Search results for: Large Trees.
1930 Adaptability of ‘Monti Dauni’ Bean Ecotypes in Plain Areas
Authors: Disciglio G., Nardella E., Gatta G., Giuliani M.M., Tarantino A.
Abstract:
The bean (Phaseolus vulgaris L.) is one of the best known of the legumes, and it has a long cultivation tradition in Italy. The territory of “Subappennino Dauno” (southern Italy) is at around 700 m a.s.l. and is predominantly grown with cereals, olive trees and grapevines. Ecotypes of white beans to eat dry (such as cannellini beans) are also grown, which are sought for their palatability, high digestibility, and ease of cooking. However, these are not easy to find on the market due to their low production in relatively small areas and on small family farms that use seeds handed down from generation to generation. The introduction of these ecotypes in plain areas of the Puglia region would provide an opportunity to promote the diffusion of this type of bean. To investigate the adaptability of these ecotypes in plain environments (Cerignola, in southern Italy) a comparative trial was carried out between three ‘Monti Dauni’ ecotypes (E1, E2, E3) that are native to mountain areas and the similar commercial variety, ‘Cannellini’. The data provide useful information about the quantitative and qualitative characteristics of these ecotypes when grown in lowland environments. Ecotype E3 provided the greatest bean production (2.34 t ha-1) compared to ‘Cannellini’ (1.28 t ha-1) and the other ecotypes (0.55 and 0.40 t ha-1, for E1 and E2, respectively), due to its greater plant growth and the larger size of the seed (and thickness, in particular). Finally, ecotype E2 provided the greatest protein content (31.2%), although not significantly different from the commercial cultivar ‘Cannellini’ (32.1%).
Keywords: 'Monti Dauni' bean, ecotypes, adaptability in plain areas, quali-quantitive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15521929 A Medical Images Based Retrieval System using Soft Computing Techniques
Authors: Pardeep Singh, Sanjay Sharma
Abstract:
Content-Based Image Retrieval (CBIR) has been one on the most vivid research areas in the field of computer vision over the last 10 years. Many programs and tools have been developed to formulate and execute queries based on the visual or audio content and to help browsing large multimedia repositories. Still, no general breakthrough has been achieved with respect to large varied databases with documents of difering sorts and with varying characteristics. Answers to many questions with respect to speed, semantic descriptors or objective image interpretations are still unanswered. In the medical field, images, and especially digital images, are produced in ever increasing quantities and used for diagnostics and therapy. In several articles, content based access to medical images for supporting clinical decision making has been proposed that would ease the management of clinical data and scenarios for the integration of content-based access methods into Picture Archiving and Communication Systems (PACS) have been created. This paper gives an overview of soft computing techniques. New research directions are being defined that can prove to be useful. Still, there are very few systems that seem to be used in clinical practice. It needs to be stated as well that the goal is not, in general, to replace text based retrieval methods as they exist at the moment.Keywords: CBIR, GA, Rough sets, CBMIR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26071928 A Spanning Tree for Enhanced Cluster Based Routing in Wireless Sensor Network
Authors: M. Saravanan, M. Madheswaran
Abstract:
Wireless Sensor Network (WSN) clustering architecture enables features like network scalability, communication overhead reduction, and fault tolerance. After clustering, aggregated data is transferred to data sink and reducing unnecessary, redundant data transfer. It reduces nodes transmitting, and so saves energy consumption. Also, it allows scalability for many nodes, reduces communication overhead, and allows efficient use of WSN resources. Clustering based routing methods manage network energy consumption efficiently. Building spanning trees for data collection rooted at a sink node is a fundamental data aggregation method in sensor networks. The problem of determining Cluster Head (CH) optimal number is an NP-Hard problem. In this paper, we combine cluster based routing features for cluster formation and CH selection and use Minimum Spanning Tree (MST) for intra-cluster communication. The proposed method is based on optimizing MST using Simulated Annealing (SA). In this work, normalized values of mobility, delay, and remaining energy are considered for finding optimal MST. Simulation results demonstrate the effectiveness of the proposed method in improving the packet delivery ratio and reducing the end to end delay.
Keywords: Wireless sensor network, clustering, minimum spanning tree, genetic algorithm, low energy adaptive clustering hierarchy, simulated annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17861927 Assessing drought Vulnerability of Bulgarian Agriculture through Model Simulations
Authors: Z. Popova, L. S. Pereira, М. Ivanova, P. Alexandrova, K. Doneva, V. Alexandrov, M. Kercheva
Abstract:
This study assesses the vulnerability of Bulgarian agriculture to drought using the WINISAREG model and seasonal standard precipitation index SPI(2) for the period 1951-2004. This model was previously validated for maize on soils of different water holding capacity (TAW) in various locations. Simulations are performed for Plovdiv, Stara Zagora and Sofia. Results relative to Plovdiv show that in soils of large TAW (180 mm m-1) net irrigation requirements (NIRs) range 0-40 mm in wet years and 350-380 mm in dry years. In soils of small TAW (116 mm m-1), NIRs reach 440 mm in the very dry year. NIRs in Sofia are about 80 mm smaller. Rainfed maize is associated with great yield variability (29%Keywords: Drought vulnerability, ISAREG simulation model, South Bulgaria, SPI-index
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17421926 Evaluating the Sustainability of Agricultural by Indicator that Appropriate to the Area of Ban Phaeo District, Samut Sakorn Province, Thailand
Authors: N. Talisa, K. Rungsarid, P. Chakrit
Abstract:
The objectives of the research are to study the existing agricultural patterns, and to evaluate the sustainability of agricultural on economic, social and environmental aspects. The samplings were the representatives of the agriculturist group from Ban Paew district, Samut Sakorn province by purposive sampling method of 30 households. The tools being used were interview forms together with the Rapid Rural Appraisal (RRA) and the Participation Rural Appraisal (PRA). The information collected was analyzed with the principle of Content Analysis andusing Descriptive Statistics. After that all the information gotten was analyze the sustainability on the household level and village level. The research result can be concluded as follows: The agricultural Patterns: For most of the cultivation main crop was fruit trees planted and the supplement crop was around the patch or added other plants in the trenches. There were trenches for the cultivating water. The product distribution was by selling (97.5%) and the selling to middle man was the highest number (62.5%). Evaluating the sustainability of the agricultural by the indicators which were appropriate to the area: For the agricultural sustainability on the household level it was found that only one household had sustainable, others household had conditioned sustainable. For on the village level it was found that the sustainability on the issue of agricultural knowledge training had the lowest level (Sustainability index = 31.67%). Secondary was the acknowledging about soil information (Sustainability index = 35.0), and the household labors on agriculture, net return over cash cost (Sustainability index = 55.0%) respectively. Performance percentage is 48.81 %. It was brought to the conclusion that this area did not have the agricultural sustainability.
Keywords: Sustainability of agricultural, sustainability indicators, sustainability index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16531925 Structure and Functions of Urban Surface Water System in Coastal Areas: The Case of Almere
Authors: Tao Zou, Zhengnan Zhou
Abstract:
In the context of global climate change, flooding and sea level rise is increasingly threatening coastal urban areas, in which large population is continuously concentrated. Dutch experiences in urban water system management provide high reference value for sustainable coastal urban development projects. Preliminary studies shows the urban water system in Almere, a typical Dutch polder city, have three kinds of operational modes, achieving functions as: (1) coastline control – strong multiple damming system prevents from storm surges and maintains sufficient capacity upon risks; (2) high flexibility – large area and widely scattered open water system greatly reduce local runoff and water level fluctuation; (3) internal water maintenance – weir and sluice system maintains relatively stable water level, providing excellent boating and landscaping service, coupling with water circulating model maintaining better water quality. Almere has provided plenty of hints and experiences for ongoing development of coastal cities in emerging economies.
Keywords: Coastal area, resilience, sustainable urban watersystem, water circulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25361924 A New Heuristic Approach for the Large-Scale Generalized Assignment Problem
Authors: S. Raja Balachandar, K.Kannan
Abstract:
This paper presents a heuristic approach to solve the Generalized Assignment Problem (GAP) which is NP-hard. It is worth mentioning that many researches used to develop algorithms for identifying the redundant constraints and variables in linear programming model. Some of the algorithms are presented using intercept matrix of the constraints to identify redundant constraints and variables prior to the start of the solution process. Here a new heuristic approach based on the dominance property of the intercept matrix to find optimal or near optimal solution of the GAP is proposed. In this heuristic, redundant variables of the GAP are identified by applying the dominance property of the intercept matrix repeatedly. This heuristic approach is tested for 90 benchmark problems of sizes upto 4000, taken from OR-library and the results are compared with optimum solutions. Computational complexity is proved to be O(mn2) of solving GAP using this approach. The performance of our heuristic is compared with the best state-ofthe- art heuristic algorithms with respect to both the quality of the solutions. The encouraging results especially for relatively large size test problems indicate that this heuristic approach can successfully be used for finding good solutions for highly constrained NP-hard problems.
Keywords: Combinatorial Optimization Problem, Generalized Assignment Problem, Intercept Matrix, Heuristic, Computational Complexity, NP-Hard Problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23481923 A High-Speed and Low-Energy Ternary Content Addressable Memory Design Using Feedback in Match-Line Sense Amplifier
Authors: Syed Iftekhar Ali, M. S. Islam
Abstract:
In this paper we present an energy efficient match-line (ML) sensing scheme for high-speed ternary content-addressable memory (TCAM). The proposed scheme isolates the sensing unit of the sense amplifier from the large and variable ML capacitance. It employs feedback in the sense amplifier to successfully detect a match while keeping the ML voltage swing low. This reduced voltage swing results in large energy saving. Simulation performed using 130nm 1.2V CMOS logic shows at least 30% total energy saving in our scheme compared to popular current race (CR) scheme for similar search speed. In terms of speed, dynamic energy, peak power consumption and transistor count our scheme also shows better performance than mismatch-dependant (MD) power allocation technique which also employs feedback in the sense amplifier. Additionally, the implementation of our scheme is simpler than CR or MD scheme because of absence of analog control voltage and programmable delay circuit as have been used in those schemes.Keywords: content-addressable memory, energy consumption, feedback, peak power, sensing scheme, sense amplifier, ternary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18211922 Condition Monitoring in the Management of Maintenance in a Large Scale Precision CNC Machining Manufacturing Facility
Authors: N. Ahmed, A.J. Day, J.L. Victory L. Zeall, B. Young
Abstract:
The manufacture of large-scale precision aerospace components using CNC requires a highly effective maintenance strategy to ensure that the required accuracy can be achieved over many hours of production. This paper reviews a strategy for a maintenance management system based on Failure Mode Avoidance, which uses advanced techniques and technologies to underpin a predictive maintenance strategy. It is shown how condition monitoring (CM) is important to predict potential failures in high precision machining facilities and achieve intelligent and integrated maintenance management. There are two distinct ways in which CM can be applied. One is to monitor key process parameters and observe trends which may indicate a gradual deterioration of accuracy in the product. The other is the use of CM techniques to monitor high status machine parameters enables trends to be observed which can be corrected before machine failure and downtime occurs. It is concluded that the key to developing a flexible and intelligent maintenance framework in any precision manufacturing operation is the ability to evaluate reliably and routinely machine tool condition using condition monitoring techniques within a framework of Failure Mode Avoidance.Keywords: Maintenance, Condition Monitoring, CNC, Machining, Accuracy, Capability, Key Process Parameters, Critical Parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22311921 The Management in Large Emergency Situations – A Best Practise Case Study based on GIS for Management of Evacuation
Authors: Ion Baş, Claudiu Zoicaş, Angela Ioniţâ
Abstract:
In most of the cases, natural disasters lead to the necessity of evacuating people. The quality of evacuation management is dramatically improved by the use of information provided by decision support systems, which become indispensable in case of large scale evacuation operations. This paper presents a best practice case study. In November 2007, officers from the Emergency Situations Inspectorate “Crisana" of Bihor County from Romania participated to a cross-border evacuation exercise, when 700 people have been evacuated from Netherlands to Belgium. One of the main objectives of the exercise was the test of four different decision support systems. Afterwards, based on that experience, software system called TEVAC (Trans Border Evacuation) has been developed “in house" by the experts of this institution. This original software system was successfully tested in September 2008, during the deployment of the international exercise EU-HUROMEX 2008, the scenario involving real evacuation of 200 persons from Hungary to Romania. Based on the lessons learned and results, starting from April 2009, the TEVAC software is used by all Emergency Situations Inspectorates all over Romania.Keywords: Emergency evacuation, Searching Features, TEVAC(Trans Border Evacuation) software system, User Interface Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15831920 Graph Codes-2D Projections of Multimedia Feature Graphs for Fast and Effective Retrieval
Authors: Stefan Wagenpfeil, Felix Engel, Paul McKevitt, Matthias Hemmje
Abstract:
Multimedia Indexing and Retrieval is generally de-signed and implemented by employing feature graphs. These graphs typically contain a significant number of nodes and edges to reflect the level of detail in feature detection. A higher level of detail increases the effectiveness of the results but also leads to more complex graph structures. However, graph-traversal-based algorithms for similarity are quite inefficient and computation intensive, espe-cially for large data structures. To deliver fast and effective retrieval, an efficient similarity algorithm, particularly for large graphs, is mandatory. Hence, in this paper, we define a graph-projection into a 2D space (Graph Code) as well as the corresponding algorithms for indexing and retrieval. We show that calculations in this space can be performed more efficiently than graph-traversals due to a simpler processing model and a high level of parallelisation. In consequence, we prove that the effectiveness of retrieval also increases substantially, as Graph Codes facilitate more levels of detail in feature fusion. Thus, Graph Codes provide a significant increase in efficiency and effectiveness (especially for Multimedia indexing and retrieval) and can be applied to images, videos, audio, and text information.
Keywords: indexing, retrieval, multimedia, graph code, graph algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4431919 Pathomorphological Features of Lungs from Brown Hares Infected with Parasites
Authors: Mariana Panayotova-Pencheva, Anetka Trifonova, Vassilena Dakova
Abstract:
790 lungs from brown hares (Lepus europeus L.) from different regions of Bulgaria were investigated during the period 2009-2017. The parasitological status and pathomorphological features in the lungs were recorded. The following parasite species were established: one nematode - Protostrongylus tauricus (7.59% prevalence), one tapeworm – larva of Taenia pisiformis – Cysticercus pisiformis (3.04% prevalence) and one arthropod – larva of Linguatula serrata – Pentastomum dentatum (0.89% prevalence). Macroscopic lesions in the lungs were different depending on the causative agents. The infections with C. pisiformis and P. dentatum were attended with small, mainly superficial changes in the lungs. Protostrongylid infections were connected with different in appearance and burden macroscopic changes. In 77.7%, they were nodular, and in the rest of cases, they diffuse. The consistency of the lesions was compact. In most of the cases, alterations were grey in colour, rarely were dark-red or marble-like. In 91.7% of these cases, they were spread on the apical parts of large lung lobes. In 36.7% middle parts of the large lung lobes, and, in 26.7% small lung lobes, were also affected. The small lung lobes were never independently infected.
Keywords: Cysticercus pisiformis, Lepus europeus, lung lesions, Pentastomum dentatum, Protostrongylus tauricus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7951918 STLF Based on Optimized Neural Network Using PSO
Authors: H. Shayeghi, H. A. Shayanfar, G. Azimi
Abstract:
The quality of short term load forecasting can improve the efficiency of planning and operation of electric utilities. Artificial Neural Networks (ANNs) are employed for nonlinear short term load forecasting owing to their powerful nonlinear mapping capabilities. At present, there is no systematic methodology for optimal design and training of an artificial neural network. One has often to resort to the trial and error approach. This paper describes the process of developing three layer feed-forward large neural networks for short-term load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. Particle Swarm Optimization (PSO) is used to develop the optimum large neural network structure and connecting weights for one-day ahead electric load forecasting problem. PSO is a novel random optimization method based on swarm intelligence, which has more powerful ability of global optimization. Employing PSO algorithms on the design and training of ANNs allows the ANN architecture and parameters to be easily optimized. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. The experimental results show that the proposed method optimized by PSO can quicken the learning speed of the network and improve the forecasting precision compared with the conventional Back Propagation (BP) method. Moreover, it is not only simple to calculate, but also practical and effective. Also, it provides a greater degree of accuracy in many cases and gives lower percent errors all the time for STLF problem compared to BP method. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.
Keywords: Large Neural Network, Short-Term Load Forecasting, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22241917 An Efficient Architecture for Interleaved Modular Multiplication
Authors: Ahmad M. Abdel Fattah, Ayman M. Bahaa El-Din, Hossam M.A. Fahmy
Abstract:
Modular multiplication is the basic operation in most public key cryptosystems, such as RSA, DSA, ECC, and DH key exchange. Unfortunately, very large operands (in order of 1024 or 2048 bits) must be used to provide sufficient security strength. The use of such big numbers dramatically slows down the whole cipher system, especially when running on embedded processors. So far, customized hardware accelerators - developed on FPGAs or ASICs - were the best choice for accelerating modular multiplication in embedded environments. On the other hand, many algorithms have been developed to speed up such operations. Examples are the Montgomery modular multiplication and the interleaved modular multiplication algorithms. Combining both customized hardware with an efficient algorithm is expected to provide a much faster cipher system. This paper introduces an enhanced architecture for computing the modular multiplication of two large numbers X and Y modulo a given modulus M. The proposed design is compared with three previous architectures depending on carry save adders and look up tables. Look up tables should be loaded with a set of pre-computed values. Our proposed architecture uses the same carry save addition, but replaces both look up tables and pre-computations with an enhanced version of sign detection techniques. The proposed architecture supports higher frequencies than other architectures. It also has a better overall absolute time for a single operation.Keywords: Montgomery multiplication, modular multiplication, efficient architecture, FPGA, RSA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24541916 Solving a New Mixed-Model Assembly LineSequencing Problem in a MTO Environment
Authors: N. Manavizadeh, M. Hosseini, M. Rabbani
Abstract:
In the last decades to supply the various and different demands of clients, a lot of manufacturers trend to use the mixedmodel assembly line (MMAL) in their production lines, since this policy make possible to assemble various and different models of the equivalent goods on the same line with the MTO approach. In this article, we determine the sequence of (MMAL) line, with applying the kitting approach and planning of rest time for general workers to reduce the wastages, increase the workers effectiveness and apply the sector of lean production approach. This Multi-objective sequencing problem solved in small size with GAMS22.2 and PSO meta heuristic in 10 test problems and compare their results together and conclude that their results are very similar together, next we determine the important factors in computing the cost, which improving them cost reduced. Since this problem, is NPhard in large size, we use the particle swarm optimization (PSO) meta-heuristic for solving it. In large size we define some test problems to survey it-s performance and determine the important factors in calculating the cost, that by change or improved them production in minimum cost will be possible.Keywords: Mixed-Model Assembly Line, particle swarmoptimization, Multi-objective sequencing problem, MTO system, kitto-assembly, rest time
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20371915 User-Driven Product Line Engineering for Assembling Large Families of Software
Authors: Zhaopeng Xuan, Yuan Bian, C. Cailleaux, Jing Qin, S. Traore
Abstract:
Traditional software engineering allows engineers to propose to their clients multiple specialized software distributions assembled from a shared set of software assets. The management of these assets however requires a trade-off between client satisfaction and software engineering process. Clients have more and more difficult to find a distribution or components based on their needs from all of distributed repositories.
This paper proposes a software engineering for a user-driven software product line in which engineers define a Feature Model but users drive the actual software distribution on demand. This approach makes the user become final actor as a release manager in software engineering process, increasing user product satisfaction and simplifying user operations to find required components. In addition, it provides a way for engineers to manage and assembly large software families.
As a proof of concept, a user-driven software product line is implemented for Eclipse, an integrated development environment. An Eclipse feature model is defined, which is exposed to users on a cloud-based built platform from which clients can download individualized Eclipse distributions.
Keywords: Software Product Line, Model-driven Development, Reverse Engineering and Refactoring, Agile Method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18311914 Revised PLWAP Tree with Non-frequent Items for Mining Sequential Pattern
Authors: R. Vishnu Priya, A. Vadivel
Abstract:
Sequential pattern mining is a challenging task in data mining area with large applications. One among those applications is mining patterns from weblog. Recent times, weblog is highly dynamic and some of them may become absolute over time. In addition, users may frequently change the threshold value during the data mining process until acquiring required output or mining interesting rules. Some of the recently proposed algorithms for mining weblog, build the tree with two scans and always consume large time and space. In this paper, we build Revised PLWAP with Non-frequent Items (RePLNI-tree) with single scan for all items. While mining sequential patterns, the links related to the nonfrequent items are not considered. Hence, it is not required to delete or maintain the information of nodes while revising the tree for mining updated transactions. The algorithm supports both incremental and interactive mining. It is not required to re-compute the patterns each time, while weblog is updated or minimum support changed. The performance of the proposed tree is better, even the size of incremental database is more than 50% of existing one. For evaluation purpose, we have used the benchmark weblog dataset and found that the performance of proposed tree is encouraging compared to some of the recently proposed approaches.
Keywords: Sequential pattern mining, weblog, frequent and non-frequent items, incremental and interactive mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19311913 Analyzing of Temperature-Dependent Thermal Conductivity Effect in the Numerical Modeling of Fin-Tube Radiators: Introduction of a New Method
Authors: Farzad Bazdidi-Tehrani, Mohammad Hadi Kamrava
Abstract:
In all industries which are related to heat, suitable thermal ranges are defined for each device to operate well. Consideration of these limits requires a thermal control unit beside the main system. The Satellite Thermal Control Unit exploits from different methods and facilities individually or mixed. For enhancing heat transfer between primary surface and the environment, utilization of radiating extended surfaces are common. Especially for large temperature differences; variable thermal conductivity has a strong effect on performance of such a surface .In most literatures, thermo-physical properties, such as thermal conductivity, are assumed as constant. However, in some recent researches the variation of these parameters is considered. This may be helpful for the evaluation of fin-s temperature distribution in relatively large temperature differences. A new method is introduced to evaluate temperature-dependent thermal conductivity values. The finite volume method is employed to simulate numerically the temperature distribution in a space radiating fin. The present modeling is carried out for Aluminum as fin material and compared with previous method. The present results are also compared with those of two other analytical methods and good agreement is shown.Keywords: Variable thermal conductivity, New method, Finitevolume method, Combined heat transfer, Extended Surface
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23291912 Performance Evaluation of A Stratified Chilled- Water Thermal Storage System
Authors: M. A. Karim
Abstract:
In countries with hot climates, air-conditioning forms a large proportion of annual peak electrical demand, requiring expansion of power plants to meet the peak demand, which goes unused most of the time. Use of well-designed cool storage can offset the peak demand to a large extent. In this study, an air conditioning system with naturally stratified storage tank was designed, constructed and tested. A new type of diffuser was designed and used in this study. Factors that influence the performance of chilled water storage tanks were investigated. The results indicated that stratified storage tank consistently stratified well without any physical barrier. Investigation also showed that storage efficiency decreased with increasing flow rate due to increased mixing of warm and chilled water. Diffuser design and layout primarily affected the mixing near the inlet diffuser and the extent of this mixing had primary influence on the shape of the thermocline. The heat conduction through tank walls and through the thermocline caused widening of mixed volume. Thermal efficiency of stratified storage tanks was as high as 90 percent, which indicates that stratified tanks can effectively be used as a load management technique.Keywords: Cool Thermal Storage, Diffuser, Natural Stratification, Efficiency Improvement, Load management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36201911 Finite Element Analysis of Sheet Metal Airbending Using Hyperform LS-DYNA
Authors: Himanshu V. Gajjar, Anish H. Gandhi, Harit K. Raval
Abstract:
Air bending is one of the important metal forming processes, because of its simplicity and large field application. Accuracy of analytical and empirical models reported for the analysis of bending processes is governed by simplifying assumption and do not consider the effect of dynamic parameters. Number of researches is reported on the finite element analysis (FEA) of V-bending, Ubending, and air V-bending processes. FEA of bending is found to be very sensitive to many physical and numerical parameters. FE models must be computationally efficient for practical use. Reported work shows the 3D FEA of air bending process using Hyperform LSDYNA and its comparison with, published 3D FEA results of air bending in Ansys LS-DYNA and experimental results. Observing the planer symmetry and based on the assumption of plane strain condition, air bending problem was modeled in 2D with symmetric boundary condition in width. Stress-strain results of 2D FEA were compared with 3D FEA results and experiments. Simplification of air bending problem from 3D to 2D resulted into tremendous reduction in the solution time with only marginal effect on stressstrain results. FE model simplification by studying the problem symmetry is more efficient and practical approach for solution of more complex large dimensions slow forming processes.Keywords: Air V-bending, Finite element analysis, HyperformLS-DYNA, Planner symmetry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32091910 Enhanced Method of Conceptual Sizing of Aircraft Electro-Thermal De-icing System
Authors: Ahmed Shinkafi, Craig Lawson
Abstract:
There is a great advancement towards the All-Electric Aircraft (AEA) technology. The AEA concept assumes that all aircraft systems will be integrated into one electrical power source in the future. The principle of the electro-thermal system is to transfer the energy required for anti/de-icing to the protected areas in electrical form. However, powering a large aircraft anti-icing system electrically could be quite excessive in cost and system weight. Hence, maximising the anti/de-icing efficiency of the electro-thermal system in order to minimise its power demand has become crucial to electro-thermal de-icing system sizing. In this work, an enhanced methodology has been developed for conceptual sizing of aircraft electro-thermal de-icing System. The work factored those critical terms overlooked in previous studies which were critical to de-icing energy consumption. A case study of a typical large aircraft wing de-icing was used to test and validate the model. The model was used to optimise the system performance by a trade-off between the de-icing peak power and system energy consumption. The optimum melting surface temperatures and energy flux predicted enabled the reduction in the power required for de-icing. The weight penalty associated with electro-thermal anti-icing/de-icing method could be eliminated using this method without under estimating the de-icing power requirement.
Keywords: Aircraft de-icing system, electro-thermal, in-flight icing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46211909 Up Scaling of Highly Transparent Quasi-Solid State, Dye-Sensitized Solar Devices Composed of Nanocomposite Materials
Authors: Dimitra Sygkridou, Andreas Rapsomanikis, Elias Stathatos, Polycarpos Falaras, Evangelos Vitoratos
Abstract:
At the present work, highly transparent strip type quasi-solid state dye-sensitized solar cells (DSSCs) were fabricated through inkjet printing using nanocomposite TiO2 inks as raw materials and tested under outdoor illumination conditions. The cells, which can be considered as the structural units of large area modules, were fully characterized electrically and electrochemically and after the evaluation of the received results a large area DSSC module was manufactured. The module design was a sandwich Z-interconnection where the working electrode is deposited on one conductive glass and the counter electrode on a second glass. Silver current collective fingers were printed on the conductive glasses to make the internal electrical connections and the adjacent cells were connected in series and finally insulated using a UV curing resin to protect them from the corrosive (I-/I3-) redox couple of the electrolyte. Finally, outdoor tests were carried out to the fabricated dye-sensitized solar module and its performance data were collected and assessed.Keywords: Dye-sensitized solar devices, inkjet printing, quasi-solid state electrolyte, transparency, up scaling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16421908 Analytical Evaluation on Hysteresis Performance of Circular Shear Panel Damper
Authors: Daniel Y. Abebe, Jaehyouk Choi
Abstract:
The idea of adding metallic energy dissipaters to a structure to absorb a large part of the seismic energy began four decades ago. There are several types of metal-based devices conceived as dampers for the seismic energy absorber whereby damages to the major structural components could be minimized for both new and existing structures. This paper aimed to develop and evaluate structural performance of both stiffened and non stiffened circular shear panel damper for passive seismic energy protection by inelastic deformation. Structural evaluation was done using commercially available nonlinear FE simulation program. Diameter-to-thickness ratio is employed as main parameter to investigate the hysteresis performance of stiffened and unstiffened circular shear panel. Depending on these parameters three different buckling mode and hysteretic behavior was found: yielding prior to buckling without strength degradation, yielding prior to buckling with strength degradation and yielding with buckling and strength degradation which forms pinching at initial displacement. Hence, the hysteresis behavior is identified, specimens which deform without strength degradation so it will be used as passive energy dissipating device in civil engineering structures.
Keywords: Circular shear panel damper, FE analysis, Hysteretic behavior, Large deformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25481907 Investigating Solar Cycles and Media Sentiment Through Advanced NLP Techniques
Authors: Aghamusa Azizov
Abstract:
This study investigates the correlation between solar activity and sentiment in news media coverage, using a large-scale dataset of solar activity since 1750 and over 15 million articles from "The New York Times" dating from 1851 onwards. Employing Pearson's correlation coefficient and multiple Natural Language Processing (NLP) tools—TextBlob, Vader, and DistillBERT—the research examines the extent to which fluctuations in solar phenomena are reflected in the sentiment of historical news narratives. The findings reveal that the correlation between solar activity and media sentiment is generally negligible, suggesting a weak influence of solar patterns on the portrayal of events in news media. Notably, a moderate positive correlation was observed between the sentiments derived from TextBlob and Vader, indicating consistency across NLP tools. The analysis provides insights into the historical impact of solar activity on human affairs and highlights the importance of using multiple analytical methods to understand complex relationships in large datasets. The study contributes to the broader understanding of how extraterrestrial factors may intersect with media-reported events and underlines the intricate nature of interdisciplinary research in the data science and historical domains.
Keywords: Solar Activity Correlation, Media Sentiment Analysis, Natural Language Processing, NLP, Historical Event Patterns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 711906 Normalizing Scientometric Indicators of Individual Publications Using Local Cluster Detection Methods on Citation Networks
Authors: Levente Varga, Dávid Deritei, Mária Ercsey-Ravasz, Răzvan Florian, Zsolt I. Lázár, István Papp, Ferenc Járai-Szabó
Abstract:
One of the major shortcomings of widely used scientometric indicators is that different disciplines cannot be compared with each other. The issue of cross-disciplinary normalization has been long discussed, but even the classification of publications into scientific domains poses problems. Structural properties of citation networks offer new possibilities, however, the large size and constant growth of these networks asks for precaution. Here we present a new tool that in order to perform cross-field normalization of scientometric indicators of individual publications relays on the structural properties of citation networks. Due to the large size of the networks, a systematic procedure for identifying scientific domains based on a local community detection algorithm is proposed. The algorithm is tested with different benchmark and real-world networks. Then, by the use of this algorithm, the mechanism of the scientometric indicator normalization process is shown for a few indicators like the citation number, P-index and a local version of the PageRank indicator. The fat-tail trend of the article indicator distribution enables us to successfully perform the indicator normalization process.Keywords: Citation networks, scientometric indicator, cross-field normalization, local cluster detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7251905 Design and Optimization for a Compliant Gripper with Force Regulation Mechanism
Authors: Nhat Linh Ho, Thanh-Phong Dao, Shyh-Chour Huang, Hieu Giang Le
Abstract:
This paper presents a design and optimization for a compliant gripper. The gripper is constructed based on the concept of compliant mechanism with flexure hinge. A passive force regulation mechanism is presented to control the grasping force a micro-sized object instead of using a sensor force. The force regulation mechanism is designed using the planar springs. The gripper is expected to obtain a large range of displacement to handle various sized objects. First of all, the statics and dynamics of the gripper are investigated by using the finite element analysis in ANSYS software. And then, the design parameters of the gripper are optimized via Taguchi method. An orthogonal array L9 is used to establish an experimental matrix. Subsequently, the signal to noise ratio is analyzed to find the optimal solution. Finally, the response surface methodology is employed to model the relationship between the design parameters and the output displacement of the gripper. The design of experiment method is then used to analyze the sensitivity so as to determine the effect of each parameter on the displacement. The results showed that the compliant gripper can move with a large displacement of 213.51 mm and the force regulation mechanism is expected to be used for high precision positioning systems.
Keywords: Flexure hinge, compliant mechanism, compliant gripper, force regulation mechanism, Taguchi method, response surface methodology, design of experiment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16121904 PointNetLK-OBB: A Point Cloud Registration Algorithm with High Accuracy
Authors: Wenhao Lan, Ning Li, Qiang Tong
Abstract:
To improve the registration accuracy of a source point cloud and template point cloud when the initial relative deflection angle is too large, a PointNetLK algorithm combined with an oriented bounding box (PointNetLK-OBB) is proposed. In this algorithm, the OBB of a 3D point cloud is used to represent the macro feature of source and template point clouds. Under the guidance of the iterative closest point algorithm, the OBB of the source and template point clouds is aligned, and a mirror symmetry effect is produced between them. According to the fitting degree of the source and template point clouds, the mirror symmetry plane is detected, and the optimal rotation and translation of the source point cloud is obtained to complete the 3D point cloud registration task. To verify the effectiveness of the proposed algorithm, a comparative experiment was performed using the publicly available ModelNet40 dataset. The experimental results demonstrate that, compared with PointNetLK, PointNetLK-OBB improves the registration accuracy of the source and template point clouds when the initial relative deflection angle is too large, and the sensitivity of the initial relative position between the source point cloud and template point cloud is reduced. The primary contribution of this paper is the use of PointNetLK to avoid the non-convex problem of traditional point cloud registration and leveraging the regularity of the OBB to avoid the local optimization problem in the PointNetLK context.
Keywords: Mirror symmetry, oriented bounding box, point cloud registration, PointNetLK-OBB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7051903 A Methodology for Automatic Diversification of Document Categories
Authors: Dasom Kim, Chen Liu, Myungsu Lim, Soo-Hyeon Jeon, Byeoung Kug Jeon, Kee-Young Kwahk, Namgyu Kim
Abstract:
Recently, numerous documents including large volumes of unstructured data and text have been created because of the rapid increase in the use of social media and the Internet. Usually, these documents are categorized for the convenience of users. Because the accuracy of manual categorization is not guaranteed, and such categorization requires a large amount of time and incurs huge costs. Many studies on automatic categorization have been conducted to help mitigate the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorize complex documents with multiple topics because they work on the assumption that individual documents can be categorized into single categories only. Therefore, to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, the learning process employed in these studies involves training using a multi-categorized document set. These methods therefore cannot be applied to the multi-categorization of most documents unless multi-categorized training sets using traditional multi-categorization algorithms are provided. To overcome this limitation, in this study, we review our novel methodology for extending the category of a single-categorized document to multiple categorizes, and then introduce a survey-based verification scenario for estimating the accuracy of our automatic categorization methodology.Keywords: Big Data Analysis, Document Classification, Text Mining, Topic Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17451902 Mixed Model Assembly Line Sequencing In Make to Order System with Available to Promise Consideration
Authors: N. Manavizadeh, A. Dehghani, M. Rabbani
Abstract:
Mixed model assembly lines (MMAL) are a type of production line where a variety of product models similar in product characteristics are assembled. The effective design of these lines requires that schedule for assembling the different products is determined. In this paper we tried to fit the sequencing problem with the main characteristics of make to order (MTO) environment. The problem solved in this paper is a multiple objective sequencing problem in mixed model assembly lines sequencing using weighted Sum Method (WSM) using GAMS software for small problem and an effective GA for large scale problems because of the nature of NP-hardness of our problem and vast time consume to find the optimum solution in large problems. In this problem three practically important objectives are minimizing: total utility work, keeping a constant production rate variation, and minimizing earliness and tardiness cost which consider the priority of each customer and different due date which is a real situation in mixed model assembly lines and it is the first time we consider different attribute to prioritize the customers which help the company to reduce the cost of earliness and tardiness. This mechanism is a way to apply an advance available to promise (ATP) in mixed model assembly line sequencing which is the main contribution of this paper.Keywords: Available to promise, Earliness & Tardiness, GA, Mixed-Model assembly line Sequencing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25331901 Continuous Feature Adaptation for Non-Native Speech Recognition
Authors: Y. Deng, X. Li, C. Kwan, B. Raj, R. Stern
Abstract:
The current speech interfaces in many military applications may be adequate for native speakers. However, the recognition rate drops quite a lot for non-native speakers (people with foreign accents). This is mainly because the nonnative speakers have large temporal and intra-phoneme variations when they pronounce the same words. This problem is also complicated by the presence of large environmental noise such as tank noise, helicopter noise, etc. In this paper, we proposed a novel continuous acoustic feature adaptation algorithm for on-line accent and environmental adaptation. Implemented by incremental singular value decomposition (SVD), the algorithm captures local acoustic variation and runs in real-time. This feature-based adaptation method is then integrated with conventional model-based maximum likelihood linear regression (MLLR) algorithm. Extensive experiments have been performed on the NATO non-native speech corpus with baseline acoustic model trained on native American English. The proposed feature-based adaptation algorithm improved the average recognition accuracy by 15%, while the MLLR model based adaptation achieved 11% improvement. The corresponding word error rate (WER) reduction was 25.8% and 2.73%, as compared to that without adaptation. The combined adaptation achieved overall recognition accuracy improvement of 29.5%, and WER reduction of 31.8%, as compared to that without adaptation. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3217