Search results for: β :advection velocity
394 Coil and Jacket's Effects on Internal Flow Behavior and Heat Transfer in Stirred Tanks
Authors: B. Lakghomi, E. Kolahchian, A. Jalali, F. Farhadi
Abstract:
Different approaches for heating\cooling of stirred tanks, coils and jackets, are investigated using computational fluid dynamics (CFD).A time-dependant sliding mesh approach is applied to simulate the flow in both conditions. The investigations are carried out under the turbulent flow conditions for a Rushton impeller and heating elements are considered isothermal. The flow behavior and temperature distribution are studied for each case and heat transfer coefficient is calculated. Results show different velocity profiles for each case. Unsteady temperature distribution is not similar for different cases .In the case of the coiled stirred vessel more uniform temperature and higher heat transfer coefficient is resulted.
Keywords: CFD, coil and jacket, heat transfer, stirred tank.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4912393 CFD Simulation of SO2 Removal from Gas Mixtures using Ceramic Membranes
Authors: Azam Marjani, Saeed Shirazian
Abstract:
This work deals with modeling and simulation of SO2 removal in a ceramic membrane by means of FEM. A mass transfer model was developed to predict the performance of SO2 absorption in a chemical solvent. The model was based on solving conservation equations for gas component in the membrane. Computational fluid dynamics (CFD) of mass and momentum were used to solve the model equations. The simulations aimed to obtain the distribution of gas concentration in the absorption process. The effect of the operating parameters on the efficiency of the ceramic membrane was evaluated. The modeling findings showed that the gas phase velocity has significant effect on the removal of gas whereas the liquid phase does not affect the SO2 removal significantly. It is also indicated that the main mass transfer resistance is placed in the membrane and gas phase because of high tortuosity of the ceramic membrane.
Keywords: Gas separation, finite element, ceramic, sulphur dioxide, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2280392 Numerical Evaluation of the Contribution of Inertial and Aerodynamic Forces on VAWT Blade Loading
Authors: Marco Raciti Castelli, Stefano De Betta, Ernesto Benini
Abstract:
A two-dimensional numerical simulation of the contribution of both inertial and aerodynamic forces on the blade loads of a Vertical-Axis Wind Turbine (VAWT) is presented. After describing the computational model and the relative validation procedure, a complete campaign of simulations - based on full RANS unsteady calculations - is proposed for a three-bladed rotor architecture characterized by a NACA 0021 airfoil. For each analyzed angular velocity, the combined effect of pressure and viscous forces acting on every rotor blade are compared to the corresponding centrifugal forces, due to the revolution of the turbine, thus achieving a preliminary estimation of the correlation between overall rotor efficiency and structural blade loads.Keywords: CFD, VAWT, NACA 0021, aerodynamic forces, inertial loadings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291391 Numerical Simulation of the Effects of Nanofluid on a Heat Pipe Thermal Performance
Authors: Barzin Gavtash, Khalid Hussain, Mohammad Layeghi, Saeed Sadeghi Lafmejani
Abstract:
This research aims at modeling and simulating the effects of nanofluids on cylindrical heat pipes thermal performance using the ANSYS-FLUENT CFD commercial software. The heat pipe outer wall temperature distribution, thermal resistance, liquid pressure and axial velocity in presence of suspended nano-scaled solid particle (i.e. Cu, Al2O3 and TiO2) within the fluid (water) were investigated. The effect of particle concentration and size were explored and it is concluded that the thermal performance of the heat pipe is improved when using nanofluid as the system working fluid. Additionally, it was observed that the thermal resistance of the heat pipe drops as the particle concentration level increases and particle radius decreases.
Keywords: CFD, Heat Pipe, Nanofluid, Thermal resistance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44855390 The Analysis of Two-Phase Jet in Pneumatic Powder Injection into Liquid Alloys
Authors: J. Jezierski, K. Janerka
Abstract:
The results of the two-phase gas-solid jet in pneumatic powder injection process analysis were presented in the paper. The researches were conducted on model set-up with high speed camera jet movement recording. Then the recorded material was analyzed to estimate main particles movement parameters. The values obtained from this direct measurement were compared to those calculated with the use of the well-known formulas for the two-phase flows (pneumatic conveying). Moreover, they were compared to experimental results previously achieved by authors. The analysis led to conclusions which to some extent changed the assumptions used even by authors, regarding the two-phase jet in pneumatic powder injection process. Additionally, the visual analysis of the recorded clips supplied data to make a more complete evaluation of the jet behavior in the lance outlet than before.Keywords: injection lance, liquid metal, powder injection, slip velocity, two-phase jet
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629389 Numerical and Experimental Investigation of Air Distribution System of Larder Type Refrigerator
Authors: Funda Erdem Şahnali, Ş. Özgür Atayılmaz, Tolga N. Aynur
Abstract:
Almost all of the domestic refrigerators operate on the principle of the vapor compression refrigeration cycle and removal of heat from the refrigerator cabinets is done via one of the two methods: natural convection or forced convection. In this study, airflow and temperature distributions inside a 375L no-frost type larder cabinet, in which cooling is provided by forced convection, are evaluated both experimentally and numerically. Airflow rate, compressor capacity and temperature distribution in the cooling chamber are known to be some of the most important factors that affect the cooling performance and energy consumption of a refrigerator. The objective of this study is to evaluate the original temperature distribution in the larder cabinet, and investigate for better temperature distribution solutions throughout the refrigerator domain via system optimizations that could provide uniform temperature distribution. The flow visualization and airflow velocity measurements inside the original refrigerator are performed via Stereoscopic Particle Image Velocimetry (SPIV). In addition, airflow and temperature distributions are investigated numerically with Ansys Fluent. In order to study the heat transfer inside the aforementioned refrigerator, forced convection theories covering the following cases are applied: closed rectangular cavity representing heat transfer inside the refrigerating compartment. The cavity volume has been represented with finite volume elements and is solved computationally with appropriate momentum and energy equations (Navier-Stokes equations). The 3D model is analyzed as transient, with k-ε turbulence model and SIMPLE pressure-velocity coupling for turbulent flow situation. The results obtained with the 3D numerical simulations are in quite good agreement with the experimental airflow measurements using the SPIV technique. After Computational Fluid Dynamics (CFD) analysis of the baseline case, the effects of three parameters: compressor capacity, fan rotational speed and type of shelf (glass or wire) are studied on the energy consumption; pull down time, temperature distributions in the cabinet. For each case, energy consumption based on experimental results is calculated. After the analysis, the main effective parameters for temperature distribution inside a cabin and energy consumption based on CFD simulation are determined and simulation results are supplied for Design of Experiments (DOE) as input data for optimization. The best configuration with minimum energy consumption that provides minimum temperature difference between the shelves inside the cabinet is determined.
Keywords: Air distribution, CFD, DOE, energy consumption, larder cabinet, refrigeration, uniform temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 589388 Kinematics and Control System Design of Manipulators for a Humanoid Robot
Authors: S. Parasuraman
Abstract:
In this work, a new approach is proposed to control the manipulators for Humanoid robot. The kinematics of the manipulators in terms of joint positions, velocity, acceleration and torque of each joint is computed using the Denavit Hardenberg (D-H) notations. These variables are used to design the manipulator control system, which has been proposed in this work. In view of supporting the development of a controller, a simulation of the manipulator is designed for Humanoid robot. This simulation is developed through the use of the Virtual Reality Toolbox and Simulink in Matlab. The Virtual Reality Toolbox in Matlab provides the interfacing and controls to an environment which is developed based on the Virtual Reality Modeling Language (VRML). Chains of bones were used to represent the robot.Keywords: Mobile robot, Robot Kinematics, Robot Navigation, MATLAB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598387 Using Waste Marbles in Self Compacting Lightweight Concrete
Authors: Z. Funda Türkmenoğlu, Mehmet Türkmenoglu, Demet Yavuz,
Abstract:
In this study, the effects of waste marbles as aggregate material on workability and hardened concrete characteristics of self compacting lightweight concrete are investigated. For this purpose, self compacting light weight concrete are produced by waste marble aggregates are replaced with fine aggregate at 5%, 7.5%, and 10% ratios. Fresh concrete properties, slump flow, T50 time, V funnel, compressive strength and ultrasonic pulse velocity of self compacting lightweight concrete are determined. It is concluded from the test results that using waste marbles as aggregate material by replacement with fine aggregate slightly affects fresh and hardened concrete characteristics of self compacting lightweight concretes.
Keywords: Hardened concrete characteristics, self compacting lightweight concrete, waste marble, workability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1326386 Visual Object Tracking and Interception in Industrial Settings
Authors: Ahmet Denker, Tuğrul Adıgüzel
Abstract:
This paper presents a solution for a robotic manipulation problem. We formulate the problem as combining target identification, tracking and interception. The task in our solution is sensing a target on a conveyor belt and then intercepting robot-s end-effector at a convenient rendezvous point. We used an object recognition method which identifies the target and finds its position from visualized scene picture, then the robot system generates a solution for rendezvous problem using the target-s initial position and belt velocity . The interception of the target and the end-effector is executed at a convenient rendezvous point along the target-s calculated trajectory. Experimental results are obtained using a real platform with an industrial robot and a vision system over it.Keywords: Object recognition, rendezvous planning, robotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726385 Experimental Performance and Numerical Simulation of Double Glass Wall
Authors: Thana Ananacha
Abstract:
This paper reports the numerical and experimental performances of Double Glass Wall are investigated. Two configurations were considered namely, the Double Clear Glass Wall (DCGW) and the Double Translucent Glass Wall (DTGW). The coupled governing equations as well as boundary conditions are solved using the finite element method (FEM) via COMSOLTM Multiphysics. Temperature profiles and flow field of the DCGW and DTGW are reported and discussed. Different constant heat fluxes were considered as 400 and 800 W.m-2 the corresponding initial condition temperatures were 30.5 and 38.5ºC respectively. The results show that the simulation results are in agreement with the experimental data. Conclusively, the model considered in this study could reasonable be used simulate the thermal and ventilation performance of the DCGW and DTGW configurations.
Keywords: Thermal simulation, Double Glass Wall, Velocity field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094384 CFD Simulation of Hydrodynamic Behaviors and Gas-Liquid Mass Transfer in a Stirred Airlift Bioreactor
Authors: Sérgio S. de Jesus, Edgar Leonardo Martínez, Aulus R.R. Binelli, Aline Santana, Rubens Maciel Filho
Abstract:
The speed profiles, gas holdup (eG) and global oxygen transfer coefficient (kLa) from a stirred airlift bioreactor using water as the fluid model, was investigated by computational fluid dynamics modeling. The parameters predicted by the computer model were validated with the experimental dates. The CFD results were very close to those obtained experimentally. During the simulation it was verified a prevalent impeller effect at low speeds, propelling a large volume of fluid against the walls of the vessel, which without recirculation, results in low values of eG and kLa; however, by increasing air velocity, the impeller effect is smaller with the air flow being greater, in the region of the riser, causing fluid recirculation, which explains the increase in eG and kLa.
Keywords: CFD, Hydrodynamics, Mass transfer, Stirred airlift bioreactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3751383 Dynamics Analyses of Swing Structure Subject to Rotational Forces
Authors: Buntheng Chhorn, WooYoung Jung
Abstract:
Large-scale swing has been used in entertainment and performance, especially in circus, for a very long time. To increase the safety of this type of structure, a thorough analysis for displacement and bearing stress was performed for an extreme condition where a full cycle swing occurs. Different masses, ranging from 40 kg to 220 kg, and velocities were applied on the swing. Then, based on the solution of differential dynamics equation, swing velocity response to harmonic force was obtained. Moreover, the resistance capacity was estimated based on ACI steel structure design guide. Subsequently, numerical analysis was performed in ABAQUS to obtain the stress on each frame of the swing. Finally, the analysis shows that the expansion of swing structure frame section was required for mass bigger than 150kg.
Keywords: Swing structure, displacement, bearing stress, dynamic loads response, finite element analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1267382 MHD Unsteady Free Convection of Heat and Mass Transfer Flow through Porous Medium with Time Dependent Suction and Constant Heat Source/Sink
Authors: Praveen Saraswat, Rudraman Singh
Abstract:
In this paper, we have investigated the free convection MHD flow due to heat and mass transfer through porous medium bounded by an infinite vertical non-conducting porous plate with time dependent suction under the influence of uniform transverse magnetic field of strength H0. When Temperature (T) and Concentration (C) at the plate is oscillatory with time about a constant non-zero mean. The velocity distribution, the temperature distribution, co-efficient of skin friction and role of heat transfer is investigated. Here the partial differential equations are involved. Exact solution is not possible so approximate solution is obtained and various graphs are plotted.
Keywords: Time Dependent Suction, Convection, MHD, Porous.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908381 Electrophoretic Motion of a Liquid Droplet within an Uncharged Cylindrical Pore
Authors: Cheng-Hsuan Huang, Eric Lee
Abstract:
Electrophoretic motion of a liquid droplet within an uncharged cylindrical pore is investigated theoretically in this study. It is found that the boundary effect in terms of the reduction of droplet mobility (droplet velocity per unit strength of the applied electric field) is very significant when the double layer surrounding the droplet is thick, and diminishes as it gets very thin. Moreover, the viscosity ratio of the ambient fluid to the internal one, σ, is a crucial factor in determining its electrophoretic behavior. The boundary effect is less significant as the viscosity ratio gets high. Up to 70% mobility reduction is observed when this ratio is low (σ = 0.01), whereas only 40% reduction when it is high (σ = 100). The results of this study can be utilized in various fields of biotechnology, such as a biosensor or a lab-on-a-chip device.Keywords: Cylindrical pore, Electrophoresis, Lab-on-a-chip, Liquid droplet
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490380 Non-Invasive Capillary Blood Flow Measurement: Laser Speckle and Laser Doppler
Authors: A.K.Jayanthy, N.Sujatha, M.Ramasubba Reddy
Abstract:
Microcirculation is essential for the proper supply of oxygen and nutritive substances to the biological tissue and the removal of waste products of metabolism. The determination of blood flow in the capillaries is therefore of great interest to clinicians. A comparison has been carried out using the developed non-invasive, non-contact and whole field laser speckle contrast imaging (LSCI) based technique and as well as a commercially available laser Doppler blood flowmeter (LDF) to evaluate blood flow at the finger tip and elbow and is presented here. The LSCI technique gives more quantitative information on the velocity of blood when compared to the perfusion values obtained using the LDF. Measurement of blood flow in capillaries can be of great interest to clinicians in the diagnosis of vascular diseases of the upper extremities.Keywords: Blood flow, Laser Doppler flowmeter, LSCI, speckle
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2566379 Navigation and Guidance System Architectures for Small Unmanned Aircraft Applications
Authors: Roberto Sabatini, Celia Bartel, Anish Kaharkar, Tesheen Shaid, Subramanian Ramasamy
Abstract:
Two multisensor system architectures for navigation and guidance of small Unmanned Aircraft (UA) are presented and compared. The main objective of our research is to design a compact, light and relatively inexpensive system capable of providing the required navigation performance in all phases of flight of small UA, with a special focus on precision approach and landing, where Vision Based Navigation (VBN) techniques can be fully exploited in a multisensor integrated architecture. Various existing techniques for VBN are compared and the Appearance-Based Navigation (ABN) approach is selected for implementation. Feature extraction and optical flow techniques are employed to estimate flight parameters such as roll angle, pitch angle, deviation from the runway centreline and body rates. Additionally, we address the possible synergies of VBN, Global Navigation Satellite System (GNSS) and MEMS-IMU (Micro-Electromechanical System Inertial Measurement Unit) sensors, and the use of Aircraft Dynamics Model (ADM) to provide additional information suitable to compensate for the shortcomings of VBN and MEMS-IMU sensors in high-dynamics attitude determination tasks. An Extended Kalman Filter (EKF) is developed to fuse the information provided by the different sensors and to provide estimates of position, velocity and attitude of the UA platform in real-time. The key mathematical models describing the two architectures i.e., VBN-IMU-GNSS (VIG) system and VIGADM (VIGA) system are introduced. The first architecture uses VBN and GNSS to augment the MEMS-IMU. The second mode also includes the ADM to provide augmentation of the attitude channel. Simulation of these two modes is carried out and the performances of the two schemes are compared in a small UA integration scheme (i.e., AEROSONDE UA platform) exploring a representative cross-section of this UA operational flight envelope, including high dynamics manoeuvres and CAT-I to CAT-III precision approach tasks. Simulation of the first system architecture (i.e., VIG system) shows that the integrated system can reach position, velocity and attitude accuracies compatible with the Required Navigation Performance (RNP) requirements. Simulation of the VIGA system also shows promising results since the achieved attitude accuracy is higher using the VBN-IMU-ADM than using VBN-IMU only. A comparison of VIG and VIGA system is also performed and it shows that the position and attitude accuracy of the proposed VIG and VIGA systems are both compatible with the RNP specified in the various UA flight phases, including precision approach down to CAT-II.
Keywords: Global Navigation Satellite System (GNSS), Lowcost Navigation Sensors, MEMS Inertial Measurement Unit (IMU), Unmanned Aerial Vehicle, Vision Based Navigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3215378 Simulating Pathogen Transport with in a Naturally Ventilated Hospital Ward
Authors: C. A. Gilkeson, C. J. Noakes, P. A. Sleigh, M. A. I. Khan, M. A. Camargo-Valero
Abstract:
Understanding how airborne pathogens are transported through hospital wards is essential for determining the infection risk to patients and healthcare workers. This study utilizes Computational Fluid Dynamics (CFD) simulations to explore possible pathogen transport within a six-bed partitioned Nightingalestyle hospital ward. Grid independence of a ward model was addressed using the Grid Convergence Index (GCI) from solutions obtained using three fullystructured grids. Pathogens were simulated using source terms in conjunction with a scalar transport equation and a RANS turbulence model. Errors were found to be less than 4% in the calculation of air velocities but an average of 13% was seen in the scalar field. A parametric study of variations in the pathogen release point illustrated that its distribution is strongly influenced by the local velocity field and the degree of air mixing present.Keywords: Natural, Ventilation, Pathogen, Transport
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493377 Effectiveness Evaluation of a Machine Design Process Based on the Computation of the Specific Output
Authors: Barenten Suciu
Abstract:
In this paper, effectiveness of a machine design process is evaluated on the basis of the specific output calculus. Concretely, a screw-worm gear mechanical transmission is designed by using the classical and the 3D-CAD methods. Strength analysis and drawing of the designed parts is substantially aided by employing the SolidWorks software. Quality of the design process is assessed by manufacturing (printing) the parts, and by computing the efficiency, specific load, as well as the specific output (work) of the mechanical transmission. Influence of the stroke, travelling velocity and load on the mechanical output, is emphasized. Optimal design of the mechanical transmission becomes possible by the appropriate usage of the acquired results.
Keywords: Mechanical transmission, design, screw, worm-gear, efficiency, specific output, 3D-printing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 936376 Coding Considerations for Standalone Molecular Dynamics Simulations of Atomistic Structures
Authors: R. O. Ocaya, J. J. Terblans
Abstract:
The laws of Newtonian mechanics allow ab-initio molecular dynamics to model and simulate particle trajectories in material science by defining a differentiable potential function. This paper discusses some considerations for the coding of ab-initio programs for simulation on a standalone computer and illustrates the approach by C language codes in the context of embedded metallic atoms in the face-centred cubic structure. The algorithms use velocity-time integration to determine particle parameter evolution for up to several thousands of particles in a thermodynamical ensemble. Such functions are reusable and can be placed in a redistributable header library file. While there are both commercial and free packages available, their heuristic nature prevents dissection. In addition, developing own codes has the obvious advantage of teaching techniques applicable to new problems.Keywords: C-language, molecular dynamics, simulation, embedded atom method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408375 Influence of Milled Waste Glass to Clay Ceramic Foam Properties Made by Direct Foaming Route
Authors: A. Shishkin, V. Mironovs, D. Goljandin, A. Korjakins
Abstract:
The goal of this work is to develop sustainable and durable ceramic cellular structures using widely available natural resources- clay and milled waste glass. Present paper describes method of obtaining clay ceramic foam (CCF) with addition of milled waste glass in 5, 7 and 10 wt% by direct foaming with high speed mixer-disperser (HSMD). For more efficient clay and waste glass milling and mixing, the high velocity disintegrator was used. The CCF with 5, 7, and 10 wt% were obtained at 900, 950, 1000 and 1050 °C firing temperature and they have demonstrated mechanical compressive strength for all 12 samples ranging from 3.8 to 14.3 MPa and porosity 76-65%. Obtained CCF has compressive strength 14.3 MPa and porosity 65.3%.
Keywords: Ceramic foam, waste glass, clay foam, glass foam, open cell, direct foaming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576374 Flow Measurement Using Magnetic Meters in Large Underground Cooling Water Pipelines
Authors: Humanyun Zahir, Irtsam Ghazi
Abstract:
This paper outlines the basic installation and operation of magnetic inductive flow velocity sensors on large underground cooling water pipelines. Research on the effects of cathodic protection as well as into other factors that might influence the overall performance of the meter is presented in this paper. The experiments were carried out on an immersion type magnetic meter specially used for flow measurement of cooling water pipeline. An attempt has been made in this paper to outline guidelines that can ensure accurate measurement related to immersion type magnetic meters on underground pipelines.
Keywords: Magnetic Induction, Flow meter, Faradays law, Immersion, Cathodic protection, Anode, Cathode. Flange, Grounding, Plant information management system, Electrodes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2677373 Analytical Solutions for Corotational Maxwell Model Fluid Arising in Wire Coating inside a Canonical Die
Authors: Muhammad Sohail Khan, Rehan Ali Shah
Abstract:
The present paper applies the optimal homotopy perturbation method (OHPM) and the optimal homotopy asymptotic method (OHAM) introduced recently to obtain analytic approximations of the non-linear equations modeling the flow of polymer in case of wire coating of a corotational Maxwell fluid. Expression for the velocity field is obtained in non-dimensional form. Comparison of the results obtained by the two methods at different values of non-dimensional parameter l10, reveal that the OHPM is more effective and easy to use. The OHPM solution can be improved even working in the same order of approximation depends on the choices of the auxiliary functions.Keywords: Wire coating die, Corotational Maxwell model, optimal homotopy asymptotic method, optimal homotopy perturbation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1050372 Investigation on Ship Collision Phenomena by Analytical and Finite Element Methods
Authors: Abuzar.Abazari, Saeed. Ziaei-Rad, Hoseein. Dalayeli
Abstract:
Collision is considered as a time-depended nonlinear dynamic phenomenon. The majority of researchers have focused on deriving the resultant damage of the ship collisions via analytical, experimental, and finite element methods.In this paper, first, the force-penetration curve of a head collision on a container ship with rigid barrier based on Yang and Pedersen-s methods for internal mechanic section is studied. Next, the obtained results from different analytical methods are compared with each others. Then, through a simulation of the container ship collision in Ansys Ls-Dyna, results from finite element approach are compared with analytical methods and the source of errors is discussed. Finally, the effects of parameters such as velocity, and angle of collision on the forcepenetration curve are investigated.Keywords: Ship collision, Force-penetration curve, Damage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127371 Measurement and Prediction of Speed of Sound in Petroleum Fluids
Authors: S. Ghafoori, A. Al-Harbi, B. Al-Ajmi, A. Al-Shaalan, A. Al-Ajmi, M. Ali Juma
Abstract:
Seismic methods play an important role in the exploration for hydrocarbon reservoirs. However, the success of the method depends strongly on the reliability of the measured or predicted information regarding the velocity of sound in the media. Speed of sound has been used to study the thermodynamic properties of fluids. In this study, experimental data are reported and analyzed on the speed of sound in toluene and octane binary mixture. Three-factor three-level Box-Benhkam design is used to determine the significance of each factor, the synergetic effects of the factors, and the most significant factors on speed of sound. The developed mathematical model and statistical analysis provided a critical analysis of the simultaneous interactive effects of the independent variables indicating that the developed quadratic models were highly accurate and predictive.
Keywords: Experimental design, octane, speed of sound, toluene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413370 A Parametric Study on Deoiling Hydrocyclones Flow Field
Authors: Maysam Saidi, Reza Maddahian, Bijan Farhanieh
Abstract:
Hydrocyclones flow field study is conducted by performing a parametric study. Effect of cone angle on deoiling hydrocyclones flow behaviour is studied in this research. Flow field of hydrocyclone is obtained by three-dimensional simulations with OpenFOAM code. Because of anisotropic behaviour of flow inside hydrocyclones LES is a suitable method to predict the flow field since it resolves large scales and model isotropic small scales. Large eddy simulation is used to predict the flow behavior of three different cone angles. Differences in tangential velocity and pressure distribution are reported in some figures.
Keywords: Deoiling hydrocyclones, Flow field, Hydrocyclone cone angle, Large Eddy Simulation, Pressure distribution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420369 Analysis of Normal Penetration of Ogive -Nose Projectiles into Thin Metallic Plates
Authors: M. H. Pol, A. Bidi, A.V. Hoseini, G.H. Liaghat
Abstract:
In this note, a theoretical model for analyzing of normal penetration of the ogive – nose projectile into metallic targets is presented .The failure is assumed to be asymmetry petalling and the analysis is performed by using the energy balance and work done .The work done consist of the work required for plastic deformation Wp, the work for transferring the matter to new position Wd and the work for bending of the petals Wb. In several studies, it has been shown that we can neglect the loss of energy by temperature. In this present study, in first, by assuming the crater formation after perforation, the value of work done is calculated during the normal penetration of conical projectiles into thin metallic targets. Then the value of residual velocity and ballistic limit of the projectile is predicated by using the energy balance. In final, theoretical and experimental results is compared.Keywords: Ogive Projectile, normal impact, penetration, thinmetallic target.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2510368 CFD Simulation the Thermal-Hydraulic Characteristic within Fuel Rod Bundle near Grid Spacers
Authors: David Lávicka
Abstract:
This paper looks into detailed investigation of thermal-hydraulic characteristics of the flow field in a fuel rod model, especially near the spacer. The area investigate represents a source of information on the velocity flow field, vortex, and on the amount of heat transfer into the coolant all of which are critical for the design and improvement of the fuel rod in nuclear power plants. The flow field investigation uses three-dimensional Computational Fluid Dynamics (CFD) with the Reynolds stresses turbulence model (RSM). The fuel rod model incorporates a vertical annular channel where three different shapes of spacers are used; each spacer shape is addressed individually. These spacers are mutually compared in consideration of heat transfer capabilities between the coolant and the fuel rod model. The results are complemented with the calculated heat transfer coefficient in the location of the spacer and along the stainless-steel pipe.Keywords: CFD, fuel rod model, heat transfer, spacer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773367 Determination of Temperature and Velocity Fields in a Corridor at a Central Interim Spent Fuel Storage Facility Using Numerical Simulation
Authors: V. Salajka, J. Kala, P. Hradil
Abstract:
The presented article deals with the description of a numerical model of a corridor at a Central Interim Spent Fuel Storage Facility (hereinafter CISFSF). The model takes into account the effect of air flows on the temperature of stored waste. The computational model was implemented in the ANSYS/CFX programming environment in the form of a CFD task solution, which was compared with an approximate analytical calculation. The article includes a categorization of the individual alternatives for the ventilation of such underground systems. The aim was to evaluate a ventilation system for a CISFSF with regard to its stability and capacity to provide sufficient ventilation for the removal of heat produced by stored casks with spent nuclear fuel.Keywords: Temperature fields, Spent Fuel, Interim storage facility, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1399366 The Effect of Raindrop Kinetic Energy on Soil Erodibility
Authors: A. Moussouni, L. Mouzai, M. Bouhadef
Abstract:
Soil erosion is a very complex phenomenon, resulting from detachment and transport of soil particles by erosion agents. The kinetic energy of raindrop is the energy available for detachment and transport by splashing rain. The soil erodibility is defined as the ability of soil to resist to erosion. For this purpose, an experimental study was conducted in the laboratory using rainfall simulator to study the effect of the kinetic energy of rain (Ec) on the soil erodibility (K). The soil used was a sandy agricultural soil of 62.08% coarse sand, 19.14% fine sand, 6.39% fine silt, 5.18% coarse silt and 7.21% clay. The obtained results show that the kinetic energy of raindrops evolves as a power law with soil erodibility.
Keywords: Erosion, runoff, raindrop kinetic energy, soil erodibility, rainfall intensity, raindrop fall velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4106365 Conical Spouted Bed Combustor for Combustion of Vine Shoots Wastes
Authors: M. J. San José, S. Alvarez, R. López
Abstract:
In order to prove the applicability of a conical spouted bed combustor for the thermal exploitation of vineyard pruning wastes, the flow regimes of beds consisting of vine shoot beds and an inert bed were established under different operating conditions. The effect of inlet air temperature on the minimum spouted velocity was evaluated. Batch combustion of vine shoots in a conical spouted bed combustor was conducted at temperatures in the range 425-550 ºC with an inert bed. The experimental values of combustion efficiency of vine shoot calculated from the concentration the exhaust gases were assessed. The high experimental combustion efficiency obtained evidenced the proper suitability of the conical spouted bed combustor for the thermal combustion of vine shoots.
Keywords: Biomass wastes, thermal combustion, conical spouted beds, vineyard wastes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 736