Search results for: Non Linear Spectral Subtraction
1645 Mapping of Alteration Zones in Mineral Rich Belt of South-East Rajasthan Using Remote Sensing Techniques
Authors: Mrinmoy Dhara, Vivek K. Sengar, Shovan L. Chattoraj, Soumiya Bhattacharjee
Abstract:
Remote sensing techniques have emerged as an asset for various geological studies. Satellite images obtained by different sensors contain plenty of information related to the terrain. Digital image processing further helps in customized ways for the prospecting of minerals. In this study, an attempt has been made to map the hydrothermally altered zones using multispectral and hyperspectral datasets of South East Rajasthan. Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) and Hyperion (Level1R) dataset have been processed to generate different Band Ratio Composites (BRCs). For this study, ASTER derived BRCs were generated to delineate the alteration zones, gossans, abundant clays and host rocks. ASTER and Hyperion images were further processed to extract mineral end members and classified mineral maps have been produced using Spectral Angle Mapper (SAM) method. Results were validated with the geological map of the area which shows positive agreement with the image processing outputs. Thus, this study concludes that the band ratios and image processing in combination play significant role in demarcation of alteration zones which may provide pathfinders for mineral prospecting studies.
Keywords: Advanced space-borne thermal emission and reflection radiometer, ASTER, Hyperion, Band ratios, Alteration zones, spectral angle mapper.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14861644 A Genetic Algorithm Approach for Solving Fuzzy Linear and Quadratic Equations
Authors: M. Hadi Mashinchi, M. Reza Mashinchi, Siti Mariyam H. J. Shamsuddin
Abstract:
In this paper a genetic algorithms approach for solving the linear and quadratic fuzzy equations Ãx̃=B̃ and Ãx̃2 + B̃x̃=C̃ , where Ã, B̃, C̃ and x̃ are fuzzy numbers is proposed by genetic algorithms. Our genetic based method initially starts with a set of random fuzzy solutions. Then in each generation of genetic algorithms, the solution candidates converge more to better fuzzy solution x̃b . In this proposed method the final reached x̃b is not only restricted to fuzzy triangular and it can be fuzzy number.
Keywords: Fuzzy coefficient, fuzzy equation, genetic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21891643 A Soft Error Rates Evaluation Method of Combinational Logic Circuit Based on Linear Energy Transfers
Authors: Man Li, Wanting Zhou, Lei Li
Abstract:
Communication stability is the primary concern of communication satellites. Communication satellites are easily affected by particle radiation to generate single event effects (SEE), which leads to soft errors (SE) of combinational logic circuit. The existing research on soft error rates (SER) of combined logic circuit is mostly based on the assumption that the logic gates being bombarded have the same pulse width. However, in the actual radiation environment, the pulse widths of the logic gates being bombarded are different due to different linear energy transfers (LET). In order to improve the accuracy of SER evaluation model, this paper proposes a soft error rates evaluation method based on LET. In this paper, we analyze the influence of LET on the pulse width of combinational logic and establish the pulse width model based on LET. Based on this model, the error rate of test circuit ISCAS’85 is calculated. Experimental results show that this model can be used for SER evaluation.
Keywords: Communication satellite, pulse width, soft error rates, linear energy transfer, LET.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3831642 On a New Numerical Analysis for the Symmetric Shortest Queue Problem
Authors: Tayeb Lardjane, Rabah Messaci
Abstract:
We consider a network of two M/M/1 parallel queues having the same poisonnian arrival stream with rate λ. Upon his arrival to the system a customer heads to the shortest queue and stays until being served. If the two queues have the same length, an arriving customer chooses one of the two queues with the same probability. Each duration of service in the two queues is an exponential random variable with rate μ and no jockeying is permitted between the two queues. A new numerical method, based on linear programming and convex optimization, is performed for the computation of the steady state solution of the system.
Keywords: Steady state solution, matrix formulation, convex set, shortest queue, linear programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14861641 A New Technique for Multi Resolution Characterization of Epileptic Spikes in EEG
Authors: H. N. Suresh, Dr. V. Udaya Shankara
Abstract:
A technique proposed for the automatic detection of spikes in electroencephalograms (EEG). A multi-resolution approach and a non-linear energy operator are exploited. The signal on each EEG channel is decomposed into three sub bands using a non-decimated wavelet transform (WT). The WT is a powerful tool for multi-resolution analysis of non-stationary signal as well as for signal compression, recognition and restoration. Each sub band is analyzed by using a non-linear energy operator, in order to detect spikes. A decision rule detects the presence of spikes in the EEG, relying upon the energy of the three sub-bands. The effectiveness of the proposed technique was confirmed by analyzing both test signals and EEG layouts.Keywords: EEG, Spike, SNEO, Wavelet Transform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13751640 Modeling and System Identification of a Variable Excited Linear Direct Drive
Authors: Heiko Weiß, Andreas Meister, Christoph Ament, Nils Dreifke
Abstract:
Linear actuators are deployed in a wide range of applications. This paper presents the modeling and system identification of a variable excited linear direct drive (LDD). The LDD is designed based on linear hybrid stepper technology exhibiting the characteristic tooth structure of mover and stator. A three-phase topology provides the thrust force caused by alternating strengthening and weakening of the flux of the legs. To achieve best possible synchronous operation, the phases are commutated sinusoidal. Despite the fact that these LDDs provide high dynamics and drive forces, noise emission limits their operation in calm workspaces. To overcome this drawback an additional excitation of the magnetic circuit is introduced to LDD using additional enabling coils instead of permanent magnets. The new degree of freedom can be used to reduce force variations and related noise by varying the excitation flux that is usually generated by permanent magnets. Hence, an identified simulation model is necessary to analyze the effects of this modification. Especially the force variations must be modeled well in order to reduce them sufficiently. The model can be divided into three parts: the current dynamics, the mechanics and the force functions. These subsystems are described with differential equations or nonlinear analytic functions, respectively. Ordinary nonlinear differential equations are derived and transformed into state space representation. Experiments have been carried out on a test rig to identify the system parameters of the complete model. Static and dynamic simulation based optimizations are utilized for identification. The results are verified in time and frequency domain. Finally, the identified model provides a basis for later design of control strategies to reduce existing force variations.Keywords: Force variations, linear direct drive, modeling and system identification, variable excitation flux.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10331639 Variational Iteration Method for Solving Systems of Linear Delay Differential Equations
Authors: Sara Barati, Karim Ivaz
Abstract:
In this paper, using a model transformation approach a system of linear delay differential equations (DDEs) with multiple delays is converted to a non-delayed initial value problem. The variational iteration method (VIM) is then applied to obtain the approximate analytical solutions. Numerical results are given for several examples involving scalar and second order systems. Comparisons with the classical fourth-order Runge-Kutta method (RK4) verify that this method is very effective and convenient.
Keywords: Variational iteration method, delay differential equations, multiple delays, Runge-Kutta method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24771638 Establishment of Kinetic Zone Diagrams via Simulated Linear Sweep Voltammograms for Soluble-Insoluble Systems
Authors: Imene Atek, Abed M. Affoune, Hubert Girault, Pekka Peljo
Abstract:
Due to the need for a rigorous mathematical model that can help to estimate kinetic properties for soluble-insoluble systems, through voltammetric experiments, a Nicholson Semi Analytical Approach was used in this work for modeling and prediction of theoretical linear sweep voltammetry responses for reversible, quasi reversible or irreversible electron transfer reactions. The redox system of interest is a one-step metal electrodeposition process. A rigorous analysis of simulated linear scan voltammetric responses following variation of dimensionless factors, the rate constant and charge transfer coefficients in a broad range was studied and presented in the form of the so called kinetic zones diagrams. These kinetic diagrams were divided into three kinetics zones. Interpreting these zones leads to empirical mathematical models which can allow the experimenter to determine electrodeposition reactions kinetics whatever the degree of reversibility. The validity of the obtained results was tested and an excellent experiment–theory agreement has been showed.
Keywords: Electrodeposition, kinetics diagrams, modeling, voltammetry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8111637 Influence of p-y curves on Buckling Capacity of Pile Foundation
Authors: Praveen Huded M., Suresh R. Dash
Abstract:
Pile foundations are one of the most preferred deep foundation systems for high rise or heavily loaded structures. In many instances, the failure of the pile founded structures in liquefiable soils had been observed even in many recent earthquakes. Failure of pile foundation have occurred because of buckling, as the pile behaves as an unsupported slender structural element once the surrounding soil liquefies. However, the buckling capacity depends on the depth of soil liquefied and its residual strength. Hence it is essential to check the pile against the possible buckling failure. Beam on non-linear Winkler Foundation is one of the efficient methods to model the pile-soil behavior in liquefiable soil. The pile-soil interaction is modelled through p-y springs, there are different p-y curves available for modeling liquefiable soil. In the present work, the influence of two such p-y curves on the buckling capacity of pile foundation is studied considering the initial geometric and non-linear behavior of pile foundation. The proposed method is validated against experimental results. A significant difference in the buckling capacity is observed for the two p-y curves used in the analysis. A parametric study is conducted to understand the influence of pile flexural rigidity, different initial geometric imperfections, and different soil relative densities on the buckling capacity of pile foundation.
Keywords: pile foundation, liquefaction, buckling load, non-linear p-y curve
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6761636 Face Recognition using Features Combination and a New Non-linear Kernel
Authors: Essam Al Daoud
Abstract:
To improve the classification rate of the face recognition, features combination and a novel non-linear kernel are proposed. The feature vector concatenates three different radius of local binary patterns and Gabor wavelet features. Gabor features are the mean, standard deviation and the skew of each scaling and orientation parameter. The aim of the new kernel is to incorporate the power of the kernel methods with the optimal balance between the features. To verify the effectiveness of the proposed method, numerous methods are tested by using four datasets, which are consisting of various emotions, orientations, configuration, expressions and lighting conditions. Empirical results show the superiority of the proposed technique when compared to other methods.Keywords: Face recognition, Gabor wavelet, LBP, Non-linearkerner
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15401635 Determining Optimum Time Multiplier Setting of Overcurrent Relays Using Mixed Integer Linear Programming
Authors: P. N. Korde, P. P. Bedekar
Abstract:
The time coordination of overcurrent relays (OCR) in a power distribution network is of great importance, as it reduces the power outages by avoiding the mal-operation of the backup relays. For this, the optimum value of the time multiplier setting (TMS) of OCRs should be chosen. The problem of determining the optimum value of TMS of OCRs in power distribution networks is formulated as a constrained optimization problem. The objective is to find the optimum value of TMS of OCRs to minimize the time of operation of relays under the constraint of maintaining the coordination of relays. A power distribution network can have a combination of numerical and electromechanical relays. The TMS of numerical relays can be set to any real value (which satisfies the constraints of the problem), whereas the TMS of electromechanical relays can be set in fixed step (0 to 1 in steps of 0.05). The main contribution of this paper is a formulation of the problem as a mixed-integer linear programming (MILP) problem and application of Gomory's cutting plane method to find the optimum value of TMS of OCRs. The TMS of electromechanical relays are taken as integers in the range 1 to 20 in the step of 1, and these values are mapped to 0.05 to 1 in the step of 0.05. The results obtained are compared with those obtained using a simplex method and its variants. It has been shown that the mixed-integer linear programming method outperforms the simplex method (and its variants) in the case of a system having a combination of numerical and electromechanical relays.
Keywords: Backup protection, constrained optimization, Gomory's cutting plane method, mixed-integer linear programming, overcurrent relay coordination, simplex method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4211634 A Comparison of Adaline and MLP Neural Network based Predictors in SIR Estimation in Mobile DS/CDMA Systems
Authors: Nahid Ardalani, Ahmadreza Khoogar, H. Roohi
Abstract:
In this paper we compare the response of linear and nonlinear neural network-based prediction schemes in prediction of received Signal-to-Interference Power Ratio (SIR) in Direct Sequence Code Division Multiple Access (DS/CDMA) systems. The nonlinear predictor is Multilayer Perceptron MLP and the linear predictor is an Adaptive Linear (Adaline) predictor. We solve the problem of complexity by using the Minimum Mean Squared Error (MMSE) principle to select the optimal predictors. The optimized Adaline predictor is compared to optimized MLP by employing noisy Rayleigh fading signals with 1.8 GHZ carrier frequency in an urban environment. The results show that the Adaline predictor can estimates SIR with the same error as MLP when the user has the velocity of 5 km/h and 60 km/h but by increasing the velocity up-to 120 km/h the mean squared error of MLP is two times more than Adaline predictor. This makes the Adaline predictor (with lower complexity) more suitable than MLP for closed-loop power control where efficient and accurate identification of the time-varying inverse dynamics of the multi path fading channel is required.Keywords: Power control, neural networks, DS/CDMA mobilecommunication systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25151633 Artificial Neural Network based Modeling of Evaporation Losses in Reservoirs
Authors: Surinder Deswal, Mahesh Pal
Abstract:
An Artificial Neural Network based modeling technique has been used to study the influence of different combinations of meteorological parameters on evaporation from a reservoir. The data set used is taken from an earlier reported study. Several input combination were tried so as to find out the importance of different input parameters in predicting the evaporation. The prediction accuracy of Artificial Neural Network has also been compared with the accuracy of linear regression for predicting evaporation. The comparison demonstrated superior performance of Artificial Neural Network over linear regression approach. The findings of the study also revealed the requirement of all input parameters considered together, instead of individual parameters taken one at a time as reported in earlier studies, in predicting the evaporation. The highest correlation coefficient (0.960) along with lowest root mean square error (0.865) was obtained with the input combination of air temperature, wind speed, sunshine hours and mean relative humidity. A graph between the actual and predicted values of evaporation suggests that most of the values lie within a scatter of ±15% with all input parameters. The findings of this study suggest the usefulness of ANN technique in predicting the evaporation losses from reservoirs.Keywords: Artificial neural network, evaporation losses, multiple linear regression, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19781632 Stability Criteria for Neural Networks with Two Additive Time-varying Delay Components
Authors: Qingqing Wang, Shouming Zhong
Abstract:
This paper is concerned with the stability problem with two additive time-varying delay components. By choosing one augmented Lyapunov-Krasovskii functional, using some new zero equalities, and combining linear matrix inequalities (LMI) techniques, two new sufficient criteria ensuring the global stability asymptotic stability of DNNs is obtained. These stability criteria are present in terms of linear matrix inequalities and can be easily checked. Finally, some examples are showed to demonstrate the effectiveness and less conservatism of the proposed method.
Keywords: Neural networks, Globally asymptotic stability, LMI approach, Additive time-varying delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15661631 Gauss-Seidel Iterative Methods for Rank Deficient Least Squares Problems
Authors: Davod Khojasteh Salkuyeh, Sayyed Hasan Azizi
Abstract:
We study the semiconvergence of Gauss-Seidel iterative methods for the least squares solution of minimal norm of rank deficient linear systems of equations. Necessary and sufficient conditions for the semiconvergence of the Gauss-Seidel iterative method are given. We also show that if the linear system of equations is consistent, then the proposed methods with a zero vector as an initial guess converge in one iteration. Some numerical results are given to illustrate the theoretical results.Keywords: rank deficient least squares problems, AOR iterativemethod, Gauss-Seidel iterative method, semiconvergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19261630 Studding of Number of Dataset on Precision of Estimated Saturated Hydraulic Conductivity
Authors: M. Siosemarde, M. Byzedi
Abstract:
Saturated hydraulic conductivity of Soil is an important property in processes involving water and solute flow in soils. Saturated hydraulic conductivity of soil is difficult to measure and can be highly variable, requiring a large number of replicate samples. In this study, 60 sets of soil samples were collected at Saqhez region of Kurdistan province-IRAN. The statistics such as Correlation Coefficient (R), Root Mean Square Error (RMSE), Mean Bias Error (MBE) and Mean Absolute Error (MAE) were used to evaluation the multiple linear regression models varied with number of dataset. In this study the multiple linear regression models were evaluated when only percentage of sand, silt, and clay content (SSC) were used as inputs, and when SSC and bulk density, Bd, (SSC+Bd) were used as inputs. The R, RMSE, MBE and MAE values of the 50 dataset for method (SSC), were calculated 0.925, 15.29, -1.03 and 12.51 and for method (SSC+Bd), were calculated 0.927, 15.28,-1.11 and 12.92, respectively, for relationship obtained from multiple linear regressions on data. Also the R, RMSE, MBE and MAE values of the 10 dataset for method (SSC), were calculated 0.725, 19.62, - 9.87 and 18.91 and for method (SSC+Bd), were calculated 0.618, 24.69, -17.37 and 22.16, respectively, which shows when number of dataset increase, precision of estimated saturated hydraulic conductivity, increases.Keywords: dataset, precision, saturated hydraulic conductivity, soil and statistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17921629 Improved Stability Criteria for Neural Networks with Two Additive Time-Varying Delays
Authors: Miaomiao Yang, Shouming Zhong
Abstract:
This paper studies the problem of stability criteria for neural networks with two additive time-varying delays.A new Lyapunov-Krasovskii function is constructed and some new delay dependent stability criterias are derived in the terms of linear matrix inequalities(LMI), zero equalities and reciprocally convex approach.The several stability criterion proposed in this paper is simpler and effective. Finally,numerical examples are provided to demonstrate the feasibility and effectiveness of our results.
Keywords: Stability, Neural networks, Linear Matrix Inequalities (LMI) , Lyapunov function, Time-varying delays
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14491628 A Study of the Effectiveness of the Routing Decision Support Algorithm
Authors: Wayne Goodridge, Alexander Nikov, Ashok Sahai
Abstract:
Multi criteria decision making (MCDM) methods like analytic hierarchy process, ELECTRE and multi-attribute utility theory are critically studied. They have irregularities in terms of the reliability of ranking of the best alternatives. The Routing Decision Support (RDS) algorithm is trying to improve some of their deficiencies. This paper gives a mathematical verification that the RDS algorithm conforms to the test criteria for an effective MCDM method when a linear preference function is considered.
Keywords: Decision support systems, linear preference function, multi-criteria decision-making algorithm, analytic hierarchy process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15831627 Optimal Controller Design for Linear Magnetic Levitation Rail System
Authors: Tooraj Hakim Elahi, Abdolamir Nekoubin
Abstract:
In many applications, magnetic suspension systems are required to operate over large variations in air gap. As a result, the nonlinearities inherent in most types of suspensions have a significant impact on performance. Specifically, it may be difficult to design a linear controller which gives satisfactory performance, stability, and disturbance rejection over a wide range of operating points. in this paper an optimal controller based on discontinuous mathematical model of the system for an electromagnetic suspension system which is applied in magnetic trains has been designed . Simulations show that the new controller can adapt well to the variance of suspension mass and gap, and keep its dynamic performance, thus it is superior to the classic controller.Keywords: Magnetic Levitation, optimal controller, mass and gap
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32051626 New Approaches on Stability Analysis for Neural Networks with Time-Varying Delay
Authors: Qingqing Wang, Shouming Zhong
Abstract:
Utilizing the Lyapunov functional method and combining linear matrix inequality (LMI) techniques and integral inequality approach (IIA) to analyze the global asymptotic stability for delayed neural networks (DNNs),a new sufficient criterion ensuring the global stability of DNNs is obtained.The criteria are formulated in terms of a set of linear matrix inequalities,which can be checked efficiently by use of some standard numercial packages.In order to show the stability condition in this paper gives much less conservative results than those in the literature,numerical examples are considered.
Keywords: Neural networks, Globally asymptotic stability , LMI approach , IIA approach , Time-varying delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19391625 Novel Adaptive Channel Equalization Algorithms by Statistical Sampling
Authors: János Levendovszky, András Oláh
Abstract:
In this paper, novel statistical sampling based equalization techniques and CNN based detection are proposed to increase the spectral efficiency of multiuser communication systems over fading channels. Multiuser communication combined with selective fading can result in interferences which severely deteriorate the quality of service in wireless data transmission (e.g. CDMA in mobile communication). The paper introduces new equalization methods to combat interferences by minimizing the Bit Error Rate (BER) as a function of the equalizer coefficients. This provides higher performance than the traditional Minimum Mean Square Error equalization. Since the calculation of BER as a function of the equalizer coefficients is of exponential complexity, statistical sampling methods are proposed to approximate the gradient which yields fast equalization and superior performance to the traditional algorithms. Efficient estimation of the gradient is achieved by using stratified sampling and the Li-Silvester bounds. A simple mechanism is derived to identify the dominant samples in real-time, for the sake of efficient estimation. The equalizer weights are adapted recursively by minimizing the estimated BER. The near-optimal performance of the new algorithms is also demonstrated by extensive simulations. The paper has also developed a (Cellular Neural Network) CNN based approach to detection. In this case fast quadratic optimization has been carried out by t, whereas the task of equalizer is to ensure the required template structure (sparseness) for the CNN. The performance of the method has also been analyzed by simulations.
Keywords: Cellular Neural Network, channel equalization, communication over fading channels, multiuser communication, spectral efficiency, statistical sampling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15201624 A Partially Accelerated Life Test Planning with Competing Risks and Linear Degradation Path under Tampered Failure Rate Model
Authors: Fariba Azizi, Firoozeh Haghighi, Viliam Makis
Abstract:
In this paper, we propose a method to model the relationship between failure time and degradation for a simple step stress test where underlying degradation path is linear and different causes of failure are possible. It is assumed that the intensity function depends only on the degradation value. No assumptions are made about the distribution of the failure times. A simple step-stress test is used to shorten failure time of products and a tampered failure rate (TFR) model is proposed to describe the effect of the changing stress on the intensities. We assume that some of the products that fail during the test have a cause of failure that is only known to belong to a certain subset of all possible failures. This case is known as masking. In the presence of masking, the maximum likelihood estimates (MLEs) of the model parameters are obtained through an expectation-maximization (EM) algorithm by treating the causes of failure as missing values. The effect of incomplete information on the estimation of parameters is studied through a Monte-Carlo simulation. Finally, a real example is analyzed to illustrate the application of the proposed methods.Keywords: Expectation-maximization (EM) algorithm, cause of failure, intensity, linear degradation path, masked data, reliability function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10731623 Instability of Soliton Solutions to the Schamel-nonlinear Schrödinger Equation
Authors: Sarun Phibanchon, Michael A. Allen
Abstract:
A variational method is used to obtain the growth rate of a transverse long-wavelength perturbation applied to the soliton solution of a nonlinear Schr¨odinger equation with a three-half order potential. We demonstrate numerically that this unstable perturbed soliton will eventually transform into a cylindrical soliton.
Keywords: Soliton, instability, variational method, spectral method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37001622 New Stabilization for Switched Neutral Systems with Perturbations
Authors: Lianglin Xiong, Shouming Zhong, Mao Ye
Abstract:
This paper addresses the stabilization issues for a class of uncertain switched neutral systems with nonlinear perturbations. Based on new classes of piecewise Lyapunov functionals, the stability assumption on all the main operators or the convex combination of coefficient matrices is avoid, and a new switching rule is introduced to stabilize the neutral systems. The switching rule is designed from the solution of the so-called Lyapunov-Metzler linear matrix inequalities. Finally, three simulation examples are given to demonstrate the significant improvements over the existing results.
Keywords: Switched neutral system, piecewise Lyapunov functional, nonlinear perturbation, Lyapunov-Metzler linear matrix inequality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16561621 The Statistical Properties of Filtered Signals
Authors: Ephraim Gower, Thato Tsalaile, Monageng Kgwadi, Malcolm Hawksford.
Abstract:
In this paper, the statistical properties of filtered or convolved signals are considered by deriving the resulting density functions as well as the exact mean and variance expressions given a prior knowledge about the statistics of the individual signals in the filtering or convolution process. It is shown that the density function after linear convolution is a mixture density, where the number of density components is equal to the number of observations of the shortest signal. For circular convolution, the observed samples are characterized by a single density function, which is a sum of products.
Keywords: Circular Convolution, linear Convolution, mixture density function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15161620 Efficiency of Robust Heuristic Gradient Based Enumerative and Tunneling Algorithms for Constrained Integer Programming Problems
Authors: Vijaya K. Srivastava, Davide Spinello
Abstract:
This paper presents performance of two robust gradient-based heuristic optimization procedures based on 3n enumeration and tunneling approach to seek global optimum of constrained integer problems. Both these procedures consist of two distinct phases for locating the global optimum of integer problems with a linear or non-linear objective function subject to linear or non-linear constraints. In both procedures, in the first phase, a local minimum of the function is found using the gradient approach coupled with hemstitching moves when a constraint is violated in order to return the search to the feasible region. In the second phase, in one optimization procedure, the second sub-procedure examines 3n integer combinations on the boundary and within hypercube volume encompassing the result neighboring the result from the first phase and in the second optimization procedure a tunneling function is constructed at the local minimum of the first phase so as to find another point on the other side of the barrier where the function value is approximately the same. In the next cycle, the search for the global optimum commences in both optimization procedures again using this new-found point as the starting vector. The search continues and repeated for various step sizes along the function gradient as well as that along the vector normal to the violated constraints until no improvement in optimum value is found. The results from both these proposed optimization methods are presented and compared with one provided by popular MS Excel solver that is provided within MS Office suite and other published results.
Keywords: Constrained integer problems, enumerative search algorithm, Heuristic algorithm, tunneling algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8001619 An Optimized Design of Non-uniform Filterbank
Authors: Ram Kumar Soni, Alok Jain, Rajiv Saxena
Abstract:
The tree structured approach of non-uniform filterbank (NUFB) is normally used in perfect reconstruction (PR). The PR is not always feasible due to certain limitations, i.e, constraints in selecting design parameters, design complexity and some times output is severely affected by aliasing error if necessary and sufficient conditions of PR is not satisfied perfectly. Therefore, there has been generalized interest of researchers to go for near perfect reconstruction (NPR). In this proposed work, an optimized tree structure technique is used for the design of NPR non-uniform filterbank. Window functions of Blackman family are used to design the prototype FIR filter. A single variable linear optimization is used to minimize the amplitude distortion. The main feature of the proposed design is its simplicity with linear phase property.Keywords: Tree structure, NUFB, QMF, NPR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17381618 Human Detection using Projected Edge Feature
Authors: Jaedo Kim, Youngjoon Han, Hernsoo Hahn
Abstract:
The purpose of this paper is to detect human in images. This paper proposes a method for extracting human body feature descriptors consisting of projected edge component series. The feature descriptor can express appearances and shapes of human with local and global distribution of edges. Our method evaluated with a linear SVM classifier on Daimler-Chrysler pedestrian dataset, and test with various sub-region size. The result shows that the accuracy level of proposed method similar to Histogram of Oriented Gradients(HOG) feature descriptor and feature extraction process is simple and faster than existing methods.Keywords: Human detection, Projected edge descriptor, Linear SVM, Local appearance feature
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15001617 Model Predictive Control of Turbocharged Diesel Engine with Exhaust Gas Recirculation
Authors: U. Yavas, M. Gokasan
Abstract:
Control of diesel engine’s air path has drawn a lot of attention due to its multi input-multi output, closed coupled, non-linear relation. Today, precise control of amount of air to be combusted is a must in order to meet with tight emission limits and performance targets. In this study, passenger car size diesel engine is modeled by AVL Boost RT, and then simulated with standard, industry level PID controllers. Finally, linear model predictive control is designed and simulated. This study shows the importance of modeling and control of diesel engines with flexible algorithm development in computer based systems.Keywords: Predictive control, engine control, engine modeling, PID control, feedforward compensation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18171616 Finite Element Prediction on the Machining Stability of Milling Machine with Experimental Verification
Authors: Jui P. Hung, Yuan L. Lai, Hui T. You
Abstract:
Chatter vibration has been a troublesome problem for a machine tool toward the high precision and high speed machining. Essentially, the machining performance is determined by the dynamic characteristics of the machine tool structure and dynamics of cutting process, which can further be identified in terms of the stability lobe diagram. Therefore, realization on the machine tool dynamic behavior can help to enhance the cutting stability. To assess the dynamic characteristics and machining stability of a vertical milling system under the influence of a linear guide, this study developed a finite element model integrated the modeling of linear components with the implementation of contact stiffness at the rolling interface. Both the finite element simulations and experimental measurements reveal that the linear guide with different preload greatly affects the vibration behavior and milling stability of the vertical column spindle head system, which also clearly indicate that the predictions of the machining stability agree well with the cutting tests. It is believed that the proposed model can be successfully applied to evaluate the dynamics performance of machine tool systems of various configurations.Keywords: Machining stability, Vertical milling machine, Linearguide, Contact stiffness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2644