Search results for: quantile function model.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8948

Search results for: quantile function model.

8558 Biomechanical Prediction of Veins and Soft Tissues beneath Compression Stockings Using Fluid-Solid Interaction Model

Authors: Chongyang Ye, Rong Liu

Abstract:

Elastic compression stockings (ECSs) have been widely applied in prophylaxis and treatment of chronic venous insufficiency of lower extremities. The medical function of ECS is to improve venous return and increase muscular pumping action to facilitate blood circulation, which is largely determined by the complex interaction between the ECS and lower limb tissues. Understanding the mechanical transmission of ECS along the skin surface, deeper tissues, and vascular system is essential to assess the effectiveness of the ECSs. In this study, a three-dimensional (3D) finite element (FE) model of the leg-ECS system integrated with a 3D fluid-solid interaction (FSI) model of the leg-vein system was constructed to analyze the biomechanical properties of veins and soft tissues under different ECS compression. The Magnetic Resonance Imaging (MRI) of the human leg was divided into three regions, including soft tissues, bones (tibia and fibula) and veins (peroneal vein, great saphenous vein, and small saphenous vein). The ECSs with pressure ranges from 15 to 26 mmHg (Classes I and II) were adopted in the developed FE-FSI model. The soft tissue was assumed as a Neo-Hookean hyperelastic model with the fixed bones, and the ECSs were regarded as an orthotropic elastic shell. The interfacial pressure and stress transmission were simulated by the FE model, and venous hemodynamics properties were simulated by the FSI model. The experimental validation indicated that the simulated interfacial pressure distributions were in accordance with the pressure measurement results. The developed model can be used to predict interfacial pressure, stress transmission, and venous hemodynamics exerted by ECSs and optimize the structure and materials properties of ECSs design, thus improving the efficiency of compression therapy.

Keywords: Elastic compression stockings, fluid-solid interaction, tissue and vein properties, prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 611
8557 Proposal of Design Method in the Semi-Acausal System Model

Authors: Junji Kaneko, Shigeyuki Haruyama, Ken Kaminishi, Tadayuki Kyoutani, Siti Ruhana Omar, Oke Oktavianty

Abstract:

This study is used as a definition method to the value and function in manufacturing sector. In concurrence of discussion about present condition of modeling method, until now definition of 1D-CAE is ambiguity and not conceptual. Across all the physic fields, those methods are defined with the formulation of differential algebraic equation which only applied time derivation and simulation. At the same time, we propose semi-acausal modeling concept and differential algebraic equation method as a newly modeling method which the efficiency has been verified through the comparison of numerical analysis result between the semi-acausal modeling calculation and FEM theory calculation.

Keywords: System Model, Physical Models, Empirical Models, Conservation Law, Differential Algebraic Equation, Object-Oriented.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2231
8556 Text Retrieval Relevance Feedback Techniques for Bag of Words Model in CBIR

Authors: Nhu Van NGUYEN, Jean-Marc OGIER, Salvatore TABBONE, Alain BOUCHER

Abstract:

The state-of-the-art Bag of Words model in Content- Based Image Retrieval has been used for years but the relevance feedback strategies for this model are not fully investigated. Inspired from text retrieval, the Bag of Words model has the ability to use the wealth of knowledge and practices available in text retrieval. We study and experiment the relevance feedback model in text retrieval for adapting it to image retrieval. The experiments show that the techniques from text retrieval give good results for image retrieval and that further improvements is possible.

Keywords: Relevance feedback, bag of words model, probabilistic model, vector space model, image retrieval

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2119
8555 A Simple Deterministic Model for the Spread of Leptospirosis in Thailand

Authors: W. Triampo, D. Baowan, I.M. Tang, N. Nuttavut, J. Wong-Ekkabut, G. Doungchawee

Abstract:

In this work, we consider a deterministic model for the transmission of leptospirosis which is currently spreading in the Thai population. The SIR model which incorporates the features of this disease is applied to the epidemiological data in Thailand. It is seen that the numerical solutions of the SIR equations are in good agreement with real empirical data. Further improvements are discussed.

Keywords: Leptospirosis, SIR Model, Deterministic model, Thailand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
8554 Flow Regime Characterization in a Diseased Artery Model

Authors: Anis S. Shuib, Peter R. Hoskins, William J. Easson

Abstract:

Cardiovascular disease mostly in the form of atherosclerosis is responsible for 30% of all world deaths amounting to 17 million people per year. Atherosclerosis is due to the formation of plaque. The fatty plaque may be at risk of rupture, leading typically to stroke and heart attack. The plaque is usually associated with a high degree of lumen reduction, called a stenosis. The initiation and progression of the disease is strongly linked to the hemodynamic environment near the vessel wall. The aim of this study is to validate the flow of blood mimic through an arterial stenosis model with computational fluid dynamics (CFD) package. In experiment, an axisymmetric model constructed consists of contraction and expansion region that follow a mathematical form of cosine function. A 30% diameter reduction was used in this study. Particle image velocimetry (PIV) was used to characterize the flow. The fluid consists of rigid spherical particles suspended in waterglycerol- NaCl mixture. The particles with 20 μm diameter were selected to follow the flow of fluid. The flow at Re=155, 270 and 390 were investigated. The experimental result is compared with FLUENT simulated flow that account for viscous laminar flow model. The results suggest that laminar flow model was sufficient to predict flow velocity at the inlet but the velocity at stenosis throat at Re =390 was overestimated. Hence, a transition to turbulent regime might have been developed at throat region as the flow rate increases.

Keywords: Atherosclerosis, Particle-laden flow, Particle imagevelocimetry, Stenosis artery

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
8553 A Stochastic Approach to Extreme Wind Speeds Conditions on a Small Axial Wind Turbine

Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph

Abstract:

In this paper, to model a real life wind turbine, a probabilistic approach is proposed to model the dynamics of the blade elements of a small axial wind turbine under extreme stochastic wind speeds conditions. It was found that the power and the torque probability density functions even-dough decreases at these extreme wind speeds but are not infinite. Moreover, we also fund that it is possible to stabilize the power coefficient (stabilizing the output power)above rated wind speeds by turning some control parameters. This method helps to explain the effect of turbulence on the quality and quantity of the harness power and aerodynamic torque.

Keywords: Probability, Stochastic, Probability density function, Turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
8552 Simulation of the Visco-Elasto-Plastic Deformation Behaviour of Short Glass Fibre Reinforced Polyphthalamides

Authors: V. Keim, J. Spachtholz, J. Hammer

Abstract:

The importance of fibre reinforced plastics continually increases due to the excellent mechanical properties, low material and manufacturing costs combined with significant weight reduction. Today, components are usually designed and calculated numerically by using finite element methods (FEM) to avoid expensive laboratory tests. These programs are based on material models including material specific deformation characteristics. In this research project, material models for short glass fibre reinforced plastics are presented to simulate the visco-elasto-plastic deformation behaviour. Prior to modelling specimens of the material EMS Grivory HTV-5H1, consisting of a Polyphthalamide matrix reinforced by 50wt.-% of short glass fibres, are characterized experimentally in terms of the highly time dependent deformation behaviour of the matrix material. To minimize the experimental effort, the cyclic deformation behaviour under tensile and compressive loading (R = −1) is characterized by isothermal complex low cycle fatigue (CLCF) tests. Combining cycles under two strain amplitudes and strain rates within three orders of magnitude and relaxation intervals into one experiment the visco-elastic deformation is characterized. To identify visco-plastic deformation monotonous tensile tests either displacement controlled or strain controlled (CERT) are compared. All relevant modelling parameters for this complex superposition of simultaneously varying mechanical loadings are quantified by these experiments. Subsequently, two different material models are compared with respect to their accuracy describing the visco-elasto-plastic deformation behaviour. First, based on Chaboche an extended 12 parameter model (EVP-KV2) is used to model cyclic visco-elasto-plasticity at two time scales. The parameters of the model including a total separation of elastic and plastic deformation are obtained by computational optimization using an evolutionary algorithm based on a fitness function called genetic algorithm. Second, the 12 parameter visco-elasto-plastic material model by Launay is used. In detail, the model contains a different type of a flow function based on the definition of the visco-plastic deformation as a part of the overall deformation. The accuracy of the models is verified by corresponding experimental LCF testing.

Keywords: Complex low cycle fatigue, material modelling, short glass fibre reinforced polyphthalamides, visco-elasto-plastic deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372
8551 Similarity Measure Functions for Strategy-Based Biometrics

Authors: Roman V. Yampolskiy, Venu Govindaraju

Abstract:

Functioning of a biometric system in large part depends on the performance of the similarity measure function. Frequently a generalized similarity distance measure function such as Euclidian distance or Mahalanobis distance is applied to the task of matching biometric feature vectors. However, often accuracy of a biometric system can be greatly improved by designing a customized matching algorithm optimized for a particular biometric application. In this paper we propose a tailored similarity measure function for behavioral biometric systems based on the expert knowledge of the feature level data in the domain. We compare performance of a proposed matching algorithm to that of other well known similarity distance functions and demonstrate its superiority with respect to the chosen domain.

Keywords: Behavioral Biometrics, Euclidian Distance, Matching, Similarity Measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
8550 Stackelberg Security Game for Optimizing Security of Federated Internet of Things Platform Instances

Authors: Violeta Damjanovic-Behrendt

Abstract:

This paper presents an approach for optimal cyber security decisions to protect instances of a federated Internet of Things (IoT) platform in the cloud. The presented solution implements the repeated Stackelberg Security Game (SSG) and a model called Stochastic Human behaviour model with AttRactiveness and Probability weighting (SHARP). SHARP employs the Subjective Utility Quantal Response (SUQR) for formulating a subjective utility function, which is based on the evaluations of alternative solutions during decision-making. We augment the repeated SSG (including SHARP and SUQR) with a reinforced learning algorithm called Naïve Q-Learning. Naïve Q-Learning belongs to the category of active and model-free Machine Learning (ML) techniques in which the agent (either the defender or the attacker) attempts to find an optimal security solution. In this way, we combine GT and ML algorithms for discovering optimal cyber security policies. The proposed security optimization components will be validated in a collaborative cloud platform that is based on the Industrial Internet Reference Architecture (IIRA) and its recently published security model.

Keywords: Security, internet of things, cloud computing, Stackelberg security game, machine learning, Naïve Q-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
8549 Genetically Optimized TCSC Controller for Transient Stability Improvement

Authors: Sidhartha Panda, N.P.Padhy, R.N.Patel

Abstract:

This paper presents a procedure for modeling and tuning the parameters of Thyristor Controlled Series Compensation (TCSC) controller in a multi-machine power system to improve transient stability. First a simple transfer function model of TCSC controller for stability improvement is developed and the parameters of the proposed controller are optimally tuned. Genetic algorithm (GA) is employed for the optimization of the parameter-constrained nonlinear optimization problem implemented in a simulation environment. By minimizing an objective function in which the oscillatory rotor angle deviations of the generators are involved, transient stability performance of the system is improved. The proposed TCSC controller is tested on a multi-machine system and the simulation results are presented. The nonlinear simulation results validate the effectiveness of proposed approach for transient stability improvement in a multimachine power system installed with a TCSC. The simulation results also show that the proposed TCSC controller is also effective in damping low frequency oscillations.

Keywords: Genetic algorithm, TCSC, transient stability, multimachinepower system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2384
8548 Speech Enhancement by Marginal Statistical Characterization in the Log Gabor Wavelet Domain

Authors: Suman Senapati, Goutam Saha

Abstract:

This work presents a fusion of Log Gabor Wavelet (LGW) and Maximum a Posteriori (MAP) estimator as a speech enhancement tool for acoustical background noise reduction. The probability density function (pdf) of the speech spectral amplitude is approximated by a Generalized Laplacian Distribution (GLD). Compared to earlier estimators the proposed method estimates the underlying statistical model more accurately by appropriately choosing the model parameters of GLD. Experimental results show that the proposed estimator yields a higher improvement in Segmental Signal-to-Noise Ratio (S-SNR) and lower Log-Spectral Distortion (LSD) in two different noisy environments compared to other estimators.

Keywords: Speech Enhancement, Generalized Laplacian Distribution, Log Gabor Wavelet, Bayesian MAP Marginal Estimator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
8547 Comparison of Artificial Neural Network and Multivariate Regression Methods in Prediction of Soil Cation Exchange Capacity

Authors: Ali Keshavarzi, Fereydoon Sarmadian

Abstract:

Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. Then, multivariate regression and neural network model (feedforward back propagation network) were employed to develop a pedotransfer function for predicting soil parameter using easily measurable characteristics of clay and organic carbon. The performance of the multivariate regression and neural network model was evaluated using a test data set. In order to evaluate the models, root mean square error (RMSE) was used. The value of RMSE and R2 derived by ANN model for CEC were 0.47 and 0.94 respectively, while these parameters for multivariate regression model were 0.65 and 0.88 respectively. Results showed that artificial neural network with seven neurons in hidden layer had better performance in predicting soil cation exchange capacity than multivariate regression.

Keywords: Easily measurable characteristics, Feed-forwardback propagation, Pedotransfer functions, CEC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212
8546 An Agent-Based Modelling Simulation Approach to Calculate Processing Delay of GEO Satellite Payload

Authors: V. Vicente E. Mujica, Gustavo Gonzalez

Abstract:

The global coverage of broadband multimedia and internet-based services in terrestrial-satellite networks demand particular interests for satellite providers in order to enhance services with low latencies and high signal quality to diverse users. In particular, the delay of on-board processing is an inherent source of latency in a satellite communication that sometimes is discarded for the end-to-end delay of the satellite link. The frame work for this paper includes modelling of an on-orbit satellite payload using an agent model that can reproduce the properties of processing delays. In essence, a comparison of different spatial interpolation methods is carried out to evaluate physical data obtained by an GEO satellite in order to define a discretization function for determining that delay. Furthermore, the performance of the proposed agent and the development of a delay discretization function are together validated by simulating an hybrid satellite and terrestrial network. Simulation results show high accuracy according to the characteristics of initial data points of processing delay for Ku bands.

Keywords: Terrestrial-satellite networks, latency, on-orbit satellite payload, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888
8545 Stability Analysis of Linear Switched Systems with Mixed Delays

Authors: Xiuyong Ding, Lan Shu

Abstract:

This paper addresses the stability of the switched systems with discrete and distributed time delays. By applying Lyapunov functional and function method, we show that, if the norm of system matrices Bi is small enough, the asymptotic stability is always achieved. Finally, a example is provided to verify technically feasibility and operability of the developed results.

Keywords: Switched system, stability, Lyapunov function, Lyapunov functional, delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
8544 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings

Authors: Hyunchul Ahn, William X. S. Wong

Abstract:

Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.

Keywords: Corporate credit rating prediction, feature selection, genetic algorithms, instance selection, multiclass support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
8543 Optimized Data Fusion in an Intelligent Integrated GPS/INS System Using Genetic Algorithm

Authors: Ali Asadian, Behzad Moshiri, Ali Khaki Sedigh, Caro Lucas

Abstract:

Most integrated inertial navigation systems (INS) and global positioning systems (GPS) have been implemented using the Kalman filtering technique with its drawbacks related to the need for predefined INS error model and observability of at least four satellites. Most recently, a method using a hybrid-adaptive network based fuzzy inference system (ANFIS) has been proposed which is trained during the availability of GPS signal to map the error between the GPS and the INS. Then it will be used to predict the error of the INS position components during GPS signal blockage. This paper introduces a genetic optimization algorithm that is used to update the ANFIS parameters with respect to the INS/GPS error function used as the objective function to be minimized. The results demonstrate the advantages of the genetically optimized ANFIS for INS/GPS integration in comparison with conventional ANFIS specially in the cases of satellites- outages. Coping with this problem plays an important role in assessment of the fusion approach in land navigation.

Keywords: Adaptive Network based Fuzzy Inference System (ANFIS), Genetic optimization, Global Positioning System (GPS), Inertial Navigation System (INS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909
8542 Parameter Sensitivity Analysis of Artificial Neural Network for Predicting Water Turbidity

Authors: Chia-Ling Chang, Chung-Sheng Liao

Abstract:

The present study focuses on the discussion over the parameter of Artificial Neural Network (ANN). Sensitivity analysis is applied to assess the effect of the parameters of ANN on the prediction of turbidity of raw water in the water treatment plant. The result shows that transfer function of hidden layer is a critical parameter of ANN. When the transfer function changes, the reliability of prediction of water turbidity is greatly different. Moreover, the estimated water turbidity is less sensitive to training times and learning velocity than the number of neurons in the hidden layer. Therefore, it is important to select an appropriate transfer function and suitable number of neurons in the hidden layer in the process of parameter training and validation.

Keywords: Artificial Neural Network (ANN), sensitivity analysis, turbidity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2814
8541 Dynamic Model of a Buck Converter with a Sliding Mode Control

Authors: S. Chonsatidjamroen , K-N. Areerak, K-L. Areerak

Abstract:

This paper presents the averaging model of a buck converter derived from the generalized state-space averaging method. The sliding mode control is used to regulate the output voltage of the converter and taken into account in the model. The proposed model requires the fast computational time compared with those of the full topology model. The intensive time-domain simulations via the exact topology model are used as the comparable model. The results show that a good agreement between the proposed model and the switching model is achieved in both transient and steady-state responses. The reported model is suitable for the optimal controller design by using the artificial intelligence techniques.

Keywords: Generalized state-space averaging method, buck converter, sliding mode control, modeling, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2990
8540 Production Line Layout Planning Based on Complexity Measurement

Authors: Guoliang Fan, Aiping Li, Nan Xie, Liyun Xu, Xuemei Liu

Abstract:

Mass customization production increases the difficulty of the production line layout planning. The material distribution process for variety of parts is very complex, which greatly increases the cost of material handling and logistics. In response to this problem, this paper presents an approach of production line layout planning based on complexity measurement. Firstly, by analyzing the influencing factors of equipment layout, the complexity model of production line is established by using information entropy theory. Then, the cost of the part logistics is derived considering different variety of parts. Furthermore, the function of optimization including two objectives of the lowest cost, and the least configuration complexity is built. Finally, the validity of the function is verified in a case study. The results show that the proposed approach may find the layout scheme with the lowest logistics cost and the least complexity. Optimized production line layout planning can effectively improve production efficiency and equipment utilization with lowest cost and complexity.

Keywords: Production line, layout planning, complexity measurement, optimization, mass customization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1089
8539 Hybrid GA Tuned RBF Based Neuro-Fuzzy Controller for Robotic Manipulator

Authors: Sufian Ashraf Mazhari, Surendra Kumar

Abstract:

In this paper performance of Puma 560 manipulator is being compared for hybrid gradient descent and least square method learning based ANFIS controller with hybrid Genetic Algorithm and Generalized Pattern Search tuned radial basis function based Neuro-Fuzzy controller. ANFIS which is based on Takagi Sugeno type Fuzzy controller needs prior knowledge of rule base while in radial basis function based Neuro-Fuzzy rule base knowledge is not required. Hybrid Genetic Algorithm with generalized Pattern Search is used for tuning weights of radial basis function based Neuro- fuzzy controller. All the controllers are checked for butterfly trajectory tracking and results in the form of Cartesian and joint space errors are being compared. ANFIS based controller is showing better performance compared to Radial Basis Function based Neuro-Fuzzy Controller but rule base independency of RBF based Neuro-Fuzzy gives it an edge over ANFIS

Keywords: Neuro-Fuzzy, Robotic Control, RBFNF, ANFIS, Hybrid GA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097
8538 Environmental Management of the Tanning Industry's Supply Chain: An Integration Model from Lean Supply Chain, Green Supply Chain, Cleaner Production and ISO 14001:2004

Authors: N. Clavijo Buriticá, L. M. Correa Lópezand J. R., Sánchez Rodríguez

Abstract:

The environmental impact caused by industries is an issue that, in the last 20 years, has become very important in terms of society, economics and politics in Colombia. Particularly, the tannery process is extremely polluting because of uneffective treatments and regulations given to the dumping process and atmospheric emissions. Considering that, this investigation is intended to propose a management model based on the integration of Lean Supply Chain, Green Supply Chain, Cleaner Production and ISO 14001-2004, that prioritizes the strategic components of the organizations. As a result, a management model will be obtained and it will provide a strategic perspective through a systemic approach to the tanning process. This will be achieved through the use of Multicriteria Decision tools, along with Quality Function Deployment and Fuzzy Logic. The strategic approach that embraces the management model using the alignment of Lean Supply Chain, Green Supply Chain, Cleaner Production and ISO 14001-2004, is an integrated perspective that allows a gradual frame of the tactical and operative elements through the correct setting of the information flow, improving the decision making process. In that way, Small Medium Enterprises (SMEs) could improve their productivity, competitiveness and as an added value, the minimization of the environmental impact. This improvement is expected to be controlled through a Dashboard that helps the Organization measure its performance along the implementation of the model in its productive process.

Keywords: Integration, environmental impact, management, systemic organization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041
8537 A Preliminary Study on the Suitability of Data Driven Approach for Continuous Water Level Modeling

Authors: Muhammad Aqil, Ichiro Kita, Moses Macalinao

Abstract:

Reliable water level forecasts are particularly important for warning against dangerous flood and inundation. The current study aims at investigating the suitability of the adaptive network based fuzzy inference system for continuous water level modeling. A hybrid learning algorithm, which combines the least square method and the back propagation algorithm, is used to identify the parameters of the network. For this study, water levels data are available for a hydrological year of 2002 with a sampling interval of 1-hour. The number of antecedent water level that should be included in the input variables is determined by two statistical methods, i.e. autocorrelation function and partial autocorrelation function between the variables. Forecasting was done for 1-hour until 12-hour ahead in order to compare the models generalization at higher horizons. The results demonstrate that the adaptive networkbased fuzzy inference system model can be applied successfully and provide high accuracy and reliability for river water level estimation. In general, the adaptive network-based fuzzy inference system provides accurate and reliable water level prediction for 1-hour ahead where the MAPE=1.15% and correlation=0.98 was achieved. Up to 12-hour ahead prediction, the model still shows relatively good performance where the error of prediction resulted was less than 9.65%. The information gathered from the preliminary results provide a useful guidance or reference for flood early warning system design in which the magnitude and the timing of a potential extreme flood are indicated.

Keywords: Neural Network, Fuzzy, River, Forecasting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289
8536 A Dynamic Hybrid Option Pricing Model by Genetic Algorithm and Black- Scholes Model

Authors: Yi-Chang Chen, Shan-Lin Chang, Chia-Chun Wu

Abstract:

Unlike this study focused extensively on trading behavior of option market, those researches were just taken their attention to model-driven option pricing. For example, Black-Scholes (B-S) model is one of the most famous option pricing models. However, the arguments of B-S model are previously mentioned by some pricing models reviewing. This paper following suggests the importance of the dynamic character for option pricing, which is also the reason why using the genetic algorithm (GA). Because of its natural selection and species evolution, this study proposed a hybrid model, the Genetic-BS model which combining GA and B-S to estimate the price more accurate. As for the final experiments, the result shows that the output estimated price with lower MAE value than the calculated price by either B-S model or its enhanced one, Gram-Charlier garch (G-C garch) model. Finally, this work would conclude that the Genetic-BS pricing model is exactly practical.

Keywords: genetic algorithm, Genetic-BS, option pricing model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2245
8535 Using ANSYS to Realize a Semi-Analytical Method for Predicting Temperature Profile in Injection/Production Well

Authors: N. Tarom, M.M. Hossain

Abstract:

Determination of wellbore problems during a production/injection process might be evaluated thorough temperature log analysis. Other applications of this kind of log analysis may also include evaluation of fluid distribution analysis along the wellbore and identification of anomalies encountered during production/injection process. While the accuracy of such prediction is paramount, the common method of determination of a wellbore temperature log includes use of steady-state energy balance equations, which hardly describe the real conditions as observed in typical oil and gas flowing wells during production operation; and thus increase level of uncertainties. In this study, a practical method has been proposed through development of a simplified semianalytical model to apply for predicting temperature profile along the wellbore. The developed model includes an overall heat transfer coefficient accounting all modes of heat transferring mechanism, which has been focused on the prediction of a temperature profile as a function of depth for the injection/production wells. The model has been validated with the results obtained from numerical simulation.

Keywords: Energy balance equation, reservoir and well performance, temperature log, overall heat transfer coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2735
8534 FIR Filter Design via Linear Complementarity Problem, Messy Genetic Algorithm, and Ising Messy Genetic Algorithm

Authors: A.M. Al-Fahed Nuseirat, R. Abu-Zitar

Abstract:

In this paper the design of maximally flat linear phase finite impulse response (FIR) filters is considered. The problem is handled with totally two different approaches. The first one is completely deterministic numerical approach where the problem is formulated as a Linear Complementarity Problem (LCP). The other one is based on a combination of Markov Random Fields (MRF's) approach with messy genetic algorithm (MGA). Markov Random Fields (MRFs) are a class of probabilistic models that have been applied for many years to the analysis of visual patterns or textures. Our objective is to establish MRFs as an interesting approach to modeling messy genetic algorithms. We establish a theoretical result that every genetic algorithm problem can be characterized in terms of a MRF model. This allows us to construct an explicit probabilistic model of the MGA fitness function and introduce the Ising MGA. Experimentations done with Ising MGA are less costly than those done with standard MGA since much less computations are involved. The least computations of all is for the LCP. Results of the LCP, random search, random seeded search, MGA, and Ising MGA are discussed.

Keywords: Filter design, FIR digital filters, LCP, Ising model, MGA, Ising MGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
8533 Digital Image Encryption Scheme using Chaotic Sequences with a Nonlinear Function

Authors: H. Ogras, M. Turk

Abstract:

In this study, a system of encryption based on chaotic sequences is described. The system is used for encrypting digital image data for the purpose of secure image transmission. An image secure communication scheme based on Logistic map chaotic sequences with a nonlinear function is proposed in this paper. Encryption and decryption keys are obtained by one-dimensional Logistic map that generates secret key for the input of the nonlinear function. Receiver can recover the information using the received signal and identical key sequences through the inverse system technique. The results of computer simulations indicate that the transmitted source image can be correctly and reliably recovered by using proposed scheme even under the noisy channel. The performance of the system will be discussed through evaluating the quality of recovered image with and without channel noise.

Keywords: Digital image, Image encryption, Secure communication

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2238
8532 Self-Assembling Hypernetworks for Cognitive Learning of Linguistic Memory

Authors: Byoung-Tak Zhang, Chan-Hoon Park

Abstract:

Hypernetworks are a generalized graph structure representing higher-order interactions between variables. We present a method for self-organizing hypernetworks to learn an associative memory of sentences and to recall the sentences from this memory. This learning method is inspired by the “mental chemistry" model of cognition and the “molecular self-assembly" technology in biochemistry. Simulation experiments are performed on a corpus of natural-language dialogues of approximately 300K sentences collected from TV drama captions. We report on the sentence completion performance as a function of the order of word-interaction and the size of the learning corpus, and discuss the plausibility of this architecture as a cognitive model of language learning and memory.

Keywords: Linguistic recall memory, sentence completion task, self-organizing hypernetworks, cognitive learning and memory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
8531 An Examination and Validation of the Theoretical Resistivity-Temperature Relationship for Conductors

Authors: Fred Lacy

Abstract:

Electrical resistivity is a fundamental parameter of metals or electrical conductors. Since resistivity is a function of temperature, in order to completely understand the behavior of metals, a temperature dependent theoretical model is needed. A model based on physics principles has recently been developed to obtain an equation that relates electrical resistivity to temperature. This equation is dependent upon a parameter associated with the electron travel time before being scattered, and a parameter that relates the energy of the atoms and their separation distance. Analysis of the energy parameter reveals that the equation is optimized if the proportionality term in the equation is not constant but varies over the temperature range. Additional analysis reveals that the theoretical equation can be used to determine the mean free path of conduction electrons, the number of defects in the atomic lattice, and the ‘equivalent’ charge associated with the metallic bonding of the atoms. All of this analysis provides validation for the theoretical model and provides insight into the behavior of metals where performance is affected by temperatures (e.g., integrated circuits and temperature sensors).

Keywords: Callendar–van Dusen, conductivity, mean free path, resistance temperature detector, temperature sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185
8530 Design of Membership Ranges for Fuzzy Logic Control of Refrigeration Cycle Driven by a Variable Speed Compressor

Authors: Changho Han, Jaemin Lee, Li Hua, Seokkwon Jeong

Abstract:

Design of membership function ranges in fuzzy logic control (FLC) is presented for robust control of a variable speed refrigeration system (VSRS). The criterion values of the membership function ranges can be carried out from the static experimental data, and two different values are offered to compare control performance. Some simulations and real experiments for the VSRS were conducted to verify the validity of the designed membership functions. The experimental results showed good agreement with the simulation results, and the error change rate and its sampling time strongly affected the control performance at transient state of the VSRS.

Keywords: Variable speed refrigeration system, Fuzzy logic control, membership function range, control performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 963
8529 Alternative Convergence Analysis for a Kind of Singularly Perturbed Boundary Value Problems

Authors: Jiming Yang

Abstract:

A kind of singularly perturbed boundary value problems is under consideration. In order to obtain its approximation, simple upwind difference discretization is applied. We use a moving mesh iterative algorithm based on equi-distributing of the arc-length function of the current computed piecewise linear solution. First, a maximum norm a posteriori error estimate on an arbitrary mesh is derived using a different method from the one carried out by Chen [Advances in Computational Mathematics, 24(1-4) (2006), 197-212.]. Then, basing on the properties of discrete Green-s function and the presented posteriori error estimate, we theoretically prove that the discrete solutions computed by the algorithm are first-order uniformly convergent with respect to the perturbation parameter ε.

Keywords: Convergence analysis, green's function, singularly perturbed, equi-distribution, moving mesh.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696