Dai, A. Khan
Abstract:
In recent years, waste tyre problem is considered as one of the most crucial environmental pollution problems facing the world. Thus, reusing waste rubber crumb from recycled tyres to develop highly damping concrete is technically feasible and a viable alternative to landfill or incineration. The utilization of waste rubber in concrete generally enhances the ductility, toughness, thermal insulation, and impact resistance. However, the mechanical properties decrease with the amount of rubber used in concrete. The aim of this paper is to develop artificial neural network (ANN) models to predict the compressive strength of rubberised concrete (RuC). A trained and tested ANN was developed using a comprehensive database collected from different sources in the literature. The ANN model developed used 5 input parameters that include: coarse aggregate (CA), fine aggregate (FA), w/c ratio, fine rubber (Fr), and coarse rubber (Cr), whereas the ANN outputs were the corresponding compressive strengths. A parametric study was also conducted to study the trend of various RuC constituents on the compressive strength of RuC.Keywords: Rubberized concrete, compressive strength, artificial neural network, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 909821 Evaluation of Model Evaluation Criterion for Software Development Effort Estimation
Authors: S. K. Pillai, M. K. Jeyakumar
Abstract:
Estimation of model parameters is necessary to predict the behavior of a system. Model parameters are estimated using optimization criteria. Most algorithms use historical data to estimate model parameters. The known target values (actual) and the output produced by the model are compared. The differences between the two form the basis to estimate the parameters. In order to compare different models developed using the same data different criteria are used. The data obtained for short scale projects are used here. We consider software effort estimation problem using radial basis function network. The accuracy comparison is made using various existing criteria for one and two predictors. Then, we propose a new criterion based on linear least squares for evaluation and compared the results of one and two predictors. We have considered another data set and evaluated prediction accuracy using the new criterion. The new criterion is easy to comprehend compared to single statistic. Although software effort estimation is considered, this method is applicable for any modeling and prediction.
Keywords: Software effort estimation, accuracy, Radial Basis Function, linear least squares.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042820 A Heat-Inducible Transgene Expression System for Gene Therapy
Authors: Masaki Yamaguchi, Akira Ito, Noriaki Okamoto, Yoshinori Kawabe, Masamichi Kamihira
Abstract:
Heat-inducible gene expression vectors are useful for hyperthermia-induced cancer gene therapy, because the combination of hyperthermia and gene therapy can considerably improve the therapeutic effects. In the present study, we developed an enhanced heat-inducible transgene expression system in which a heat-shock protein (HSP) promoter and tetracycline-responsive transactivator were combined. When the transactivator plasmid containing the tetracycline-responsive transactivator gene was co-transfected with the reporter gene expression plasmid, a high level of heat-induced gene expression was observed compared with that using the HSP promoter without the transactivator. In vitro evaluation of the therapeutic effect using HeLa cells showed that heat-induced therapeutic gene expression caused cell death in a high percentage of these cells, indicating that this strategy is promising for cancer gene therapy.Keywords: Inducible gene expression, Gene therapy, Hyperthermia, Heat shock protein, Tetracycline transactivator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135819 Prediction of Compressive Strength of SCC Containing Bottom Ash using Artificial Neural Networks
Authors: Yogesh Aggarwal, Paratibha Aggarwal
Abstract:
The paper presents a comparative performance of the models developed to predict 28 days compressive strengths using neural network techniques for data taken from literature (ANN-I) and data developed experimentally for SCC containing bottom ash as partial replacement of fine aggregates (ANN-II). The data used in the models are arranged in the format of six and eight input parameters that cover the contents of cement, sand, coarse aggregate, fly ash as partial replacement of cement, bottom ash as partial replacement of sand, water and water/powder ratio, superplasticizer dosage and an output parameter that is 28-days compressive strength and compressive strengths at 7 days, 28 days, 90 days and 365 days, respectively for ANN-I and ANN-II. The importance of different input parameters is also given for predicting the strengths at various ages using neural network. The model developed from literature data could be easily extended to the experimental data, with bottom ash as partial replacement of sand with some modifications.Keywords: Self compacting concrete, bottom ash, strength, prediction, neural network, importance factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226818 Probe-Assisted Axillary Lymph Node Biopsy Compared with Axillary Dissection in Breast Cancer: A Retrospective Study from the West of Iran
Authors: Morteza Alizadeh Foroutan, Hassan Moayeri, Keivan Sabooni, Motahareh Rouhi Ardeshiri
Abstract:
Breast cancer incidence is annually increasing in various parts of the world, and sentinel lymph node biopsy (SLNB) has turned into a new standard for care as a staging process in this regard. In the present study, the gamma probe technique was used for SLNB as a safe method with more accuracy and less complications. The study sought to compare the results of two surgical techniques, namely, axillary lymph node dissection (ALND) and SLNB, including epidemiological results and clinicopathological features of BC patients from the western provinces of Iran. In general, 420 BC women were identified who referred to the breast clinic in Sanandaj, Kurdistan province during 2017-2021. Of whom, 318 patients underwent breast surgery, and from these patients, 277 cases participated in the current study. Patients were divided into those undergoing ALND and SLNB. The criteria for complete dissection or axillary biopsy using the gamma probe were based on the results of clinical examinations and the presence of palpable lymph nodes. Overall complications after surgery belonged to 58 (18.9%) cases, including 15 (25.9%) and 43 (74.1%) patients in the SLNB and ALND groups, respectively (P = 0.74). Based on the findings, Seroma (60.3%) was the most reported complication in each group. Most patients had tumors in the upper-outer quadrant of their left breast. The mean of the tumor dimension in the SLNB and ALND groups was 2.1 ± 1.3 cm and 3.2 ± 1.8 cm, respectively, (P = 0.003). The benefits of breast-conserving surgery (BCS) with the SLNB technique are clearly undeniable and can be considered a method with less complications and a better prognosis. Accordingly, SLNB and BCS are favorable methods that can be performed, along with gamma probe technique, which is safe and accurate.
Keywords: Breast cancer, Sentinel lymph node biopsy, Axillary lymph node dissection, Gamma probe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40817 Comparison of Bayesian and Regression Schemes to Model Public Health Services
Authors: Sotirios Raptis
Abstract:
Bayesian reasoning (BR) or Linear (Auto) Regression (AR/LR) can predict different sources of data using priors or other data, and can link social service demands in cohorts, while their consideration in isolation (self-prediction) may lead to service misuse ignoring the context. The paper advocates that BR with Binomial (BD), or Normal (ND) models or raw data (.D) as probabilistic updates can be compared to AR/LR to link services in Scotland and reduce cost by sharing healthcare (HC) resources. Clustering, cross-correlation, along with BR, LR, AR can better predict demand. Insurance companies and policymakers can link such services, and examples include those offered to the elderly, and low-income people, smoking-related services linked to mental health services, or epidemiological weight in children. 22 service packs are used that are published by Public Health Services (PHS) Scotland and Scottish Government (SG) from 1981 to 2019, broken into 110 year series (factors), joined using LR, AR, BR. The Primary component analysis found 11 significant factors, while C-Means (CM) clustering gave five major clusters.
Keywords: Bayesian probability, cohorts, data frames, regression, services, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 225816 Typical Day Prediction Model for Output Power and Energy Efficiency of a Grid-Connected Solar Photovoltaic System
Authors: Yan Su, L. C. Chan
Abstract:
A novel typical day prediction model have been built and validated by the measured data of a grid-connected solar photovoltaic (PV) system in Macau. Unlike conventional statistical method used by previous study on PV systems which get results by averaging nearby continuous points, the present typical day statistical method obtain the value at every minute in a typical day by averaging discontinuous points at the same minute in different days. This typical day statistical method based on discontinuous point averaging makes it possible for us to obtain the Gaussian shape dynamical distributions for solar irradiance and output power in a yearly or monthly typical day. Based on the yearly typical day statistical analysis results, the maximum possible accumulated output energy in a year with on site climate conditions and the corresponding optimal PV system running time are obtained. Periodic Gaussian shape prediction models for solar irradiance, output energy and system energy efficiency have been built and their coefficients have been determined based on the yearly, maximum and minimum monthly typical day Gaussian distribution parameters, which are obtained from iterations for minimum Root Mean Squared Deviation (RMSD). With the present model, the dynamical effects due to time difference in a day are kept and the day to day uncertainty due to weather changing are smoothed but still included. The periodic Gaussian shape correlations for solar irradiance, output power and system energy efficiency have been compared favorably with data of the PV system in Macau and proved to be an improvement than previous models.
Keywords: Grid Connected, RMSD, Solar PV System, Typical Day.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679815 Tomato Lycopene: Functional Proprieties and Health Benefits
Authors: C. S. Marques, M. J. Reis Lima, J. Oliveira, E. Teixeira-Lemos
Abstract:
The growing concerns for physical wellbeing and health have been reflected in the way we choose food in our table. Nowadays, we are all more informed consumers and choose healthier foods. On the other hand, stroke, cancer and atherosclerosis may be somehow minimized by the intake of some bioactive compounds present in food, the so-called nutraceuticals and functional foods. The aim of this work was to make a revision of the published studies about the effects of some bioactive compounds, namely lycopene in human health, in the prevention of diseases, thus playing the role of a functional food. Free radical in human body can induce cell damage and consequently can be responsible for the development of some cancers and chronic diseases. Lycopene is one of the most powerful antioxidants known, being the predominant carotenoid in tomato. The respective chemistry, bioavailability, and its functional role in the prevention of several diseases will be object of this work. On the other hand, the inclusion of lycopene in some foods can also be made by biotechnology and represents a way to recover the wastes in the tomato industry with nutritional positive effects in health.Keywords: Tomato, lycopene, bioavailability, functional foods, carotenoids, cancer and antioxidants.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3203814 A Performance Appraisal of Neural Networks Developed for Response Prediction across Heterogeneous Domains
Authors: H. Soleimanjahi, M. J. Nategh, S. Falahi
Abstract:
Deciding the numerous parameters involved in designing a competent artificial neural network is a complicated task. The existence of several options for selecting an appropriate architecture for neural network adds to this complexity, especially when different applications of heterogeneous natures are concerned. Two completely different applications in engineering and medical science were selected in the present study including prediction of workpiece's surface roughness in ultrasonic-vibration assisted turning and papilloma viruses oncogenicity. Several neural network architectures with different parameters were developed for each application and the results were compared. It was illustrated in this paper that some applications such as the first one mentioned above are apt to be modeled by a single network with sufficient accuracy, whereas others such as the second application can be best modeled by different expert networks for different ranges of output. Development of knowledge about the essentials of neural networks for different applications is regarded as the cornerstone of multidisciplinary network design programs to be developed as a means of reducing inconsistencies and the burden of the user intervention.Keywords: Artificial Neural Network, Malignancy Diagnosis, Papilloma Viruses Oncogenicity, Surface Roughness, UltrasonicVibration-Assisted Turning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515813 A Prediction of Attractive Evaluation Objects Based On Complex Sequential Data
Authors: Shigeaki Sakurai, Makino Kyoko, Shigeru Matsumoto
Abstract:
This paper proposes a method that predicts attractive evaluation objects. In the learning phase, the method inductively acquires trend rules from complex sequential data. The data is composed of two types of data. One is numerical sequential data. Each evaluation object has respective numerical sequential data. The other is text sequential data. Each evaluation object is described in texts. The trend rules represent changes of numerical values related to evaluation objects. In the prediction phase, the method applies new text sequential data to the trend rules and evaluates which evaluation objects are attractive. This paper verifies the effect of the proposed method by using stock price sequences and news headline sequences. In these sequences, each stock brand corresponds to an evaluation object. This paper discusses validity of predicted attractive evaluation objects, the process time of each phase, and the possibility of application tasks.
Keywords: Trend rule, frequent pattern, numerical sequential data, text sequential data, evaluation object.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1235812 Pattern Recognition Using Feature Based Die-Map Clusteringin the Semiconductor Manufacturing Process
Authors: Seung Hwan Park, Cheng-Sool Park, Jun Seok Kim, Youngji Yoo, Daewoong An, Jun-Geol Baek
Abstract:
Depending on the big data analysis becomes important, yield prediction using data from the semiconductor process is essential. In general, yield prediction and analysis of the causes of the failure are closely related. The purpose of this study is to analyze pattern affects the final test results using a die map based clustering. Many researches have been conducted using die data from the semiconductor test process. However, analysis has limitation as the test data is less directly related to the final test results. Therefore, this study proposes a framework for analysis through clustering using more detailed data than existing die data. This study consists of three phases. In the first phase, die map is created through fail bit data in each sub-area of die. In the second phase, clustering using map data is performed. And the third stage is to find patterns that affect final test result. Finally, the proposed three steps are applied to actual industrial data and experimental results showed the potential field application.
Keywords: Die-Map Clustering, Feature Extraction, Pattern Recognition, Semiconductor Manufacturing Process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3151