Search results for: optical fiber communication
2052 Multiple-Channel Piezoelectric Actuated Tunable Optical Filter for WDM Application
Authors: Hailu Dessalegn, T. Srinivas
Abstract:
We propose new multiple-channel piezoelectric (PZT) actuated tunable optical filter based on racetrack multi-ring resonators for wavelength de-multiplexing network applications. We design tunable eight-channel wavelength de-multiplexer consisting of eight cascaded PZT actuated tunable multi-ring resonator filter with a channel spacing of 1.6nm. The filter for each channel is basically structured on a suspended beam, sandwiched with piezoelectric material and built in integrated ring resonators which are placed on the middle of the beam to gain uniform stress and linearly varying longitudinal strain. A reference single mode serially coupled multi stage racetrack ring resonator with the same radii and coupling length is designed with a line width of 0.8974nm with a flat top pass band at 1dB of 0.5205nm and free spectral range of about 14.9nm. In each channel, a small change in the perimeter of the rings is introduced to establish the shift in resonance wavelength as per the defined channel spacing. As a result, when a DC voltage is applied, the beams will elongate, which involves mechanical deformation of the ring resonators that induces a stress and a strain, which brings a change in refractive index and perimeter of the rings leading to change in the output spectrum shift providing the tunability of central wavelength in each channel. Simultaneous wave length shift as high as 45.54pm/Keywords: Optical MEMS, piezoelectric (PZT) actuation, tunable optical filter, wavelength de-multiplexer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20102051 Analyzing the Importance of Technical Writing in Professional Industry of Pakistan
Authors: Sadaf Khalid, Jahanzaib Sarwar, Rabia Tauseef
Abstract:
No matter how much perfect we become in our practical skills regarding the implementation of learned ideas, the need of technical writing capability cannot be neglected being a professional. Technical writing is a way of communicating the ideas in written which otherwise need to be presented orally. Technical writing skills have always been the need of the time, as they are required for internal as well as external official communication in both formal and informal manner. Moreover, they are the best way to capture the attention of your customers by presenting information in effective manner. This paper aims to analyze the importance of technical writing skills in professional industries of Pakistan by conducting a survey. Survey results presented in this paper clearly depicts the importance of formal and informal written communication media used in different professional industries in Pakistan. Analysis and discussion of the extent to which the alternative ways of communication besides technical writing have got importance in Pakistan is also an important aspect of this survey.
Keywords: Technical writing, Survey, Oral communication, Globalization, Communication trends, Formal Communication Media, Informal Communication, Audience
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69792050 Production of Hydrogen and Carbon Nanofiber via Methane Decomposition
Authors: Zhi Zhang, Tao Tang, Guangda Lu, Cheng Qin, Huogen Huang, Shaotao Zheng
Abstract:
High purity hydrogen and the valuable by-product of carbon nanotubes (CNTs) can be produced by the methane catalytic decomposition. The methane conversion and the performance of CNTs were determined by the choices of catalysts and the condition of decomposition reaction. In this paper, Ni/MgO and Ni/O-D (oxidized diamond) catalysts were prepared by wetness impregnation method. The effects of reaction temperature and space velocity of methane on the methane conversion were investigated in a fixed-bed. The surface area, structure and micrography were characterized with BET, XPS, SEM, EDS technology. The results showed that the conversion of methane was above 8% within 150 min (T=500) for 33Ni/O-D catalyst and higher than 25% within 120 min (T=650) for 41Ni/MgO catalyst. The initial conversion increased with the increasing temperature of the decomposition reaction, but their catalytic activities decreased rapidly while at too higher temperature. To decrease the space velocity of methane was propitious to promote the methane conversion, but not favor of the hydrogen yields. The appearance of carbon resulted from the methane decomposition lied on the support type and the condition of catalytic reaction. It presented as fiber shape on the surface of Ni/O-D at the relatively lower temperature such as 500 and 550, but as grain shape stacked on and overlayed on the surface of the metal nickel while at 650. The carbon fiber can form on the Ni/MgO surface at 650 and the diameter of the carbon fiber increased with the decreasing space velocity.
Keywords: methane, catalytic decomposition, hydrogen, carbon nanofiber
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21792049 A Cooperative Transmission Scheme Using Two Sources Based On OFDM System
Authors: Bit-Na Kwon, Dong-Hyun Ha, Hyoung-Kyu Song
Abstract:
In wireless communication, space-time block code (STBC), cyclic delay diversity (CDD) and space-time cyclic delay diversity (STCDD)are used as the spatial diversity schemes and have been widely studied for the reliablecommunication. If these schemes are used, the communication system can obtain the improved performance. However,the quality of the system is degraded when the distance between a source and a destination is distant in wireless communication system. In this paper, the cooperative transmission scheme using two sources is proposed and improves the performance of the wireless communication system.
Keywords: OFDM, Cooperative communication, CDD, STBC, STCDD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21222048 Mesoscopic Defects of Forming and Induced Properties on the Impact of a Composite Glass/Polyester
Authors: Bachir Kacimi, Fatiha Teklal, Arezki Djebbar
Abstract:
Forming processes induce residual deformations on the reinforcement and sometimes lead to mesoscopic defects, which are more recurrent than macroscopic defects during the manufacture of complex structural parts. This study deals with the influence of the fabric shear and buckles defects, which appear during draping processes of composite, on the impact behavior of a glass fiber reinforced polymer. To achieve this aim, we produced several specimens with different amplitude of deformations (shear) and defects on the fabric using a specific bench. The specimens were manufactured using the contact molding and tested with several impact energies. The results and measurements made on tested specimens were compared to those of the healthy material. The results showed that the buckle defects have a negative effect on elastic parameters and revealed a larger damage with significant out-of-plane mode relatively to the healthy composite material. This effect is the consequence of a local fiber impoverishment and a disorganization of the fibrous network, with a reorientation of the fibers following the out-of-plane buckling of the yarns, in the area where the defects are located. For the material with calibrated shear of the reinforcement, the increased local fiber rate due to the shear deformations and the contribution to stiffness of the transverse yarns led to an increase in mechanical properties.
Keywords: Defects, forming, impact, induced properties, textiles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5232047 Further Investigation of Elastic Scattering of 16O on 12C at Different Energies
Authors: Sh. Hamada, N. Burtebayev, N. Amangeldi, A. Amar
Abstract:
The aim of this work is to study the elastic transfer phenomenon which takes place in the elastic scattering of 16O on 12C at energies near the Coulomb barrier. Where, the angular distribution decrease steadily with increasing the scattering angle, then the cross section will increase at backward angles due to the α-transfer process. This reaction was also studied at different energies for tracking the nuclear rainbow phenomenon. The experimental data of the angular distribution at these energies were compared to the calculation predictions. The optical potential codes such as SPIVAL and Distorted Wave Born Approximation (DWUCK5) were used in analysis.Keywords: Transfer reaction, DWBA, Elastic Scattering, Optical Potential Codes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13572046 Developing Optical Sensors with Application of Cancer Detection by Elastic Light Scattering Spectroscopy
Authors: May Fadheel Estephan, Richard Perks
Abstract:
Cancer is a serious health concern that affects millions of people worldwide. Early detection and treatment are essential for improving patient outcomes. However, current methods for cancer detection have limitations, such as low sensitivity and specificity. The aim of this study was to develop an optical sensor for cancer detection using elastic light scattering spectroscopy (ELSS). ELSS is a non-invasive optical technique that can be used to characterize the size and concentration of particles in a solution. An optical probe was fabricated with a 100-μm-diameter core and a 132-μm centre-to-centre separation. The probe was used to measure the ELSS spectra of polystyrene spheres with diameters of 2 μm, 0.8 μm, and 0.413 μm. The spectra were then analysed to determine the size and concentration of the spheres. The results showed that the optical probe was able to differentiate between the three different sizes of polystyrene spheres. The probe was also able to detect the presence of polystyrene spheres in suspension concentrations as low as 0.01%. The results of this study demonstrate the potential of ELSS for cancer detection. ELSS is a non-invasive technique that can be used to characterize the size and concentration of cells in a tissue sample. This information can be used to identify cancer cells and assess the stage of the disease. The data for this study were collected by measuring the ELSS spectra of polystyrene spheres with different diameters. The spectra were collected using a spectrometer and a computer. The ELSS spectra were analysed using a software program to determine the size and concentration of the spheres. The software program used a mathematical algorithm to fit the spectra to a theoretical model. The question addressed by this study was whether ELSS could be used to detect cancer cells. The results of the study showed that ELSS could be used to differentiate between different sizes of cells, suggesting that it could be used to detect cancer cells. The findings of this research show the utility of ELSS in the early identification of cancer. ELSS is a non-invasive method for characterizing the number and size of cells in a tissue sample. To determine cancer cells and determine the disease's stage, this information can be employed. Further research is needed to evaluate the clinical performance of ELSS for cancer detection.
Keywords: Elastic Light Scattering Spectroscopy, Polystyrene spheres in suspension, optical probe, fibre optics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402045 The Relationship between Depression Interpersonal Communication and Media Using Among International Students
Authors: Birol Gülnar, Hacer Aker
Abstract:
Student-s movements have been going increasing in last decades. International students can have different psychological and sociological problems in their adaptation process. Depression is one of the most important problems in this procedure. This research purposed to reveal level of foreign students- depression, kinds of interpersonal communication networks (host/ethnic interpersonal communication) and media usage (host/ethnic media usage). Additionally study aimed to display the relationship between depression and communication (host/ethnic interpersonal communication and host/ethnic media usage) among foreign university students. A field research was performed among 283 foreign university students who have been attending 8 different universities in Turkey. A purposeful sampling technique was used in this research cause of data collect facilities. Results indicated that 58.3% of foreign students- depression stage was “intermediate" while 33.2% of foreign students- depression level was “low". Add to this, host interpersonal communication behaviors and Turkish web sites usages were negatively and significantly correlated with depression.Keywords: International students, depression, interpersonal communication behaviors, media using.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28872044 Thermal Elastic Stress Analysis of Steel Fiber Reinforced Aluminum Composites
Authors: M. R. Haboğlu, A. Kurşun, Ş. Aksoy, H. Aykul, N. B. Bektaş
Abstract:
Athermal elastic stress analysis of steel fiber reinforced aluminum laminated composite plate is investigated. Four sides of the composite plate are clamped and subjected to a uniform temperature load. The analysis is performed both analytically and numerically. Laminated composite is manufactured via hot pressing method. The investigation of the effects of the orientation angle is provided. Different orientation angles are used such as [0°/90°]s, [30°/-30°]s, [45°/-45°]s, and [60/-60]s. The analytical solution is obtained via classical laminated composite theory and the numerical solution is obtained by applying finite element method via ANSYS.
Keywords: Laminated Composites, Thermo Elastic Stress, Finite Element Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27492043 Material Defects Identification in Metal Ceramic Fixed Partial Dentures by En-Face Polarization Sensitive Optical Coherence Tomography
Authors: C. Sinescu, M. Negrutiu, R. Negru, M. Romînu, A.G. Podoleanu
Abstract:
The fixed partial dentures are mainly used in the frontal part of the dental arch because of their great esthetics. There are several factors that are associated with the stress state created in ceramic restorations, including: thickness of ceramic layers, mechanical properties of the materials, elastic modulus of the supporting substrate material, direction, magnitude and frequency of applied load, size and location of occlusal contact areas, residual stresses induced by processing or pores, restoration-cement interfacial defects and environmental defects. The purpose of this study is to evaluate the capability of Polarization Sensitive Optical Coherence Tomography (PSOCT) in detection and analysis of possible material defects in metal-ceramic and integral ceramic fixed partial dentures. As a conclusion, it is important to have a non invasive method to investigate fixed partial prostheses before their insertion in the oral cavity in order to satisfy the high stress requirements and the esthetic function.Keywords: Ceramic Fixed Partial Dentures, Material Defects, Polarization Sensitive Optical Coherence Tomography, Numerical Simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17902042 Study of Hydrothermal Behavior of Thermal Insulating Materials Based On Natural Fibers
Authors: J. Zach, J. Hroudova, J. Brozovsky
Abstract:
Thermal insulation materials based on natural fibers represent a very promising area of materials based on natural easy renewable row sources. These materials may be in terms of the properties of most competing synthetic insulations, but show somewhat higher moisture sensitivity and thermal insulation properties are strongly influenced by the density and orientation of fibers. The paper described the problem of hygrothermal behavior of thermal insulation materials based on natural plant and animal fibers. This is especially the dependence of the thermal properties of these materials on the type of fiber, bulk density, temperature, moisture and the fiber orientation.
Keywords: Thermal insulating materials, hemp fibers, sheep wool fibers, thermal conductivity, moisture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25552041 Study of Structure and Properties of Polyester/Carbon Blends for Technical Applications
Authors: Manisha A. Hira, Arup Rakshit
Abstract:
Textile substrates are endowed with flexibility and ease of making–up, but are non-conductors of electricity. Conductive materials like carbon can be incorporated into textile structures to make flexible conductive materials. Such conductive textiles find applications as electrostatic discharge materials, electromagnetic shielding materials and flexible materials to carry current or signals. This work focuses on use of carbon fiber as conductor of electricity. Carbon fibers in staple or tow form can be incorporated in textile yarn structure to conduct electricity. The paper highlights the process for development of these conductive yarns of polyester/carbon using Friction spinning (DREF) as well as ring spinning. The optimized process parameters for processing hybrid structure of polyester with carbon tow on DREF spinning and polyester with carbon staple fiber using ring spinning have been presented. The studies have been linked to highlight the electrical conductivity of the developed yarns. Further, the developed yarns have been incorporated as weft in fabric and their electrical conductivity has been evaluated. The paper demonstrates the structure and properties of fabrics developed from such polyester/carbon blend yarns and their suitability as electrically dissipative fabrics.Keywords: Carbon fiber, hybrid yarns, electrostatic dissipative fabrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13802040 Time and Wavelength Division Multiplexing Passive Optical Network Comparative Analysis: Modulation Formats and Channel Spacings
Authors: A. Fayad, Q. Alqhazaly, T. Cinkler
Abstract:
In light of the substantial increase in end-user requirements and the incessant need of network operators to upgrade the capabilities of access networks, in this paper, the performance of the different modulation formats on eight-channels Time and Wavelength Division Multiplexing Passive Optical Network (TWDM-PON) transmission system has been examined and compared. Limitations and features of modulation formats have been determined to outline the most suitable design to enhance the data rate and transmission reach to obtain the best performance of the network. The considered modulation formats are On-Off Keying Non-Return-to-Zero (NRZ-OOK), Carrier Suppressed Return to Zero (CSRZ), Duo Binary (DB), Modified Duo Binary (MODB), Quadrature Phase Shift Keying (QPSK), and Differential Quadrature Phase Shift Keying (DQPSK). The performance has been analyzed by varying transmission distances and bit rates under different channel spacing. Furthermore, the system is evaluated in terms of minimum Bit Error Rate (BER) and Quality factor (Qf) without applying any dispersion compensation technique, or any optical amplifier. Optisystem software was used for simulation purposes.
Keywords: Bit Error Rate, BER, Carrier Suppressed Return to Zero, CSRZ, Duo Binary, DB, Differential Quadrature Phase Shift Keying, DQPSK, Modified Duo Binary, MODB, On-Off Keying Non-Return-to-Zero, NRZ-OOK, Quality factor, Qf, Time and Wavelength Division Multiplexing Passive Optical Network, TWDM-PON.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10372039 Analysis and Circuit Modeling of APDs
Authors: A. Ahadpour Shal, A. Ghadimi, A. Azadbar
Abstract:
In this paper a new method for increasing the speed of SAGCM-APD is proposed. Utilizing carrier rate equations in different regions of the structure, a circuit model for the structure is obtained. In this research, in addition to frequency response, the effect of added new charge layer on some transient parameters like slew-rate, rising and falling times have been considered. Finally, by trading-off among some physical parameters such as different layers widths and droppings, a noticeable decrease in breakdown voltage has been achieved. The results of simulation, illustrate some features of proposed structure improvement in comparison with conventional SAGCM-APD structures.Keywords: Optical communication systems (OCS), Circuit modeling, breakdown voltage, SAGCM APD
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20672038 Optimal All-to-All Personalized Communication in All-Port Tori
Authors: Liu Gang, Gu Nai-jie, Bi Kun, Tu Kun, Dong Wan-li
Abstract:
All-to-all personalized communication, also known as complete exchange, is one of the most dense communication patterns in parallel computing. In this paper, we propose new indirect algorithms for complete exchange on all-port ring and torus. The new algorithms fully utilize all communication links and transmit messages along shortest paths to completely achieve the theoretical lower bounds on message transmission, which have not be achieved among other existing indirect algorithms. For 2D r × c ( r % c ) all-port torus, the algorithm has time complexities of optimal transmission cost and O(c) message startup cost. In addition, the proposed algorithms accommodate non-power-of-two tori where the number of nodes in each dimension needs not be power-of-two or square. Finally, the algorithms are conceptually simple and symmetrical for every message and every node so that they can be easily implemented and achieve the optimum in practice.
Keywords: Complete exchange, collective communication, all-to-all personalized communication, parallel computing, wormhole routing, torus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15092037 Analysis of Bit Error Rate Improvement in MFSK Communication Link
Authors: O. P. Sharma, V. Janyani, S. Sancheti
Abstract:
Data rate, tolerable bit error rate or frame error rate and range & coverage are the key performance requirement of a communication link. In this paper performance of MFSK link is analyzed in terms of bit error rate, number of errors and total number of data processed. In the communication link model proposed, which is implemented using MATLAB block set, an improvement in BER is observed. Different parameters which effects and enables to keep BER low in M-ary communication system are also identified.Keywords: Additive White Gaussian Noise (AWGN), Bit Error Rate (BER), Frequency Shift Keying (FSK), Orthogonal Signaling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28892036 Forced Vibration of a Fiber Metal Laminated Beam Containing a Delamination
Authors: Sh. Mirhosseini, Y. Haghighatfar, M. Sedighi
Abstract:
Forced vibration problem of a delaminated beam made of fiber metal laminates is studied in this paper. Firstly, a delamination is considered to divide the beam into four sections. The classic beam theory is assumed to dominate each section. The layers on two sides of the delamination are constrained to have the same deflection. This hypothesis approves the conditions of compatibility as well. Consequently, dynamic response of the beam is obtained by the means of differential transform method (DTM). In order to verify the correctness of the results, a model is constructed using commercial software ABAQUS 6.14. A linear spring with constant stiffness takes the effect of contact between delaminated layers into account. The attained semi-analytical outcomes are in great agreement with finite element analysis.
Keywords: Delamination, forced vibration, finite element modelling, natural frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8312035 Bridging Stress Modeling of Composite Materials Reinforced by Fibers Using Discrete Element Method
Authors: Chong Wang, Kellem M. Soares, Luis E. Kosteski
Abstract:
The problem of toughening in brittle materials reinforced by fibers is complex, involving all of the mechanical properties of fibers, matrix and the fiber/matrix interface, as well as the geometry of the fiber. Development of new numerical methods appropriate to toughening simulation and analysis is necessary. In this work, we have performed simulations and analysis of toughening in brittle matrix reinforced by randomly distributed fibers by means of the discrete elements method. At first, we put forward a mechanical model of toughening contributed by random fibers. Then with a numerical program, we investigated the stress, damage and bridging force in the composite material when a crack appeared in the brittle matrix. From the results obtained, we conclude that: (i) fibers of high strength and low elasticity modulus are beneficial to toughening; (ii) fibers of relatively high elastic modulus compared to the matrix may result in substantial matrix damage due to spalling effect; (iii) employment of high-strength synthetic fibers is a good option for toughening. We expect that the combination of the discrete element method (DEM) with the finite element method (FEM) can increase the versatility and efficiency of the software developed. The present work can guide the design of ceramic composites of high performance through the optimization of the parameters.
Keywords: Bridging stress, discrete element method, fiber reinforced composites, toughening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18992034 Development of Perez-Du Mortier Calibration Algorithm for Ground-Based Aerosol Optical Depth Measurement with Validation using SMARTS Model
Authors: Jedol Dayou, Jackson Hian Wui Chang, Rubena Yusoff, Ag. Sufiyan Abd. Hamid, Fauziah Sulaiman, Justin Sentian
Abstract:
Aerosols are small particles suspended in air that have wide varying spatial and temporal distributions. The concentration of aerosol in total columnar atmosphere is normally measured using aerosol optical depth (AOD). In long-term monitoring stations, accurate AOD retrieval is often difficult due to the lack of frequent calibration. To overcome this problem, a near-sea-level Langley calibration algorithm is developed using the combination of clear-sky detection model and statistical filter. It attempts to produce a dataset that consists of only homogenous and stable atmospheric condition for the Langley calibration purposes. In this paper, a radiance-based validation method is performed to further investigate the feasibility and consistency of the proposed algorithm at different location, day, and time. The algorithm is validated using SMARTS model based n DNI value. The overall results confirmed that the proposed calibration algorithm feasible and consistent for measurements taken at different sites and weather conditions.
Keywords: Aerosol optical depth, direct normal irradiance, Langley calibration, radiance-based validation, SMARTS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18082033 Optimization of Electrospinning Parameter by Employing Genetic Algorithm in order to Produce Desired Nanofiber Diameter
Authors: S. Saehana, F. Iskandar, M. Abdullah, Khairurrijal
Abstract:
A numerical simulation of optimization all of electrospinning processing parameters to obtain smallest nanofiber diameter have been performed by employing genetic algorithm (GA). Fitness function in genetic algorithm methods, which was different for each parameter, was determined by simulation approach based on the Reneker’s model. Moreover, others genetic algorithm parameter, namely length of population, crossover and mutation were applied to get the optimum electrospinning processing parameters. In addition, minimum fiber diameter, 32 nm, was achieved from a simulation by applied the optimum parameters of electrospinning. This finding may be useful for process control and prediction of electrospun fiber production. In this paper, it is also compared between predicted parameters with some experimental results.
Keywords: Diameter, Electrospinning, GA, Nanofiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29552032 Design of a Compact Meshed Antennas for 5G Communication Systems
Authors: Chokri Baccouch, Chayma Bahhar, Hedi Sakli, Nizar Sakli, Taoufik Aguili
Abstract:
This paper presents a hybrid system solar cell antenna for 5G mobile communications networks. We propose here a solar cell antenna with either a front face collection grid or mesh patch. The solar cell antenna of our contribution combines both optical and radiofrequency signals. Thus, we propose two solar cell antenna structures in the frequency bands of future 5G standard respectively in both 2.6 and 3.5 GHz bands. Simulation using the Advanced Design System (ADS) software allows us to analyze and determine the antenna parameters proposed in this work such as the reflection coefficient (S11), gain, directivity and radiated power.
Keywords: Patch antenna, solar cell, DC, RF, 5G.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6622031 Communication Behaviors as Predictors of Long-Term Dyadic Adjustment: Personality as a Moderator
Authors: Ariane Lazaridès, Claude Bélanger, Stéphane Sabourin
Abstract:
In this longitudinal study, we examined the moderating role of personality in the relationship between communication behaviors and long-term dyadic adjustment. A sample of 82 couples completed the NEO Five-Factor Inventory and the Dyadic Adjustment Scale. These couples were also videotaped during a 15-minute problem-solving discussion. Approximately 2.5 years later, these couples completed again the Dyadic Adjustment Scale. Results show that personality of both men and women moderates the relationship between communication behaviors of the partner and long-term dyadic adjustment of the individual. Women-s openness and men-s extraversion moderate the relationship between some communication behaviors and long-term dyadic adjustment
Keywords: Communication Behavior, Couples, Dyadic Adjustment, Personality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14832030 Fabrication and Characterization of Sawdust Composite Biodegradable Film
Authors: M.Z. Norashikin, M.Z. Ibrahim
Abstract:
This report shows the performance of composite biodegradable film from chitosan, starch and sawdust fiber. The main objectives of this research are to fabricate and characterize composite biodegradable film in terms of morphology and physical properties. The film was prepared by casting method. Sawdust fiber was used as reinforcing agent and starch as polymer matrix in the casting solution. The morphology of the film was characterized using atomic force microscope (AFM). The result showed that the film has smooth structure. Chemical composition of the film was investigated using Fourier transform infrared (FTIR) where the result revealed present of starch in the film. The thermal properties were characterized using thermal gravimetric analyzer (TGA) and differential scanning calorimetric (DSC) where the results showed that the film has small difference in melting and degradation temperature.Keywords: Sawdust, composite, film, biodegradable.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26052029 Theoretical and Experimental Bending Properties of Composite Pipes
Authors: M. Stefanovska, S. Risteska, B. Samakoski, G. Maneski, B. Kostadinoska
Abstract:
Aim of this work is to determine the theoretical and experimental properties of filament wound glass fiber/epoxy resin composite pipes with different winding design subjected under bending. For determination of bending strength of composite samples three point bending tests were conducted. Good correlation between theoretical and experimental results has been obtained, where sample No4 has shown the highest value of bending strength. All samples have demonstrated matrix cracking and fiber failure followed by layers delamination during testing. Also, it was found that smaller winding angles lead to an increase in bending stress. From presented results good merger between glass fibers and epoxy resin was confirmed by SEM analysis.Keywords: Bending properties, composite pipe, winding design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42522028 Communication and Quality in Distributed Agile Development: An Empirical Case Study
Authors: R. Green, T. Mazzuchi, S. Sarkani
Abstract:
Through inward perceptions, we intuitively expect distributed software development to increase the risks associated with achieving cost, schedule, and quality goals. To compound this problem, agile software development (ASD) insists one of the main ingredients of its success is cohesive communication attributed to collocation of the development team. The following study identified the degree of communication richness needed to achieve comparable software quality (reduce pre-release defects) between distributed and collocated teams. This paper explores the relevancy of communication richness in various development phases and its impact on quality. Through examination of a large distributed agile development project, this investigation seeks to understand the levels of communication required within each ASD phase to produce comparable quality results achieved by collocated teams. Obviously, a multitude of factors affects the outcome of software projects. However, within distributed agile software development teams, the mode of communication is one of the critical components required to achieve team cohesiveness and effectiveness. As such, this study constructs a distributed agile communication model (DAC-M) for potential application to similar distributed agile development efforts using the measurement of the suitable level of communication. The results of the study show that less rich communication methods, in the appropriate phase, might be satisfactory to achieve equivalent quality in distributed ASD efforts.Keywords: agile software development (ASD), distributedsoftware teams, media richness theory, software development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21622027 Water Depth and Optical Attenuation Characteristics of Natural Water Reservoirs nearby Kolkata City Assessed from Hyperion Hyperspectral and LISS-3 Multispectral Images
Authors: Barun Raychaudhuri
Abstract:
A methodology is proposed for estimating the optical attenuation and proportional depth variation of shallow inland water. The process is demonstrated with EO-1 Hyperion hyperspectral and IRS-P6 LISS-3 multispectral images of Kolkata city nearby area centered around 22º33′ N 88º26′ E. The attenuation coefficient of water was found to change with fine resolution of wavebands and in presence of suspended organic matter in water.
Keywords: Hyperion, hyperspectral, Kolkata, water depth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19932026 OCR/ICR Text Recognition Using ABBYY FineReader as an Example Text
Authors: A. R. Bagirzade, A. Sh. Najafova, S. M. Yessirkepova, E. S. Albert
Abstract:
This article describes a text recognition method based on Optical Character Recognition (OCR). The features of the OCR method were examined using the ABBYY FineReader program. It describes automatic text recognition in images. OCR is necessary because optical input devices can only transmit raster graphics as a result. Text recognition describes the task of recognizing letters shown as such, to identify and assign them an assigned numerical value in accordance with the usual text encoding (ASCII, Unicode). The peculiarity of this study conducted by the authors using the example of the ABBYY FineReader, was confirmed and shown in practice, the improvement of digital text recognition platforms developed by Electronic Publication.
Keywords: ABBYY FineReader system, algorithm symbol recognition, OCR/ICR techniques, recognition technologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7812025 Non Destructive Testing for Evaluation of Defects and Interfaces in Metal Carbon Fiber Reinforced Polymer Hybrids
Authors: H.-G. Herrmann, M. Schwarz, J. Summa, F. Grossmann
Abstract:
In this work, different non-destructive testing methods for the characterization of defects and interfaces are presented. It is shown that, by means of active thermography, defects in the interface and in the carbon fiber reinforced polymer (CFRP) itself can be detected and determined. The bonding of metal and thermoplastic can be characterized very well by ultrasonic testing with electromagnetic acoustic transducers (EMAT). Mechanical testing is combined with passive thermography to correlate mechanical values with the defect-size. There is also a comparison between active and passive thermography. Mechanical testing shows the influence of different defects. Furthermore, a correlation of defect-size and loading to rupture was performed.
Keywords: Defect evaluation, EMAT, mechanical testing, thermography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15182024 Critical Properties of Charged Filter Membranes for Their Applications in Filtration
Authors: S. Bokka
Abstract:
Fiber filter membranes have a high surface area-to-volume ratio and high porosity making them ideal for various filtration and separation applications. Using the conventional filter membrane, a filtration efficiency of > 95% can be achieved. Specific applications such as air and fuel filtration require nearly 100% filtration efficiency, which is harder to achieve using conventional filter membranes. To achieve high filtration efficiencies additional costs are incurred due to increasing the cost of membrane and operating cost. Due to the simultaneous electrostatic attraction and mechanical capture, the electret filters have shown nearly 100% filtration efficiency. This article presents an overview of the charged filter membrane, its applications, and a discussion on factors contributing to increasing charge.
Keywords: Charged fiber membrane, piezoelectric materials, filtration, polymeric materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662023 Shear Strengthening of RC T Beam using CFRP Laminate: A Review
Authors: M.B.S. Alferjani, A.A. Abdul Samad, N. Mohamad, M. Hilton, N. Ali
Abstract:
This paper presents the Literature Review of carbon fiber reinforced polymer (CFRP) strips to reinforced concrete (RC) as a strengthening solution for T-beams. Although a great deal of research has been carried out on Rectangular beams strengthened with Fibre-Reinforced Polymer composites (FRP), Fiber reinforced polymer (FRP) composites have been increasingly studied for their application in the flexural or shear strengthening of reinforced concrete (RC) members. A detailed discussion of the shearstrengthening repair with FRP is undertaken. This paper will be limited to research of CFRP material externally bonded to the tensile face of concrete beams. In particular, research studying the effect of externally applied CFRP materials on the shear performance of reinforced concrete beams will be reported.
Keywords: CFRP, Concrete, Flexural, FRP, Shear, Strengthening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2861