Search results for: Real time Acquisition
7373 Application of IED to Condition Based Maintenance of Medium Voltage GCB/VCB
Authors: Ming-Ta Yang, Jyh-Cherng Gu, Chun-Wei Huang, Jin-Lung Guan
Abstract:
Time base maintenance (TBM) is conventionally applied by the power utilities to maintain circuit breakers (CBs), transformers, bus bars and cables, which may result in under maintenance or over maintenance. As information and communication technology (ICT) industry develops, the maintenance policies of many power utilities have gradually changed from TBM to condition base maintenance (CBM) to improve system operating efficiency, operation cost and power supply reliability. This paper discusses the feasibility of using intelligent electronic devices (IEDs) to construct a CB CBM management platform. CBs in power substations can be monitored using IEDs with additional logic configuration and wire connections. The CB monitoring data can be sent through intranet to a control center and be analyzed and integrated by the Elipse Power Studio software. Finally, a human-machine interface (HMI) of supervisory control and data acquisition (SCADA) system can be designed to construct a CBM management platform to provide maintenance decision information for the maintenance personnel, management personnel and CB manufacturers.
Keywords: Circuit breaker, Condition base maintenance, Intelligent electronic device, Time base maintenance, SCADA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22877372 Design of a Neural Networks Classifier for Face Detection
Authors: F. Smach, M. Atri, J. Mitéran, M. Abid
Abstract:
Face detection and recognition has many applications in a variety of fields such as security system, videoconferencing and identification. Face classification is currently implemented in software. A hardware implementation allows real-time processing, but has higher cost and time to-market. The objective of this work is to implement a classifier based on neural networks MLP (Multi-layer Perceptron) for face detection. The MLP is used to classify face and non-face patterns. The systm is described using C language on a P4 (2.4 Ghz) to extract weight values. Then a Hardware implementation is achieved using VHDL based Methodology. We target Xilinx FPGA as the implementation support.Keywords: Classification, Face Detection, FPGA Hardware description, MLP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22817371 Forecasting US Dollar/Euro Exchange Rate with Genetic Fuzzy Predictor
Authors: R. Mechgoug, A. Titaouine
Abstract:
Fuzzy systems have been successfully used for exchange rate forecasting. However, fuzzy system is very confusing and complex to be designed by an expert, as there is a large set of parameters (fuzzy knowledge base) that must be selected, it is not a simple task to select the appropriate fuzzy knowledge base for an exchange rate forecasting. The researchers often look the effect of fuzzy knowledge base on the performances of fuzzy system forecasting. This paper proposes a genetic fuzzy predictor to forecast the future value of daily US Dollar/Euro exchange rate time’s series. A range of methodologies based on a set of fuzzy predictor’s which allow the forecasting of the same time series, but with a different fuzzy partition. Each fuzzy predictor is built from two stages, where each stage is performed by a real genetic algorithm.
Keywords: Foreign exchange rate, time series forecasting, Fuzzy System, and Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19987370 A Short Reflection on the Strengths and Weaknesses of Simulation Optimization
Authors: P. Vazan, P. Tanuska
Abstract:
The paper provides the basic overview of simulation optimization. The procedure of its practical using is demonstrated on the real example in simulator Witness. The simulation optimization is presented as a good tool for solving many problems in real praxis especially in production systems. The authors also characterize their own experiences and they mention the strengths and weakness of simulation optimization.
Keywords: discrete event simulation, simulation optimization, Witness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25987369 Measurement of Real Time Drive Cycle for Indian Roads and Estimation of Component Sizing for HEV using LABVIEW
Authors: Varsha Shah, Patel Pritesh, Patel Sagar, PrasantaKundu, RanjanMaheshwari
Abstract:
Performance of vehicle depends on driving patterns and vehicle drive train configuration. Driving patterns depends on traffic condition, road condition and driver behavior. HEV design is carried out under certain constrain like vehicle operating range, acceleration, decelerations, maximum speed and road grades which are directly related to the driving patterns. Therefore the detailed study on HEV performance over a different drive cycle is required for selection and sizing of HEV components. A simple hardware is design to measured velocity v/s time profile of the vehicle by operating vehicle on Indian roads under real traffic conditions. To size the HEV components, a detailed dynamic model of the vehicle is developed considering the effect of inertia of rotating components like wheels, drive chain, engine and electric motor. Using vehicle model and different Indian drive cycles data, total tractive power demanded by vehicle and power supplied by individual components has been calculated.Using above information selection and estimation of component sizing for HEV is carried out so that HEV performs efficiently under hostile driving condition. Complete analysis is carried out in LABVIEW.Keywords: BLDC motor, Driving cycle, LABVIEW Ultracapacitors, Vehicle Dynamics,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39017368 Investigations on the Influence of Optimized Charge Air Cooling for a Diesel Passenger Car
Authors: Christian Doppler, Gernot Hirschl, Gerhard Zsiga
Abstract:
Starting in 2020, an EU-wide CO2-limitation of 95 g/km is scheduled for the average of an OEMs passenger car fleet. Taking that into consideration additional improvement measures of the Diesel cycle are necessary in order to reduce fuel consumption and emissions while boosting, or at the least, keeping performance values at the same time. The present article deals with the possibilities of an optimized air/water charge air cooler, also called iCAC (indirect Charge Air Cooler) for a Diesel passenger car amongst extreme-boundary conditions. In this context, the precise objective was to show the impact of improved intercooling with reference to the engine working process (fuel consumption and NOx-emissions). Several extremeboundaries - e.g. varying ambient temperatures or mountainous routes - that will become very important in the near future regarding RDE (Real Driving emissions) were subject of the investigation. With the introduction of RDE in 2017 (EU6c measure), the controversial NEDC (New European Driving Cycle) will belong to the past and the OEMs will have to avoid harmful emissions in any conceivable real life situation. This is certainly going to lead to optimization-measurements at the powertrain, which again is going to make the implementation of iCACs, presently solely used for the premium class, more and more attractive for compact class cars. The investigations showed a benefit in FC between 1 and 3% for the iCAC in real world conditions.
Keywords: Air/Water-Charge Air Cooler, Co-Simulation, Diesel Working Process, EURO VI Fuel Consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29057367 A Motion Dictionary to Real-Time Recognition of Sign Language Alphabet Using Dynamic Time Warping and Artificial Neural Network
Authors: Marcio Leal, Marta Villamil
Abstract:
Computacional recognition of sign languages aims to allow a greater social and digital inclusion of deaf people through interpretation of their language by computer. This article presents a model of recognition of two of global parameters from sign languages; hand configurations and hand movements. Hand motion is captured through an infrared technology and its joints are built into a virtual three-dimensional space. A Multilayer Perceptron Neural Network (MLP) was used to classify hand configurations and Dynamic Time Warping (DWT) recognizes hand motion. Beyond of the method of sign recognition, we provide a dataset of hand configurations and motion capture built with help of fluent professionals in sign languages. Despite this technology can be used to translate any sign from any signs dictionary, Brazilian Sign Language (Libras) was used as case study. Finally, the model presented in this paper achieved a recognition rate of 80.4%.Keywords: Sign language recognition, computer vision, infrared, artificial neural network, dynamic time warping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8807366 Collaborative Implementation of Master Plans in Afghanistan's Context Considering Land Readjustment as Case Study
Authors: Ahmad Javid Habib, Tetsuo Kidokoro
Abstract:
There is an increasing demand for developing urban land to provide better living conditions for all citizens in Afghanistan. Most of the development will involve the acquisition of land. And the current land acquisition method practiced by central government is expropriation, which is a cash-based transaction method that imposes heavy fiscal burden on local municipalities and central government, and it does not protect ownership rights and social equity of landowners besides it relocates the urban poor to remote areas with limited access to jobs and public services. The questionnaire analysis, backed by observations of different case studies in countries where land readjustment is used as a collaborative land development tool indicates that the method plays a key role in valuing landowners’ rights, giving other community members and stakeholders the opportunity to collaboratively implement urban development projects. The practice of the method is reducing the heavy fiscal burden on the local and central governments and is a better option to deal with the current development challenges in Afghanistan.Keywords: Collaboration, land readjustment, master plan, expropriation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15387365 Grouping-Based Job Scheduling Model In Grid Computing
Authors: Vishnu Kant Soni, Raksha Sharma, Manoj Kumar Mishra
Abstract:
Grid computing is a high performance computing environment to solve larger scale computational applications. Grid computing contains resource management, job scheduling, security problems, information management and so on. Job scheduling is a fundamental and important issue in achieving high performance in grid computing systems. However, it is a big challenge to design an efficient scheduler and its implementation. In Grid Computing, there is a need of further improvement in Job Scheduling algorithm to schedule the light-weight or small jobs into a coarse-grained or group of jobs, which will reduce the communication time, processing time and enhance resource utilization. This Grouping strategy considers the processing power, memory-size and bandwidth requirements of each job to realize the real grid system. The experimental results demonstrate that the proposed scheduling algorithm efficiently reduces the processing time of jobs in comparison to others.Keywords: Grid computing, Job grouping and Jobscheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19497364 Face Detection using Variance based Haar-Like feature and SVM
Authors: Cuong Nguyen Khac, Ju H. Park, Ho-Youl Jung
Abstract:
This paper proposes a new approach to perform the problem of real-time face detection. The proposed method combines primitive Haar-Like feature and variance value to construct a new feature, so-called Variance based Haar-Like feature. Face in image can be represented with a small quantity of features using this new feature. We used SVM instead of AdaBoost for training and classification. We made a database containing 5,000 face samples and 10,000 non-face samples extracted from real images for learning purposed. The 5,000 face samples contain many images which have many differences of light conditions. And experiments showed that face detection system using Variance based Haar-Like feature and SVM can be much more efficient than face detection system using primitive Haar-Like feature and AdaBoost. We tested our method on two Face databases and one Non-Face database. We have obtained 96.17% of correct detection rate on YaleB face database, which is higher 4.21% than that of using primitive Haar-Like feature and AdaBoost.Keywords: AdaBoost, Haar-Like feature, SVM, variance, Variance based Haar-Like feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37367363 Sign Pattern Matrices that Admit P0 Matrices
Authors: Ling Zhang, Ting-Zhu Huang
Abstract:
A P0-matrix is a real square matrix all of whose principle minors are nonnegative. In this paper, we consider the class of P0-matrix. Our main aim is to determine which sign pattern matrices are admissible for this class of real matrices.
Keywords: Sign pattern matrices, P0 matrices, graph, digraph.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12207362 RFID Logistic Management with Cold Chain Monitoring – Cold Store Case Study
Authors: Mira Trebar
Abstract:
Logistics processes of perishable food in the supply chain include the distribution activities and the real time temperature monitoring to fulfil the cold chain requirements. The paper presents the use of RFID (Radio Frequency Identification) technology as an identification tool of receiving and shipping activities in the cold store. At the same time, the use of RFID data loggers with temperature sensors is presented to observe and store the temperatures for the purpose of analyzing the processes and having the history data available for traceability purposes and efficient recall management.
Keywords: Logistics, warehouse, RFID device, cold chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37157361 Overview of E-government Adoption and Implementation in Ghana
Authors: Isaac Kofi Mensah
Abstract:
E-government has been adopted and used by many governments/countries around the world including Ghana to provide citizens and businesses with more accurate, real-time, and high quality services and information. The objective of this paper is to present an overview of the Government of Ghana’s (GoG) adoption and implement of e-government and its usage by the Ministries, Departments and its agencies (MDAs) as well as other public sector institutions to deliver efficient public service to the general public i.e. citizens, business etc. Government implementation of e-government focused on facilitating effective delivery of government service to the public and ultimately to provide efficient government-wide electronic means of sharing information and knowledge through a network infrastructure developed to connect all major towns and cities, Ministries, Departments and Agencies and other public sector organizations in Ghana. One aim for the Government of Ghana use of ICT in public administration is to improve productivity in government administration and service by facilitating exchange of information to enable better interaction and coordination of work among MDAs, citizens and private businesses. The study was prepared using secondary sources of data from government policy documents, national and international published reports, journal articles, and web sources. This study indicates that through the e-government initiative, currently citizens and businesses can access and pay for services such as renewal of driving license, business registration, payment of taxes, acquisition of marriage and birth certificates as well as application for passport through the GoG electronic service (eservice) and electronic payment (epay) portal. Further, this study shows that there is enormous commitment from GoG to adopt and implement e-government as a tool not only to transform the business of government but also to bring efficiency in public services delivered by the MDAs. To ascertain this, a further study need to be carried out to determine if the use of e-government has brought about the anticipated improvements and efficiency in service delivery of MDAs and other state institutions in Ghana.
Keywords: Electronic government, electronic services, electronic payment, MDAs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45837360 Influence of Radio Frequency Identification Technology in Logistic, Inventory Control and Supply Chain Optimization
Authors: H. Amoozad-khalili, R. Tavakkoli-Moghaddam, N.Shahab-Dehkordi
Abstract:
The main aim of Supply Chain Management (SCM) is to produce, distribute, logistics and deliver goods and equipment in right location, right time, right amount to satisfy costumers, with minimum time and cost waste. So implementing techniques that reduce project time and cost, and improve productivity and performance is very important. Emerging technologies such as the Radio Frequency Identification (RFID) are now making it possible to automate supply chains in a real time manner and making them more efficient than the simple supply chain of the past for tracing and monitoring goods and products and capturing data on movements of goods and other events. This paper considers concepts, components and RFID technology characteristics by concentration of warehouse and inventories management. Additionally, utilization of RFID in the role of improving information management in supply chain is discussed. Finally, the facts of installation and this technology-s results in direction with warehouse and inventory management and business development will be presented.Keywords: Logistics, Supply Chain Management, RFIDTechnology, Inventory Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18357359 Analysis and Simulation of TM Fields in Waveguides with Arbitrary Cross-Section Shapes by Means of Evolutionary Equations of Time-Domain Electromagnetic Theory
Authors: Ömer Aktaş, Olga A. Suvorova, Oleg Tretyakov
Abstract:
The boundary value problem on non-canonical and arbitrary shaped contour is solved with a numerically effective method called Analytical Regularization Method (ARM) to calculate propagation parameters. As a result of regularization, the equation of first kind is reduced to the infinite system of the linear algebraic equations of the second kind in the space of L2. This equation can be solved numerically for desired accuracy by using truncation method. The parameters as cut-off wavenumber and cut-off frequency are used in waveguide evolutionary equations of electromagnetic theory in time-domain to illustrate the real-valued TM fields with lossy and lossless media.Keywords: Arbitrary cross section waveguide, analytical regularization method, evolutionary equations of electromagnetic theory of time-domain, TM field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16747358 Eukaryotic Gene Prediction by an Investigation of Nonlinear Dynamical Modeling Techniques on EIIP Coded Sequences
Authors: Mai S. Mabrouk, Nahed H. Solouma, Abou-Bakr M. Youssef, Yasser M. Kadah
Abstract:
Many digital signal processing, techniques have been used to automatically distinguish protein coding regions (exons) from non-coding regions (introns) in DNA sequences. In this work, we have characterized these sequences according to their nonlinear dynamical features such as moment invariants, correlation dimension, and largest Lyapunov exponent estimates. We have applied our model to a number of real sequences encoded into a time series using EIIP sequence indicators. In order to discriminate between coding and non coding DNA regions, the phase space trajectory was first reconstructed for coding and non-coding regions. Nonlinear dynamical features are extracted from those regions and used to investigate a difference between them. Our results indicate that the nonlinear dynamical characteristics have yielded significant differences between coding (CR) and non-coding regions (NCR) in DNA sequences. Finally, the classifier is tested on real genes where coding and non-coding regions are well known.
Keywords: Gene prediction, nonlinear dynamics, correlation dimension, Lyapunov exponent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18257357 Time Map
Authors: A. Peveri
Abstract:
The interaction of mass will determine the curvature of space-time, may determine that events proceed at different rates of time at each point in space, so each has a corresponding gravitational potential time. So we can find different values of gravity (g), corresponding to different times (t), thus making a "map of time in space." The space-time is curved by present mass, causing a force of attraction towards the body, but if you invest the curvature of space-time, we find that this field is repulsive: Obtaining negative gravitational forces and positive gravitational forces respectively.
Keywords: Space-time, time, positive gravitation, negative gravitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15197356 A Watermarking Scheme for MP3 Audio Files
Authors: Dimitrios Koukopoulos, Yiannis Stamatiou
Abstract:
In this work, we present for the first time in our perception an efficient digital watermarking scheme for mpeg audio layer 3 files that operates directly in the compressed data domain, while manipulating the time and subband/channel domain. In addition, it does not need the original signal to detect the watermark. Our scheme was implemented taking special care for the efficient usage of the two limited resources of computer systems: time and space. It offers to the industrial user the capability of watermark embedding and detection in time immediately comparable to the real music time of the original audio file that depends on the mpeg compression, while the end user/audience does not face any artifacts or delays hearing the watermarked audio file. Furthermore, it overcomes the disadvantage of algorithms operating in the PCMData domain to be vulnerable to compression/recompression attacks, as it places the watermark in the scale factors domain and not in the digitized sound audio data. The strength of our scheme, that allows it to be used with success in both authentication and copyright protection, relies on the fact that it gives to the users the enhanced capability their ownership of the audio file not to be accomplished simply by detecting the bit pattern that comprises the watermark itself, but by showing that the legal owner knows a hard to compute property of the watermark.Keywords: Audio watermarking, mpeg audio layer 3, hardinstance generation, NP-completeness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16517355 Novel Hybrid Approaches For Real Coded Genetic Algorithm to Compute the Optimal Control of a Single Stage Hybrid Manufacturing Systems
Authors: M. Senthil Arumugam, M.V.C. Rao
Abstract:
This paper presents a novel two-phase hybrid optimization algorithm with hybrid genetic operators to solve the optimal control problem of a single stage hybrid manufacturing system. The proposed hybrid real coded genetic algorithm (HRCGA) is developed in such a way that a simple real coded GA acts as a base level search, which makes a quick decision to direct the search towards the optimal region, and a local search method is next employed to do fine tuning. The hybrid genetic operators involved in the proposed algorithm improve both the quality of the solution and convergence speed. The phase–1 uses conventional real coded genetic algorithm (RCGA), while optimisation by direct search and systematic reduction of the size of search region is employed in the phase – 2. A typical numerical example of an optimal control problem with the number of jobs varying from 10 to 50 is included to illustrate the efficacy of the proposed algorithm. Several statistical analyses are done to compare the validity of the proposed algorithm with the conventional RCGA and PSO techniques. Hypothesis t – test and analysis of variance (ANOVA) test are also carried out to validate the effectiveness of the proposed algorithm. The results clearly demonstrate that the proposed algorithm not only improves the quality but also is more efficient in converging to the optimal value faster. They can outperform the conventional real coded GA (RCGA) and the efficient particle swarm optimisation (PSO) algorithm in quality of the optimal solution and also in terms of convergence to the actual optimum value.
Keywords: Hybrid systems, optimal control, real coded genetic algorithm (RCGA), Particle swarm optimization (PSO), Hybrid real coded GA (HRCGA), and Hybrid genetic operators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18997354 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier
Authors: Atanu K Samanta, Asim Ali Khan
Abstract:
Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.
Keywords: Artificial neural network, ANN, brain tumor, computer-aided diagnostic, CAD system, gray-level co-occurrence matrix, GLCM, level set method, tumor segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13657353 Biosorption of Cu (II) and Zn (II) from Real Wastewater onto Cajanus cajan Husk
Authors: Mallappa A. Devani, John U. Kennedy Oubagaranadin, Basudeb Munshi
Abstract:
In this preliminary work, locally available husk of Cajanus cajan (commonly known in India as Tur or Arhar), a bio-waste, has been used in its physically treated and chemically activated form for the removal of binary Cu (II) and Zn(II) ions from the real waste water obtained from an electroplating industry in Bangalore, Karnataka, India and from laboratory prepared binary solutions having almost similar composition of the metal ions, for comparison. The real wastewater after filtration and dilution for five times was used for biosorption studies at the normal pH of the solutions at room temperature. Langmuir's binary model was used to calculate the metal uptake capacities of the biosorbents. It was observed that Cu(II) is more competitive than Zn(II) in biosorption. In individual metal biosorption, Cu(II) uptake was found to be more than that of the Zn(II) and a similar trend was observed in the binary metal biosorption from real wastewater and laboratory prepared solutions. FTIR analysis was carried out to identify the functional groups in the industrial wastewater and EDAX for the elemental analysis of the biosorbents after experiments.
Keywords: Biosorption, Cajanus cajan, multi metal remediation, wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9457352 Building Virtual Reality Environments for Distance Education on the Web: A Case Study in Medical Education
Authors: Kosmas Dimitropoulos, Athanasios Manitsaris, Ioannis Mavridis
Abstract:
The paper presents an investigation into the role of virtual reality and web technologies in the field of distance education. Within this frame, special emphasis is given on the building of web-based virtual learning environments so as to successfully fulfill their educational objectives. In particular, basic pedagogical methods are studied, focusing mainly on the efficient preparation, approach and presentation of learning content, and specific designing rules are presented considering the hypermedia, virtual and educational nature of this kind of applications. The paper also aims to highlight the educational benefits arising from the use of virtual reality technology in medicine and study the emerging area of web-based medical simulations. Finally, an innovative virtual reality environment for distance education in medicine is demonstrated. The proposed environment reproduces conditions of the real learning process and enhances learning through a real-time interactive simulator.
Keywords: Distance education, medicine, virtual reality, web.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24897351 The Design and Development of Driving Game as an Evaluation Instrument for Driving License Test
Authors: Abdul Hadi Abdul Razak, Mohd Hairy Manap
Abstract:
The focus of this paper is to highlight the design and development of an educational game prototype as an evaluation instrument for the Malaysia driving license static test. This educational game brings gaming technology into the conventional objective static test to make it more effective, real and interesting. From the feeling of realistic, the future driver can learn something, memorized and use it in the real life. The current online objective static test only make the user memorized the answer without knowing and understand the true purpose of the question. Therefore, in real life, they will not behave as expected due to behavior and moral lacking. This prototype has been developed inform of multiple-choice questions integrated with 3D gaming environment to make it simulate the real environment and scenarios. Based on the testing conducted, the respondent agrees with the use of this game prototype it can increase understanding and promote obligation towards traffic rules.Keywords: Educational game, evaluation instrument, game, game prototype.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15137350 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks
Authors: Wang Yichen, Haruka Yamashita
Abstract:
In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.Keywords: Recurrent Neural Network, players lineup, basketball data, decision making model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8317349 Deradicalization of Former Terrorists through an Entrepreneurship Program
Authors: Jamal Wiwoho, Pujiyono, Triyanto
Abstract:
Terrorism is a real enemy for all countries, including Indonesia. Bomb attacks in some parts of Indonesia are proof that Indonesia has serious problems with terrorism. Perpetrators of terror are arrested and imprisoned, and some of them were executed. However, this method did not succeed in stopping the terrorist attacks. Former terrorists continue to carry out bomb attacks. Therefore, this paper proposes a program towards deradicalization efforts of former terrorists through entrepreneurship. This is necessary because it is impossible to change their radical ideology. The program is also motivated by understanding that terrorists generally come from poor families. This program aims to occupy their time with business activities so there is no time to plan and carry out bomb attacks. This research is an empirical law study. Data were collected by literature study, observation, and in-depth interviews. Data were analyzed with the Miles and Huberman interactive model. The results show that the entrepreneurship program is effective to prevent terrorist attack. Former terrorists are busy with their business. Therefore, they have no time to carry out bomb attacks.
Keywords: Deradicalization, terrorists, entrepreneurship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13167348 Generalization Kernel for Geopotential Approximation by Harmonic Splines
Authors: Elena Kotevska
Abstract:
This paper presents a generalization kernel for gravitational potential determination by harmonic splines. It was shown in [10] that the gravitational potential can be approximated using a kernel represented as a Newton integral over the real Earth body. On the other side, the theory of geopotential approximation by harmonic splines uses spherically oriented kernels. The purpose of this paper is to show that in the spherical case both kernels have the same type of representation, which leads us to conclusion that it is possible to consider the kernel represented as a Newton integral over the real Earth body as a kind of generalization of spherically harmonic kernels to real geometries.Keywords: Geopotential, Reproducing Kernel, Approximation, Regular Surface
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12977347 An Efficient Watermarking Method for MP3 Audio Files
Authors: Dimitrios Koukopoulos, Yiannis Stamatiou
Abstract:
In this work, we present for the first time in our perception an efficient digital watermarking scheme for mpeg audio layer 3 files that operates directly in the compressed data domain, while manipulating the time and subband/channel domain. In addition, it does not need the original signal to detect the watermark. Our scheme was implemented taking special care for the efficient usage of the two limited resources of computer systems: time and space. It offers to the industrial user the capability of watermark embedding and detection in time immediately comparable to the real music time of the original audio file that depends on the mpeg compression, while the end user/audience does not face any artifacts or delays hearing the watermarked audio file. Furthermore, it overcomes the disadvantage of algorithms operating in the PCMData domain to be vulnerable to compression/recompression attacks, as it places the watermark in the scale factors domain and not in the digitized sound audio data. The strength of our scheme, that allows it to be used with success in both authentication and copyright protection, relies on the fact that it gives to the users the enhanced capability their ownership of the audio file not to be accomplished simply by detecting the bit pattern that comprises the watermark itself, but by showing that the legal owner knows a hard to compute property of the watermark.
Keywords: Audio watermarking, mpeg audio layer 3, hard instance generation, NP-completeness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18347346 A Probabilistic Reinforcement-Based Approach to Conceptualization
Authors: Hadi Firouzi, Majid Nili Ahmadabadi, Babak N. Araabi
Abstract:
Conceptualization strengthens intelligent systems in generalization skill, effective knowledge representation, real-time inference, and managing uncertain and indefinite situations in addition to facilitating knowledge communication for learning agents situated in real world. Concept learning introduces a way of abstraction by which the continuous state is formed as entities called concepts which are connected to the action space and thus, they illustrate somehow the complex action space. Of computational concept learning approaches, action-based conceptualization is favored because of its simplicity and mirror neuron foundations in neuroscience. In this paper, a new biologically inspired concept learning approach based on the probabilistic framework is proposed. This approach exploits and extends the mirror neuron-s role in conceptualization for a reinforcement learning agent in nondeterministic environments. In the proposed method, instead of building a huge numerical knowledge, the concepts are learnt gradually from rewards through interaction with the environment. Moreover the probabilistic formation of the concepts is employed to deal with uncertain and dynamic nature of real problems in addition to the ability of generalization. These characteristics as a whole distinguish the proposed learning algorithm from both a pure classification algorithm and typical reinforcement learning. Simulation results show advantages of the proposed framework in terms of convergence speed as well as generalization and asymptotic behavior because of utilizing both success and failures attempts through received rewards. Experimental results, on the other hand, show the applicability and effectiveness of the proposed method in continuous and noisy environments for a real robotic task such as maze as well as the benefits of implementing an incremental learning scenario in artificial agents.
Keywords: Concept learning, probabilistic decision making, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15277345 A Memetic Algorithm for an Energy-Costs-Aware Flexible Job-Shop Scheduling Problem
Authors: Christian Böning, Henrik Prinzhorn, Eric C. Hund, Malte Stonis
Abstract:
In this article, the flexible job-shop scheduling problem is extended by consideration of energy costs which arise owing to the power peak, and further decision variables such as work in process and throughput time are incorporated into the objective function. This enables a production plan to be simultaneously optimized in respect of the real arising energy and logistics costs. The energy-costs-aware flexible job-shop scheduling problem (EFJSP) which arises is described mathematically, and a memetic algorithm (MA) is presented as a solution. In the MA, the evolutionary process is supplemented with a local search. Furthermore, repair procedures are used in order to rectify any infeasible solutions that have arisen in the evolutionary process. The potential for lowering the real arising costs of a production plan through consideration of energy consumption levels is highlighted.
Keywords: Energy costs, flexible job-shop scheduling, memetic algorithm, power peak.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11187344 Towards a Web 2.0 Based Practical Works Management System at a Public University: Case of Sultan Moulay Slimane University
Authors: Khalid Ghoulam, Belaid Bouikhalene, Zakaria Harmouch, Hicham Mouncif
Abstract:
The goal of engineering education is to prepare students to cope with problems of real devices and systems. Usually there are not enough devices or time for conducting experiments in a real lab. Other factors that prevent the use of lab devices directly by students are inaccessible or dangerous phenomena, or polluting chemical reactions. The technology brings additional strategies of learning and teaching, there are two types of online labs, virtual and remote labs RL. We present an example of a successful development and deployment of a remote lab in the field of engineering education, integrated in the Moodle platform, using very low-coast, high documented devices and free software. The remote lab is user friendly for both teachers and students. Our web 2.0 based user interface would attract and motivate students, as well as solving the problem of larger classes and expensive lab devices.Keywords: Remote lab, online learning, Moodle, Arduino, SMSU, lab experimentation, engineering education, online engineering education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362