Search results for: Renewable Energy Technology.
646 Peak Data Rate Enhancement Using Switched Micro-Macro Diversity in Cellular Multiple-Input-Multiple-Output Systems
Authors: Jihad S. Daba, J. P. Dubois, Yvette Antar
Abstract:
With the exponential growth of cellular users, a new generation of cellular networks is needed to enhance the required peak data rates. The co-channel interference between neighboring base stations inhibits peak data rate increase. To overcome this interference, multi-cell cooperation known as coordinated multipoint transmission is proposed. Such a solution makes use of multiple-input-multiple-output (MIMO) systems under two different structures: Micro- and macro-diversity. In this paper, we study the capacity and bit error rate in cellular networks using MIMO technology. We analyse both micro- and macro-diversity schemes and develop a hybrid model that switches between macro- and micro-diversity in the case of hard handoff based on a cut-off range of signal-to-noise ratio values. We conclude that our hybrid switched micro-macro MIMO system outperforms classical MIMO systems at the cost of increased hardware and software complexity.
Keywords: Cooperative multipoint transmission, ergodic capacity, hard handoff, macro-diversity, micro-diversity, multiple-input-multiple-output systems, MIMO, orthogonal frequency division multiplexing, OFDM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1091645 The Effects of Various Boundary Conditions on Thermal Buckling of Functionally Graded Beamwith Piezoelectric Layers Based on Third order Shear Deformation Theory
Authors: O. Miraliyari
Abstract:
This article attempts to analyze functionally graded beam thermal buckling along with piezoelectric layers applying based on the third order shearing deformation theory considering various boundary conditions. The beam properties are assumed to vary continuously from the lower surface to the upper surface of the beam. The equilibrium equations are derived using the total potential energy equations, Euler equations, piezoelectric material constitutive equations and third order shear deformation theory assumptions. In order to fulfill such an aim, at first functionally graded beam with piezoelectric layers applying the third order shearing deformation theory along with clamped -clamped boundary conditions are thoroughly analyzed, and then following making sure of the correctness of all the equations, the very same beam is analyzed with piezoelectric layers through simply-simply and simply-clamped boundary conditions. In this article buckling critical temperature for functionally graded beam is derived in two different ways, without piezoelectric layer and with piezoelectric layer and the results are compared together. Finally, all the conclusions obtained will be compared and contrasted with the same samples in the same and distinguished conditions through tables and charts. It would be noteworthy that in this article, the software MAPLE has been applied in order to do the numeral calculations.
Keywords: Thermal buckling, functionally graded beam, piezoelectric layer, various boundary conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601644 Sensitivity and Reliability Analysis of Masonry Infilled Frames
Authors: Avadhoot Bhosale, Robin Davis P., Pradip Sarkar
Abstract:
The seismic performance of buildings with irregular distribution of mass, stiffness and strength along the height may be significantly different from that of regular buildings with masonry infill. Masonry infilled reinforced concrete (RC) frames are very common structural forms used for multi-storey building construction. These structures are found to perform better in past earthquakes owing to additional strength, stiffness and energy dissipation in the infill walls. The seismic performance of a building depends on the variation of material, structural and geometrical properties. The sensitivity of these properties affects the seismic response of the building. The main objective of the sensitivity analysis is to found out the most sensitive parameter that affects the response of the building. This paper presents a sensitivity analysis by considering 5% and 95% probability value of random variable in the infills characteristics, trying to obtain a reasonable range of results representing a wide number of possible situations that can be met in practice by using pushover analysis. The results show that the strength-related variation values of concrete and masonry, with the exception of tensile strength of the concrete, have shown a significant effect on the structural performance and that this effect increases with the progress of damage condition for the concrete. The seismic risk assessments of the selected frames are expressed in terms of reliability index.Keywords: Fragility curve, sensitivity analysis, reliability index, RC frames.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1205643 Development of Software Complex for Digitalization of Enterprise Activities
Authors: G. T. Balakayeva, K. K. Nurlybayeva, M. B. Zhanuzakov
Abstract:
In the proposed work, we have developed software and designed a software architecture for the implementation of enterprise business processes. The proposed software has a multi-level architecture using a domain-specific tool. The developed architecture is a guarantor of the availability, reliability and security of the system and the implementation of business processes, which are the basis for effective enterprise management. Automating business processes, automating the algorithmic stages of an enterprise, developing optimal algorithms for managing activities, controlling and monitoring, reducing risks and improving results help organizations achieve strategic goals quickly and efficiently. The software described in this article can connect to the corporate information system via two methods: a desktop client and a web client. With an appeal to the application server, the desktop client program connects to the information system on the company's work PCs over a local network. Outside the organization, the user can interact with the information system via a web browser, which acts as a web client and connects to a web server. The developed software consists of several integrated modules that share resources and interact with each other through an API. The following technology stack was used during development: Node js, React js, MongoDB, Ngnix, Cloud Technologies, Python.
Keywords: Algorithms, document processing, automation, integrated modules, software architecture, software design, information system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206642 Tool Wear of Aluminum/Chromium/Tungsten-Based-Coated Cemented Carbide Tools in Cutting Sintered Steel
Authors: Tadahiro Wada, Hiroyuki Hanyu
Abstract:
In this study, to clarify the effectiveness of an aluminum/chromium/tungsten-based-coated tool for cutting sintered steel, tool wear was experimentally investigated. The sintered steel was turned with the (Al60,Cr25,W15)N-, (Al60,Cr25,W15)(C,N)- and (Al64,Cr28,W8)(C,N)-coated cemented carbide tools according to the physical vapor deposition (PVD) method. Moreover, the tool wear of the aluminum/chromium/tungsten-based-coated item was compared with that of the (Al,Cr)N coated tool. Furthermore, to clarify the tool wear mechanism of the aluminum/chromium/tungsten-coating film for cutting sintered steel, Scanning Electron Microscope observation and Energy Dispersive x-ray Spectroscopy mapping analysis were conducted on the abraded surface. The following results were obtained: (1) The wear progress of the (Al64,Cr28,W8)(C,N)-coated tool was the slowest among that of the five coated tools. (2) Adding carbon (C) to the aluminum/chromium/tungsten-based-coating film was effective for improving the wear-resistance. (3) The main wear mechanism of the (Al60,Cr25,W15)N-, the (Al60,Cr25,W15)(C,N)- and the (Al64,Cr28,W8)(C,N)-coating films was abrasive wear.Keywords: Cutting, physical vapor deposition coating method, tool wear, tool wear mechanism, sintered steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663641 Investigating the Regulation System of the Synchronous Motor Excitation Mode Serving as a Reactive Power Source
Authors: Baghdasaryan Marinka, Ulikyan Azatuhi
Abstract:
The efficient usage of the compensation abilities of the electrical drive synchronous motors used in production processes can essentially improve the technical and economic indices of the process. Reducing the flows of the reactive electrical energy due to the compensation of reactive power allows to significantly reduce the load losses of power in the electrical networks. As a result of analyzing the scientific works devoted to the issues of regulating the excitation of the synchronous motors, the need for comprehensive investigation and estimation of the excitation mode has been substantiated. By means of the obtained transmission functions, in the Simulink environment of the software package MATLAB, the transition processes of the excitation mode have been studied. As a result of obtaining and estimating the graph of the Nyquist plot and the transient process, the necessity of developing the Proportional-Integral-Derivative (PID) regulator has been justified. The transient processes of the system of the PID regulator have been investigated, and the amplitude–phase characteristics of the system have been estimated. The analysis of the obtained results has shown that the regulation indices of the developed system have been improved. The developed system can be successfully applied for regulating the excitation voltage of different-power synchronous motors, operating with a changing load, ensuring a value of the power coefficient close to 1.
Keywords: Transient process, synchronous motor, excitation mode, regulator, reactive power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 688640 Precision Control of Single-Phase PWM Inverter Using M68HC11E Microcontroller
Authors: Khaled A. Madi
Abstract:
Induction motors are being used in greater numbers throughout a wide variety of industrial and commercial applications because it provides many benefits and reliable device to convert the electrical energy into mechanical motion. In some application it-s desired to control the speed of the induction motor. Because of the physics of the induction motor the preferred method of controlling its speed is to vary the frequency of the AC voltage driving the motor. In recent years, with the microcontroller incorporated into an appliance it becomes possible to use it to generate the variable frequency AC voltage to control the speed of the induction motor. This study investigates the microcontroller based variable frequency power inverter. the microcontroller is provide the variable frequency pulse width modulation (PWM) signal that control the applied voltage on the gate drive, which is provides the required PWM frequency with less harmonics at the output of the power inverter. The fully controlled bridge voltage source inverter has been implemented with semiconductors power devices isolated gate bipolar transistor (IGBT), and the PWM technique has been employed in this inverter to supply the motor with AC voltage. The proposed drive system for three & single phase power inverter is simulated using Matlab/Simulink. The Matlab Simulation Results for the proposed system were achieved with different SPWM. From the result a stable variable frequency inverter over wide range has been obtained and a good agreement has been found between the simulation and hardware of a microcontroller based single phase inverter.Keywords: Power, inverter, PWM, microcontroller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4436639 Dynamic Clustering Estimation of Tool Flank Wear in Turning Process using SVD Models of the Emitted Sound Signals
Authors: A. Samraj, S. Sayeed, J. E. Raja., J. Hossen, A. Rahman
Abstract:
Monitoring the tool flank wear without affecting the throughput is considered as the prudent method in production technology. The examination has to be done without affecting the machining process. In this paper we proposed a novel work that is used to determine tool flank wear by observing the sound signals emitted during the turning process. The work-piece material we used here is steel and aluminum and the cutting insert was carbide material. Two different cutting speeds were used in this work. The feed rate and the cutting depth were constant whereas the flank wear was a variable. The emitted sound signal of a fresh tool (0 mm flank wear) a slightly worn tool (0.2 -0.25 mm flank wear) and a severely worn tool (0.4mm and above flank wear) during turning process were recorded separately using a high sensitive microphone. Analysis using Singular Value Decomposition was done on these sound signals to extract the feature sound components. Observation of the results showed that an increase in tool flank wear correlates with an increase in the values of SVD features produced out of the sound signals for both the materials. Hence it can be concluded that wear monitoring of tool flank during turning process using SVD features with the Fuzzy C means classification on the emitted sound signal is a potential and relatively simple method.Keywords: Fuzzy c means, Microphone, Singular ValueDecomposition, Tool Flank Wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898638 Increasing the Resilience of Cyber Physical Systems in Smart Grid Environments using Dynamic Cells
Authors: Andrea Tundis, Carlos García Cordero, Rolf Egert, Alfredo Garro, Max Mühlhäuser
Abstract:
Resilience is an important system property that relies on the ability of a system to automatically recover from a degraded state so as to continue providing its services. Resilient systems have the means of detecting faults and failures with the added capability of automatically restoring their normal operations. Mastering resilience in the domain of Cyber-Physical Systems is challenging due to the interdependence of hybrid hardware and software components, along with physical limitations, laws, regulations and standards, among others. In order to overcome these challenges, this paper presents a modeling approach, based on the concept of Dynamic Cells, tailored to the management of Smart Grids. Additionally, a heuristic algorithm that works on top of the proposed modeling approach, to find resilient configurations, has been defined and implemented. More specifically, the model supports a flexible representation of Smart Grids and the algorithm is able to manage, at different abstraction levels, the resource consumption of individual grid elements on the presence of failures and faults. Finally, the proposal is evaluated in a test scenario where the effectiveness of such approach, when dealing with complex scenarios where adequate solutions are difficult to find, is shown.Keywords: Cyber-physical systems, energy management, optimization, smart grids, self-healing, resilience, security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1068637 Design and Simulation of Portable Telemedicine System for High Risk Cardiac Patients
Authors: V. Thulasi Bai, Srivatsa S. K.
Abstract:
Deaths from cardiovascular diseases have decreased substantially over the past two decades, largely as a result of advances in acute care and cardiac surgery. These developments have produced a growing population of patients who have survived a myocardial infarction. These patients need to be continuously monitored so that the initiation of treatment can be given within the crucial golden hour. The available conventional methods of monitoring mostly perform offline analysis and restrict the mobility of these patients within a hospital or room. Hence the aim of this paper is to design a Portable Cardiac Telemedicine System to aid the patients to regain their independence and return to an active work schedule, there by improving the psychological well being. The portable telemedicine system consists of a Wearable ECG Transmitter (WET) and a slightly modified mobile phone, which has an inbuilt ECG analyzer. The WET is placed on the body of the patient that continuously acquires the ECG signals from the high-risk cardiac patients who can move around anywhere. This WET transmits the ECG to the patient-s Bluetooth enabled mobile phone using blue tooth technology. The ECG analyzer inbuilt in the mobile phone continuously analyzes the heartbeats derived from the received ECG signals. In case of any panic condition, the mobile phone alerts the patients care taker by an SMS and initiates the transmission of a sample ECG signal to the doctor, via the mobile network.
Keywords: WET, ECG analyzer, Bluetooth, mobilecellular network, high risk cardiac patients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101636 UV-Cured Coatings Based on Acrylated Epoxidized Soybean Oil and Epoxy Carboxylate
Authors: Alaaddin Cerit, Suheyla Kocaman, Ulku Soydal
Abstract:
During the past two decades, photoinitiated polymerization has been attracting a great interest in terms of scientific and industrial activity. The wide recognition of UV treatment in the polymer industry results not only from its many practical applications but also from its advantage for low-cost processes. Unlike most thermal curing systems, radiation-curable systems can polymerize at room temperature without additional heat, and the curing is completed in a very short time. The advantage of cationic UV technology is that post-cure can continue in the ‘dark’ after radiation. In this study, bio-based acrylated epoxidized soybean oil (AESO) was cured with UV radiation using radicalic photoinitiator Irgacure 184. Triarylsulphonium hexafluoroantimonate was used as cationic photoinitiator for curing of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate. The effect of curing time and the amount of initiators on the curing degree and thermal properties were investigated. The thermal properties of the coating were analyzed after crosslinking UV irradiation. The level of crosslinking in the coating was evaluated by FTIR analysis. Cationic UV-cured coatings demonstrated excellent adhesion and corrosion resistance properties. Therefore, our study holds a great potential with its simple and low-cost applications.
Keywords: Acrylated epoxidized soybean oil, epoxy carboxylate, thermal properties, UV-curing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002635 A Quantitative Approach to Strategic Design of Component-Based Business Process Models
Authors: Eakong Atiptamvaree, Twittie Senivongse
Abstract:
A new paradigm for software design and development models software by its business process, translates the model into a process execution language, and has it run by a supporting execution engine. This process-oriented paradigm promotes modeling of software by less technical users or business analysts as well as rapid development. Since business process models may be shared by different organizations and sometimes even by different business domains, it is interesting to apply a technique used in traditional software component technology to design reusable business processes. This paper discusses an approach to apply a technique for software component fabrication to the design of process-oriented software units, called process components. These process components result from decomposing a business process of a particular application domain into subprocesses with an aim that the process components can be reusable in different process-based software models. The approach is quantitative because the quality of process component design is measured from technical features of the process components. The approach is also strategic because the measured quality is determined against business-oriented component management goals. A software tool has been developed to measure how good a process component design is, according to the required managerial goals and comparing to other designs. We also discuss how we benefit from reusable process components.
Keywords: Business process model, process component, component management goals, measurement
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676634 Assessing Innovation Activity in Mexico and South Korea: An Econometric Approach
Authors: Mario Gómez, Won Ho Kim, Ángel Licona, José Carlos Rodríguez
Abstract:
This article analyzes innovation activity in Mexico and South Korea. It develops an econometric model to test for structural breaks in the number of patent applications filed by residents and nonresidents in these countries during the period of 1965 to 2012. These changes may suggest that firms’ innovative capabilities have changed because of implementing different science, technology and innovation (STI) policies in Mexico and South Korea. Two important features characterize this research from others already developed by these authors. First, the theoretical research framework in this research is the debate between the assimilation view of growth and the accumulation view of growth. This characteristic suggests that trade liberalization should be accompanied by an adequate STI policy to boost competitiveness among indigenous firms. Second, the analysis in this research stresses the importance of key actors (e.g. governments) to successfully develop innovation capabilities among indigenous firms. Therefore, the question conducting this research is how STI policies in Mexico and South Korea contributed to develop firms’ innovation capabilities in these countries during last decades? The results from this research suggests that STI policy in South Korea was more suitable to boost innovation firms to compete in markets. Data to develop this research was released by the World Intellectual Property Organization (WIPO).
Keywords: Econometric methods, innovation, Mexico, South Korea, STI Policy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962633 A High-Speed Multiplication Algorithm Using Modified Partial Product Reduction Tree
Authors: P. Asadee
Abstract:
Multiplication algorithms have considerable effect on processors performance. A new high-speed, low-power multiplication algorithm has been presented using modified Dadda tree structure. Three important modifications have been implemented in inner product generation step, inner product reduction step and final addition step. Optimized algorithms have to be used into basic computation components, such as multiplication algorithms. In this paper, we proposed a new algorithm to reduce power, delay, and transistor count of a multiplication algorithm implemented using low power modified counter. This work presents a novel design for Dadda multiplication algorithms. The proposed multiplication algorithm includes structured parts, which have important effect on inner product reduction tree. In this paper, a 1.3V, 64-bit carry hybrid adder is presented for fast, low voltage applications. The new 64-bit adder uses a new circuit to implement the proposed carry hybrid adder. The new adder using 80 nm CMOS technology has been implemented on 700 MHz clock frequency. The proposed multiplication algorithm has achieved 14 percent improvement in transistor count, 13 percent reduction in delay and 12 percent modification in power consumption in compared with conventional designs.Keywords: adder, CMOS, counter, Dadda tree, encoder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303632 Applications for Additive Manufacturing Technology for Reducing the Weight of Body Parts of Gas Turbine Engines
Authors: Liubov A. Magerramova, Mikhail A. Petrov, Vladimir V. Isakov, Liana A. Shcherbinina, Suren G. Gukasyan, Daniil V. Povalyukhin, Olga G. Klimova-Korsmik, Darya V. Volosevich
Abstract:
Aircraft engines are developing along the path of increasing resource, strength, reliability, and safety. The building of gas turbine engine body parts is a complex design and technological task. Particularly complex in the design and manufacturing are the casings of the input stages of helicopter gearboxes and central drives of aircraft engines. Traditional technologies, such as precision casting or isothermal forging, are characterized by significant limitations in parts production. For parts like housing, additive technologies guarantee spatial freedom and limitless or flexible design. This article presents the results of computational and experimental studies. These investigations justify the applicability of additive technologies (AT) to reduce the weight of aircraft housing gearbox parts by up to 32%. This is possible due to geometrical optimization compared to the classical, less flexible manufacturing methods and as-casted aircraft parts with over-insured values of safety factors. Using an example of the body of the input stage of an aircraft gearbox, visualization of the layer-by-layer manufacturing of a part based on thermal deformation was demonstrated.
Keywords: Additive technologies, gas turbine engines, geometric optimization, weight reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 121631 Complex Condition Monitoring System of Aircraft Gas Turbine Engine
Authors: A. M. Pashayev, D. D. Askerov, C. Ardil, R. A. Sadiqov, P. S. Abdullayev
Abstract:
Researches show that probability-statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients- changes are analysed. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE workand output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stage-by-stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made.Keywords: aviation gas turbine engine, technical condition, fuzzy logic, neural networks, fuzzy statistics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545630 Development of an Indoor Drone Designed for the Needs of the Creative Industries
Authors: V. Santamarina Campos, M. de Miguel Molina, S. Kröner, B. de Miguel Molina
Abstract:
With this contribution, we want to show how the AiRT system could change the future way of working of a part of the creative industry and what new economic opportunities could arise for them. Remotely Piloted Aircraft Systems (RPAS), also more commonly known as drones, are now essential tools used by many different companies for their creative outdoor work. However, using this very flexible applicable tool indoor is almost impossible, since safe navigation cannot be guaranteed by the operator due to the lack of a reliable and affordable indoor positioning system which ensures a stable flight, among other issues. Here we present our first results of a European project, which consists of developing an indoor drone for professional footage especially designed for the creative industries. One of the main achievements of this project is the successful implication of the end-users in the overall design process from the very beginning. To ensure safe flight in confined spaces, our drone incorporates a positioning system based on ultra-wide band technology, an RGB-D (depth) camera for 3D environment reconstruction and the possibility to fully pre-program automatic flights. Since we also want to offer this tool for inexperienced pilots, we have always focused on user-friendly handling of the whole system throughout the entire process.
Keywords: Virtual reality, 3D reconstruction, indoor positioning system, UWB, RPAS, aerial film, intelligent navigation, advanced safety measures, creative industries.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905629 An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation
Authors: Akrem Sellami, Imed Riadh Farah, Basel Solaiman
Abstract:
With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI.Keywords: Band selection, dimensionality reduction, feature extraction, hyperspectral imagery, semantic interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1170628 Robot Navigation and Localization Based on the Rat’s Brain Signals
Authors: Endri Rama, Genci Capi, Shigenori Kawahara
Abstract:
The mobile robot ability to navigate autonomously in its environment is very important. Even though the advances in technology, robot self-localization and goal directed navigation in complex environments are still challenging tasks. In this article, we propose a novel method for robot navigation based on rat’s brain signals (Local Field Potentials). It has been well known that rats accurately and rapidly navigate in a complex space by localizing themselves in reference to the surrounding environmental cues. As the first step to incorporate the rat’s navigation strategy into the robot control, we analyzed the rats’ strategies while it navigates in a multiple Y-maze, and recorded Local Field Potentials (LFPs) simultaneously from three brain regions. Next, we processed the LFPs, and the extracted features were used as an input in the artificial neural network to predict the rat’s next location, especially in the decision-making moment, in Y-junctions. We developed an algorithm by which the robot learned to imitate the rat’s decision-making by mapping the rat’s brain signals into its own actions. Finally, the robot learned to integrate the internal states as well as external sensors in order to localize and navigate in the complex environment.Keywords: Brain machine interface, decision-making, local field potentials, mobile robot, navigation, neural network, rat, signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483627 New Curriculum Approach in Teaching Network Security Subjects for ICT Courses in Malaysia
Authors: Mohd Fairuz Iskandar Othman, Nazrulazhar Bahaman, Zulkiflee Muslim, Faizal Abdollah
Abstract:
This paper discusses a curriculum approach that will give emphasis on practical portions of teaching network security subjects in information and communication technology courses. As we are well aware, the need to use a practice and application oriented approach in education is paramount. Research on active learning and cooperative groups have shown that students grasps more and have more tendency towards obtaining and realizing soft skills like leadership, communication and team work as opposed to the more traditional theory and exam based teaching and learning. While this teaching and learning paradigm is relatively new in Malaysia, it has been practiced widely in the West. This paper examines a certain approach whereby students learning wireless security are divided into and work in small and manageable groups where there will be 2 teams which consist of black hat and white hat teams. The former will try to find and expose vulnerabilities in a wireless network while the latter will try their best to prevent such attacks on their wireless networks using hardware, software, design and enforcement of security policy and etc. This paper will try to show that the approach taken plus the use of relevant and up to date software and hardware and with suitable environment setting will hopefully expose students to a more fruitful outcome in terms of understanding of concepts, theories and their motivation to learn.Keywords: Curriculum approach, wireless networks, wirelesssecurity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701626 Numerical Investigation of Nanofluid Based Thermosyphon System
Authors: Kiran Kumar K, Ramesh Babu Bejjam, Atul Najan
Abstract:
A thermosyphon system is a heat transfer loop which operates on the basis of gravity and buoyancy forces. It guarantees a good reliability and low maintenance cost as it does not involve any mechanical pump. Therefore, it can be used in many industrial applications such as refrigeration and air conditioning, electronic cooling, nuclear reactors, geothermal heat extraction, etc. But flow instabilities and loop configuration are the major problems in this system. Several previous researchers studied that stabilities can be suppressed by using nanofluids as loop fluid. In the present study a rectangular thermosyphon loop with end heat exchangers are considered for the study. This configuration is more appropriate for many practical applications such as solar water heater, geothermal heat extraction, etc. In the present work, steady-state analysis is carried out on thermosyphon loop with parallel flow coaxial heat exchangers at heat source and heat sink. In this loop nanofluid is considered as the loop fluid and water is considered as the external fluid in both hot and cold heat exchangers. For this analysis onedimensional homogeneous model is developed. In this model, conservation equations like conservation of mass, momentum, energy are discretized using finite difference method. A computer code is written in MATLAB to simulate the flow in thermosyphon loop. A comparison in terms of heat transfer is made between water and nanofluid as working fluids in the loop.
Keywords: Heat exchanger, Heat transfer, Nanofluid, Thermosyphon loop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2500625 Tailormade Geometric Properties of Chitosan by Gamma Irradiation
Authors: F. Elashhab, L. Sheha, R. Fawzi Elsupikhe, A. E. A. Youssef, R. M. Sheltami, T. Alfazani
Abstract:
Chitosans, CSs, in solution are increasingly used in a range of geometric properties in various academic and industrial sectors, especially in the domain of pharmaceutical and biomedical engineering. In order to provide a tailoring guide of CSs to the applicants, gamma (γ)-irradiation technology and simple viscosity measurements have been used in this study. Accordingly, CS solid discs (0.5 cm thickness and 2.5 cm diameter) were exposed in air to Cobalt-60 (γ)-radiation, at room temperature and constant 50 kGy dose for different periods of exposer time (tγ). Diluted solutions of native and different irradiated CS were then prepared by dissolving 1.25 mg cm-3 of each polymer in 0.1 M NaCl/0.2 M CH3COOH. The single-concentration relative viscosity (ƞr) measurements were employed to obtain their intrinsic viscosity ([ƞ]) values and interrelated parameters, like: the molar mass (Mƞ), hydrodynamic radiuses (RH,ƞ), radius of gyration (RG,ƞ), and second virial coefficient (A2,ƞ) of CSs in the solution. The results show an exponential decrease of ƞr, [ƞ], Mƞ, RH,ƞ and RG,ƞ with increasing tγ. This suggests the influence of random chain-scission of CSs glycosidic bonds, with rate constant kr and kr-1 (lifetime τr ~ 0.017 min-1 and 57.14 min, respectively). The results also show an exponential decrease of A2ƞ with increasing tγ, which can be attributed to the growth of excluded volume effect in CS segments by tγ and, hence, better solution quality. The results are represented in following scaling laws as a tailoring guide to the applicants: RH,ƞ = 6.98 x 10-3 Mr0.65; RG,ƞ = 7.09 x 10-4 Mr0.83; A2,ƞ = 121.03 Mƞ,r-0.19.
Keywords: Gamma irradiation, geometric properties, kinetic model, scaling laws, viscosity measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 406624 A Framework for Early Differential Diagnosis of Tropical Confusable Diseases Using the Fuzzy Cognitive Map Engine
Authors: Faith-Michael E. Uzoka, Boluwaji A. Akinnuwesi, Taiwo Amoo, Flora Aladi, Stephen Fashoto, Moses Olaniyan, Joseph Osuji
Abstract:
The overarching aim of this study is to develop a soft-computing system for the differential diagnosis of tropical diseases. These conditions are of concern to health bodies, physicians, and the community at large because of their mortality rates, and difficulties in early diagnosis due to the fact that they present with symptoms that overlap, and thus become ‘confusable’. We report on the first phase of our study, which focuses on the development of a fuzzy cognitive map model for early differential diagnosis of tropical diseases. We used malaria as a case disease to show the effectiveness of the FCM technology as an aid to the medical practitioner in the diagnosis of tropical diseases. Our model takes cognizance of manifested symptoms and other non-clinical factors that could contribute to symptoms manifestations. Our model showed 85% accuracy in diagnosis, as against the physicians’ initial hypothesis, which stood at 55% accuracy. It is expected that the next stage of our study will provide a multi-disease, multi-symptom model that also improves efficiency by utilizing a decision support filter that works on an algorithm, which mimics the physician’s diagnosis process.
Keywords: Medical diagnosis, tropical diseases, fuzzy cognitive map, decision support filters, malaria differential diagnosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099623 Optimizing the Performance of Thermoelectric for Cooling Computer Chips Using Different Types of Electrical Pulses
Authors: Saleh Alshehri
Abstract:
Thermoelectric technology is currently being used in many industrial applications for cooling, heating and generating electricity. This research mainly focuses on using thermoelectric to cool down high-speed computer chips at different operating conditions. A previously developed and validated three-dimensional model for optimizing and assessing the performance of cascaded thermoelectric and non-cascaded thermoelectric is used in this study to investigate the possibility of decreasing the hotspot temperature of computer chip. Additionally, a test assembly is built and tested at steady-state and transient conditions. The obtained optimum thermoelectric current at steady-state condition is used to conduct a number of pulsed tests (i.e. transient tests) with different shapes to cool the computer chips hotspots. The results of the steady-state tests showed that at hotspot heat rate of 15.58 W (5.97 W/cm2), using thermoelectric current of 4.5 A has resulted in decreasing the hotspot temperature at open circuit condition (89.3 °C) by 50.1 °C. Maximum and minimum hotspot temperatures have been affected by ON and OFF duration of the electrical current pulse. Maximum hotspot temperature was resulted by longer OFF pulse period. In addition, longer ON pulse period has generated the minimum hotspot temperature.
Keywords: Thermoelectric generator, thermoelectric cooler, chip hotspots, electronic cooling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 622622 An Axiomatic Model for Development of the Allocated Architecture in Systems Engineering Process
Authors: A. Sharahi, R. Tehrani, A. Mollajan
Abstract:
The final step to complete the “Analytical Systems Engineering Process” is the “Allocated Architecture” in which all Functional Requirements (FRs) of an engineering system must be allocated into their corresponding Physical Components (PCs). At this step, any design for developing the system’s allocated architecture in which no clear pattern of assigning the exclusive “responsibility” of each PC for fulfilling the allocated FR(s) can be found is considered a poor design that may cause difficulties in determining the specific PC(s) which has (have) failed to satisfy a given FR successfully. The present study utilizes the Axiomatic Design method principles to mathematically address this problem and establishes an “Axiomatic Model” as a solution for reaching good alternatives for developing the allocated architecture. This study proposes a “loss Function”, as a quantitative criterion to monetarily compare non-ideal designs for developing the allocated architecture and choose the one which imposes relatively lower cost to the system’s stakeholders. For the case-study, we use the existing design of U. S. electricity marketing subsystem, based on data provided by the U.S. Energy Information Administration (EIA). The result for 2012 shows the symptoms of a poor design and ineffectiveness due to coupling among the FRs of this subsystem.
Keywords: Allocated Architecture, Analytical Systems Engineering Process, Functional Requirements (FRs), Physical Components (PCs), Responsibility of a Physical Component, System’s Stakeholders.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972621 Exploring Social Impact of Emerging Technologies from Futuristic Data
Authors: Heeyeul Kwon, Yongtae Park
Abstract:
Despite the highly touted benefits, emerging technologies have unleashed pervasive concerns regarding unintended and unforeseen social impacts. Thus, those wishing to create safe and socially acceptable products need to identify such side effects and mitigate them prior to the market proliferation. Various methodologies in the field of technology assessment (TA), namely Delphi, impact assessment, and scenario planning, have been widely incorporated in such a circumstance. However, literatures face a major limitation in terms of sole reliance on participatory workshop activities. They unfortunately missed out the availability of a massive untapped data source of futuristic information flooding through the Internet. This research thus seeks to gain insights into utilization of futuristic data, future-oriented documents from the Internet, as a supplementary method to generate social impact scenarios whilst capturing perspectives of experts from a wide variety of disciplines. To this end, network analysis is conducted based on the social keywords extracted from the futuristic documents by text mining, which is then used as a guide to produce a comprehensive set of detailed scenarios. Our proposed approach facilitates harmonized depictions of possible hazardous consequences of emerging technologies and thereby makes decision makers more aware of, and responsive to, broad qualitative uncertainties.
Keywords: Emerging technologies, futuristic data, scenario, text mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2391620 Timescape-Based Panoramic View for Historic Landmarks
Authors: H. Ali, A. Whitehead
Abstract:
Providing a panoramic view of famous landmarks around the world offers artistic and historic value for historians, tourists, and researchers. Exploring the history of famous landmarks by presenting a comprehensive view of a temporal panorama merged with geographical and historical information presents a unique challenge of dealing with images that span a long period, from the 1800’s up to the present. This work presents the concept of temporal panorama through a timeline display of aligned historic and modern images for many famous landmarks. Utilization of this panorama requires a collection of hundreds of thousands of landmark images from the Internet comprised of historic images and modern images of the digital age. These images have to be classified for subset selection to keep the more suitable images that chronologically document a landmark’s history. Processing of historic images captured using older analog technology under various different capturing conditions represents a big challenge when they have to be used with modern digital images. Successful processing of historic images to prepare them for next steps of temporal panorama creation represents an active contribution in cultural heritage preservation through the fulfillment of one of UNESCO goals in preservation and displaying famous worldwide landmarks.
Keywords: Cultural heritage, image registration, image subset selection, registered image similarity, temporal panorama, timescapes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1051619 Standalone Docking Station with Combined Charging Methods for Agricultural Mobile Robots
Authors: Leonor Varandas, Pedro D. Gaspar, Martim L. Aguiar
Abstract:
One of the biggest concerns in the field of agriculture is around the energy efficiency of robots that will perform agriculture’s activity and their charging methods. In this paper, two different charging methods for agricultural standalone docking stations are shown that will take into account various variants as field size and its irregularities, work’s nature to which the robot will perform, deadlines that have to be respected, among others. Its features also are dependent on the orchard, season, battery type and its technical specifications and cost. First charging base method focuses on wireless charging, presenting more benefits for small field. The second charging base method relies on battery replacement being more suitable for large fields, thus avoiding the robot stop for recharge. Existing many methods to charge a battery, the CC CV was considered the most appropriate for either simplicity or effectiveness. The choice of the battery for agricultural purposes is if most importance. While the most common battery used is Li-ion battery, this study also discusses the use of graphene-based new type of batteries with 45% over capacity to the Li-ion one. A Battery Management Systems (BMS) is applied for battery balancing. All these approaches combined showed to be a promising method to improve a lot of technical agricultural work, not just in terms of plantation and harvesting but also about every technique to prevent harmful events like plagues and weeds or even to reduce crop time and cost.
Keywords: Agricultural mobile robot, charging base methods, battery replacement method, wireless charging method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830618 An Evaluation of Kahoot Application and Its Environment as a Learning Tool
Authors: Muhammad Yasir Babar, Ebrahim Panah
Abstract:
Over the past 20 years, internet has seen continual advancement and with the advent of online technology, various types of web-based games have been developed. Games are frequently being used among different age groups from baby boomers to generation Z. Games are not only used for entertainment but also utilized as a learning approach transmitting education to a level that is more interesting and effective for students. One of the popular web-based education games is Kahoot with growing popularity and usage, which is being used in different fields of studies. However, little knowledge is available on university students’ perception of Kahoot environment and application for learning subjects. Hence, the objective of the current study is to investigate students’ perceptions of Kahoot application and environment as a learning tool. The study employed a survey approach by distributing Google Forms –created questionnaire, with high level of reliability index, to 62 students (11 males and 51 females). The findings show that students have positive attitudes towards Kahoot application and its environment for learning. Regarding Kahoot application, it was indicated that activities created using Kahoot are more interesting for students, Kahoot is useful for collaborative learning, and Kahoot enhances interest in learning lesson. In terms of Kahoot environment, it was found that using this application through mobile is easy for students, its design is simple and useful, Kahoot-created activities can easily be shared, and the application can easily be used on any platform. The findings of the study have implications for instructors, policymakers and curriculum developers.
Keywords: Application, environment, Kahoot, learning tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 793617 Profit Optimization for Solar Plant Electricity Production
Authors: Fl. Loury, P. Sablonière
Abstract:
In this paper a stochastic scenario-based model predictive control applied to molten salt storage systems in concentrated solar tower power plant is presented. The main goal of this study is to build up a tool to analyze current and expected future resources for evaluating the weekly power to be advertised on electricity secondary market. This tool will allow plant operator to maximize profits while hedging the impact on the system of stochastic variables such as resources or sunlight shortage.
Solving the problem first requires a mixed logic dynamic modeling of the plant. The two stochastic variables, respectively the sunlight incoming energy and electricity demands from secondary market, are modeled by least square regression. Robustness is achieved by drawing a certain number of random variables realizations and applying the most restrictive one to the system. This scenario approach control technique provides the plant operator a confidence interval containing a given percentage of possible stochastic variable realizations in such a way that robust control is always achieved within its bounds. The results obtained from many trajectory simulations show the existence of a ‘’reliable’’ interval, which experimentally confirms the algorithm robustness.
Keywords: Molten Salt Storage System, Concentrated Solar Tower Power Plant, Robust Stochastic Model Predictive Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926