Search results for: nonlinear control.
4129 Improved Predictive Models for the IRMA Network Using Nonlinear Optimisation
Authors: Vishwesh Kulkarni, Nikhil Bellarykar
Abstract:
Cellular complexity stems from the interactions among thousands of different molecular species. Thanks to the emerging fields of systems and synthetic biology, scientists are beginning to unravel these regulatory, signaling, and metabolic interactions and to understand their coordinated action. Reverse engineering of biological networks has has several benefits but a poor quality of data combined with the difficulty in reproducing it limits the applicability of these methods. A few years back, many of the commonly used predictive algorithms were tested on a network constructed in the yeast Saccharomyces cerevisiae (S. cerevisiae) to resolve this issue. The network was a synthetic network of five genes regulating each other for the so-called in vivo reverse-engineering and modeling assessment (IRMA). The network was constructed in S. cereviase since it is a simple and well characterized organism. The synthetic network included a variety of regulatory interactions, thus capturing the behaviour of larger eukaryotic gene networks on a smaller scale. We derive a new set of algorithms by solving a nonlinear optimization problem and show how these algorithms outperform other algorithms on these datasets.Keywords: Synthetic gene network, network identification, nonlinear modeling, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8004128 Propagation of Nonlinear Surface Waves in Relativistically Degenerate Quantum Plasma Half-Space
Authors: Swarniv Chandra, Parthasona Maji, Basudev Ghosh
Abstract:
The nonlinear self-interaction of an electrostatic surface wave on a semibounded quantum plasma with relativistic degeneracy is investigated by using quantum hydrodynamic (QHD) model and the Poisson’s equation with appropriate boundary conditions. It is shown that a part of the second harmonic generated through self-interaction does not have a true surface wave character but propagates obliquely away from the plasma-vacuum interface into the bulk of plasma.
Keywords: Harmonic Generation, Quantum Plasma, Quantum Hydrodynamic Model, Relativistic Degeneracy, Surface waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22664127 Maximum Wind Power Extraction Strategy and Decoupled Control of DFIG Operating in Variable Speed Wind Generation Systems
Authors: Abdellatif Kasbi, Abderrafii Rahali
Abstract:
This paper appraises the performances of two control scenarios, for doubly fed induction generator (DFIG) operating in wind generation system (WGS), which are the direct decoupled control (DDC) and indirect decoupled control (IDC). Both control scenarios studied combines vector control and Maximum Power Point Tracking (MPPT) control theory so as to maximize the captured power through wind turbine. Modeling of DFIG based WGS and details of both control scenarios have been presented, a proportional integral controller is employed in the active and reactive power control loops for both control methods. The performance of the both control scenarios in terms of power reference tracking and robustness against machine parameters inconstancy has been shown, analyzed and compared, which can afford a reference to the operators and engineers of a wind farm. All simulations have been implemented via MATLAB/Simulink.
Keywords: DFIG, WGS, DDC, IDC, vector control, MPPT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7084126 Numerical Analysis of Concrete Crash Barriers
Authors: J. Kala, P. Hradil, V. Salajka
Abstract:
Reinforced concrete crash barriers used in road traffic must meet a number of criteria. Crash barriers are laid lengthwise, one behind another, and joined using specially designed steel locks. While developing BSV reinforced concrete crash barriers (type ŽPSV), experiments and calculations aimed to optimize the shape of a newly designed lock and the reinforcement quantity and distribution in a crash barrier were carried out. The tension carrying capacity of two parallelly joined locks was solved experimentally. Based on the performed experiments, adjustments of nonlinear properties of steel were performed in the calculations. The obtained results served as a basis to optimize the lock design using a computational model that takes into account the plastic behaviour of steel and the influence of the surrounding concrete [6]. The response to the vehicle impact has been analyzed using a specially elaborated complex computational model, comprising both the nonlinear model of the damping wall or crash barrier and the detailed model of the vehicle [7].Keywords: Crash Barrier, impact, static analysis, concrete nonlinear model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32444125 UML Model for Double-Loop Control Self-Adaptive Braking System
Authors: Heung Sun Yoon, Jong Tae Kim
Abstract:
In this paper, we present an activity diagram model for double-loop control self-adaptive braking system. Since activity diagram helps to improve visibility of self-adaption. We can easily find where improvement is needed on double-loop control. Double-loop control is adopted since the design conditions and actual conditions can be different. The system is reconfigured in runtime by using double-loop control. We simulated to verify and validate our model by using MATLAB. We compared single-loop control model with double-loop control model. Simulation results show that double-loop control provides more consistent brake power control than single-loop control.
Keywords: Activity diagram, automotive, braking system, double-loop, Self-adaptive, UML, vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25054124 Electromagnetic Wave Propagation Equations in 2D by Finite Difference Method
Authors: N. Fusun Oyman Serteller
Abstract:
In this paper, the techniques to solve time dependent electromagnetic wave propagation equations based on the Finite Difference Method (FDM) are proposed by comparing the results with Finite Element Method (FEM) in 2D while discussing some special simulation examples. Here, 2D dynamical wave equations for lossy media, even with a constant source, are discussed for establishing symbolic manipulation of wave propagation problems. The main objective of this contribution is to introduce a comparative study of two suitable numerical methods and to show that both methods can be applied effectively and efficiently to all types of wave propagation problems, both linear and nonlinear cases, by using symbolic computation. However, the results show that the FDM is more appropriate for solving the nonlinear cases in the symbolic solution. Furthermore, some specific complex domain examples of the comparison of electromagnetic waves equations are considered. Calculations are performed through Mathematica software by making some useful contribution to the programme and leveraging symbolic evaluations of FEM and FDM.
Keywords: Finite difference method, finite element method, linear-nonlinear PDEs, symbolic computation, wave propagation equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7134123 An Observer-Based Direct Adaptive Fuzzy Sliding Control with Adjustable Membership Functions
Authors: Alireza Gholami, Amir H. D. Markazi
Abstract:
In this paper, an observer-based direct adaptive fuzzy sliding mode (OAFSM) algorithm is proposed. In the proposed algorithm, the zero-input dynamics of the plant could be unknown. The input connection matrix is used to combine the sliding surfaces of individual subsystems, and an adaptive fuzzy algorithm is used to estimate an equivalent sliding mode control input directly. The fuzzy membership functions, which were determined by time consuming try and error processes in previous works, are adjusted by adaptive algorithms. The other advantage of the proposed controller is that the input gain matrix is not limited to be diagonal, i.e. the plant could be over/under actuated provided that controllability and observability are preserved. An observer is constructed to directly estimate the state tracking error, and the nonlinear part of the observer is constructed by an adaptive fuzzy algorithm. The main advantage of the proposed observer is that, the measured outputs is not limited to the first entry of a canonical-form state vector. The closed-loop stability of the proposed method is proved using a Lyapunov-based approach. The proposed method is applied numerically on a multi-link robot manipulator, which verifies the performance of the closed-loop control. Moreover, the performance of the proposed algorithm is compared with some conventional control algorithms.
Keywords: Adaptive algorithm, fuzzy systems, membership functions, observer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7794122 Design of a Drift Assist Control System Applied to Remote Control Car
Authors: Sheng-Tse Wu, Wu-Sung Yao
Abstract:
In this paper, a drift assist control system is proposed for remote control (RC) cars to get the perfect drift angle. A steering servo control scheme is given powerfully to assist the drift driving. A gyroscope sensor is included to detect the machine's tail sliding and to achieve a better automatic counter-steering to prevent RC car from spinning. To analysis tire traction and vehicle dynamics is used to obtain the dynamic track of RC cars. It comes with a control gain to adjust counter-steering amount according to the sensor condition. An illustrated example of 1:10 RC drift car is given and the real-time control algorithm is realized by Arduino Uno.Keywords: Drift assist control system, remote control cars, gyroscope, vehicle dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25554121 Comparative Dynamic Performance of Load Frequency Control of Nonlinear Interconnected Hydro-Thermal System Using Intelligent Techniques
Authors: Banaja Mohanty, Prakash Kumar Hota
Abstract:
This paper demonstrates dynamic performance evaluation of load frequency control (LFC) with different intelligent techniques. All non-linearities and physical constraints have been considered in simulation studies such as governor dead band (GDB), generation rate constraint (GRC) and boiler dynamics. The conventional integral time absolute error has been considered as objective function. The design problem is formulated as an optimisation problem and particle swarm optimisation (PSO), bacterial foraging optimisation algorithm (BFOA) and differential evolution (DE) are employed to search optimal controller parameters. The superiority of the proposed approach has been shown by comparing the results with published fuzzy logic control (FLC) for the same interconnected power system. The comparison is done using various performance measures like overshoot, undershoot, settling time and standard error criteria of frequency and tie-line power deviation following a step load perturbation (SLP). It is noticed that, the dynamic performance of proposed controller is better than FLC. Further, robustness analysis is carried out by varying the time constants of speed governor, turbine, tie-line power in the range of +40% to -40% to demonstrate the robustness of the proposed DE optimized PID controller.Keywords: Automatic generation control, governor dead band, generation rate constraint, differential evolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10604120 Integrable Heisenberg Ferromagnet Equations with Self-Consistent Potentials
Authors: Gulgassyl Nugmanova, Zhanat Zhunussova, Kuralay Yesmakhanova, Galya Mamyrbekova, Ratbay Myrzakulov
Abstract:
In this paper, we consider some integrable Heisenberg Ferromagnet Equations with self-consistent potentials. We study their Lax representations. In particular we derive their equivalent counterparts in the form of nonlinear Schr¨odinger type equations. We present the integrable reductions of the Heisenberg Ferromagnet Equations with self-consistent potentials. These integrable Heisenberg Ferromagnet Equations with self-consistent potentials describe nonlinear waves in ferromagnets with some additional physical fields.Keywords: Spin systems, equivalent counterparts, integrable reductions, self-consistent potentials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17324119 Simulation as an Effective Tool for the Comparative Evaluation of Field Oriented Control and Direct Torque Control of Induction Motor
Authors: Y.Srinivasa Kishore Babu, G.Tulasi Ram Das
Abstract:
This paper presents a comparative study of two most popular control strategies for Induction motor (IM) drives: Field-Oriented Control (FOC) and Direct Torque Control (DTC). The comparison is based on various criteria including basic control characteristics, dynamic performance, and implementation complexity. The study is done by simulation using the Simulink Power System Block set that allows a complete representation of the power section (inverter and IM) and the control system.
Keywords: IM, FOC, DTC, Simulink
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25294118 Process Capability Analysis by Using Statistical Process Control of Rice Polished Cylinder Turning Practice
Authors: S. Bangphan, P. Bangphan, T. Boonkang
Abstract:
Quality control helps industries in improvements of its product quality and productivity. Statistical Process Control (SPC) is one of the tools to control the quality of products that turning practice in bringing a department of industrial engineering process under control. In this research, the process control of a turning manufactured at workshops machines. The varying measurements have been recorded for a number of samples of a rice polished cylinder obtained from a number of trials with the turning practice. SPC technique has been adopted by the process is finally brought under control and process capability is improved.
Keywords: Rice polished cylinder, statistical process control, control charts, process capability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37154117 Model Predictive Control Using Thermal Inputs for Crystal Growth Dynamics
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
Recently, crystal growth technologies have made progress by the requirement for the high quality of crystal materials. To control the crystal growth dynamics actively by external forces is useuful for reducing composition non-uniformity. In this study, a control method based on model predictive control using thermal inputs is proposed for crystal growth dynamics of semiconductor materials. The control system of crystal growth dynamics considered here is governed by the continuity, momentum, energy, and mass transport equations. To establish the control method for such thermal fluid systems, we adopt model predictive control known as a kind of optimal feedback control in which the control performance over a finite future is optimized with a performance index that has a moving initial time and terminal time. The objective of this study is to establish a model predictive control method for crystal growth dynamics of semiconductor materials.Keywords: Model predictive control, optimal control, crystal growth, process control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8294116 Individual Configuration of Production Control to Suit Requirements
Authors: Ben Muenzberg, Prof. Peter Nyhuis
Abstract:
The logistical requirements placed on industrial manufacturing companies are steadily increasing. In order to meet those requirements, a consistent and efficient concept is necessary for production control. Set up properly, production control offers considerable potential with respect to achieving the logistical targets. As experience with the many production control methods already in existence and their compatibility is, however, often inadequate, this article describes a systematic approach to the configuration of production control based on the Lödding model. This model enables production control to be set up individually to suit a company and the requirements. It therefore permits today-s demands regarding logistical performance to be met.
Keywords: Production, planning, control, configuration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16244115 Seismic Safety Evaluation of Weir Structures Using the Finite and Infinite Element Method
Authors: Ho Young Son, Bu Seog Ju, Woo Young Jung
Abstract:
This study presents the seismic safety evaluation of weir structure subjected to strong earthquake ground motions, as a flood defense structure in civil engineering structures. The seismic safety analysis procedure was illustrated through development of Finite Element (FE) and InFinite Element (IFE) method in ABAQUS platform. The IFE model was generated by CINPS4, 4-node linear one-way infinite model as a sold continuum infinite element in foundation areas of the weir structure and then nonlinear FE model using friction model for soil-structure interactions was applied in this study. In order to understand the complex behavior of weir structures, nonlinear time history analysis was carried out. Consequently, it was interesting to note that the compressive stress gave more vulnerability to the weir structure, in comparison to the tensile stress, during an earthquake. The stress concentration of the weir structure was shown at the connection area between the weir body and stilling basin area. The stress both tension and compression was reduced in IFE model rather than FE model of weir structures.
Keywords: Weir, Finite Element, Infinite Element, Nonlinear, Earthquake.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15964114 Modulational Instability of Electron Plasma Waves in Finite Temperature Quantum Plasma
Authors: Swarniv Chandra, Basudev Ghosh
Abstract:
Using the quantum hydrodynamic (QHD) model for quantum plasma at finite temperature the modulational instability of electron plasma waves is investigated by deriving a nonlinear Schrodinger equation. It was found that the electron degeneracy parameter significantly affects the linear and nonlinear properties of electron plasma waves in quantum plasma.
Keywords: Amplitude Modulation, Electron Plasma Waves, Finite Temperature Model, Modulational Instability, Quantum Plasma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16934113 Technique for Voltage Control in Distribution System
Authors: S. Thongkeaw, M. Boonthienthong
Abstract:
This paper presents the techniques for voltage control in distribution system. It is integrated in the distribution management system. Voltage is an important parameter for the control of electrical power systems. The distribution network operators have the responsibility to regulate the voltage supplied to consumer within statutory limits. Traditionally, the On-Load Tap Changer (OLTC) transformer equipped with automatic voltage control (AVC) relays is the most popular and effective voltage control device. A static synchronous compensator (STATCOM) may be equipped with several controllers to perform multiple control functions. Static Var Compensation (SVC) is regulation slopes and available margins for var dispatch. The voltage control in distribution networks is established as a centralized analytical function in this paper.
Keywords: Voltage Control, Reactive Power, Distribution System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95064112 Simulation of Non-Linear Behavior of Shear Wall under Seismic Loading
Authors: M. A. Ghorbani, M. Pasbani Khiavi
Abstract:
The seismic response of steel shear wall system considering nonlinearity effects using finite element method is investigated in this paper. The non-linear finite element analysis has potential as usable and reliable means for analyzing of civil structures with the availability of computer technology. In this research the large displacements and materially nonlinear behavior of shear wall is presented with developing of finite element code. A numerical model based on the finite element method for the seismic analysis of shear wall is presented with developing of finite element code in this research. To develop the finite element code, the standard Galerkin weighted residual formulation is used. Two-dimensional plane stress model and total Lagrangian formulation was carried out to present the shear wall response and the Newton-Raphson method is applied for the solution of nonlinear transient equations. The presented model in this paper can be developed for analysis of civil engineering structures with different material behavior and complicated geometry.
Keywords: Finite element, steel shear wall, nonlinear, earthquake
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18414111 Unique Positive Solution of Nonlinear Fractional Differential Equation Boundary Value Problem
Authors: Fengxia Zheng
Abstract:
By using two new fixed point theorems for mixed monotone operators, the positive solution of nonlinear fractional differential equation boundary value problem is studied. Its existence and uniqueness is proved, and an iterative scheme is constructed to approximate it.
Keywords: Fractional differential equation, boundary value problem, positive solution, existence and uniqueness, fixed point theorem, mixed monotone operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16004110 A New Version of Unscented Kalman Filter
Authors: S. A. Banani, M. A. Masnadi-Shirazi
Abstract:
This paper presents a new algorithm which yields a nonlinear state estimator called iterated unscented Kalman filter. This state estimator makes use of both statistical and analytical linearization techniques in different parts of the filtering process. It outperforms the other three nonlinear state estimators: unscented Kalman filter (UKF), extended Kalman filter (EKF) and iterated extended Kalman filter (IEKF) when there is severe nonlinearity in system equation and less nonlinearity in measurement equation. The algorithm performance has been verified by illustrating some simulation results.
Keywords: Extended Kalman Filter, Iterated EKF, Nonlinearstate estimator, Unscented Kalman Filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28874109 Designing a Single-Floor Structure for the Control Room of a Petroleum Refinery and Assessing the Resistance of Such a Structure against Gas Explosion Load
Authors: Amin Lotfi Eghlim, Mehran pourgholi
Abstract:
Explosion occurs due to sudden release of energy. Common examples of explosion include chemical, atomic, heat, and pressure tank (due to ignition) explosions. Petroleum, gas, and petrochemical industries operations are threatened by natural risks and processes. Fires and explosions are the greatest process risks which cause financial damages. This study aims at designing a single-floor structure for the control room of a petroleum refinery to be resistant against gas explosion loads, and the information related to the structure specifications have been provided regarding the fact that the structure is made on the ground's surface. In this research, the lateral stiffness of single pile is calculated by SPPLN.FOR computer program, and its value for 13624 KN/m single pile has been assessed. The analysis used due to the loading conditions, is dynamic nonlinear analysis with direct integration method.Keywords: Gas Explosion Load, Petroleum Refinery, Single-Floor Structure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12584108 Model Predictive Control of Turbocharged Diesel Engine with Exhaust Gas Recirculation
Authors: U. Yavas, M. Gokasan
Abstract:
Control of diesel engine’s air path has drawn a lot of attention due to its multi input-multi output, closed coupled, non-linear relation. Today, precise control of amount of air to be combusted is a must in order to meet with tight emission limits and performance targets. In this study, passenger car size diesel engine is modeled by AVL Boost RT, and then simulated with standard, industry level PID controllers. Finally, linear model predictive control is designed and simulated. This study shows the importance of modeling and control of diesel engines with flexible algorithm development in computer based systems.Keywords: Predictive control, engine control, engine modeling, PID control, feedforward compensation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18174107 On the Bootstrap P-Value Method in Identifying out of Control Signals in Multivariate Control Chart
Authors: O. Ikpotokin
Abstract:
In any production process, every product is aimed to attain a certain standard, but the presence of assignable cause of variability affects our process, thereby leading to low quality of product. The ability to identify and remove this type of variability reduces its overall effect, thereby improving the quality of the product. In case of a univariate control chart signal, it is easy to detect the problem and give a solution since it is related to a single quality characteristic. However, the problems involved in the use of multivariate control chart are the violation of multivariate normal assumption and the difficulty in identifying the quality characteristic(s) that resulted in the out of control signals. The purpose of this paper is to examine the use of non-parametric control chart (the bootstrap approach) for obtaining control limit to overcome the problem of multivariate distributional assumption and the p-value method for detecting out of control signals. Results from a performance study show that the proposed bootstrap method enables the setting of control limit that can enhance the detection of out of control signals when compared, while the p-value method also enhanced in identifying out of control variables.
Keywords: Bootstrap control limit, p-value method, out-of-control signals, p-value, quality characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10124106 Bright–Dark Pulses in Nonlinear Polarisation Rotation Based Erbium-Doped Fiber Laser
Authors: R. Z. R. R. Rosdin, N. M. Ali, S. W. Harun, H. Arof
Abstract:
We have experimentally demonstrated bright-dark pulses in a nonlinear polarization rotation (NPR) based mode-locked Erbium-doped fiber laser (EDFL) with a long cavity configuration. Bright–dark pulses could be achieved when the laser works in the passively mode-locking regime and the net group velocity dispersion is quite anomalous. The EDFL starts to generate a bright pulse train with degenerated dark pulse at the mode-locking threshold pump power of 35.09 mW by manipulating the polarization states of the laser oscillation modes using a polarization controller (PC). A split bright–dark pulse is generated when further increasing the pump power up to 37.95 mW. Stable bright pulses with no obvious evidence of a dark pulse can also be generated when further adjusting PC and increasing the pump power up to 52.19 mW. At higher pump power of 54.96 mW, a new form of bright-dark pulse emission was successfully identified with the repetition rate of 29 kHz. The bright and dark pulses have a duration of 795.5 ns and 640 ns, respectively.
Keywords: Erbium-doped fiber laser, Nonlinear polarization rotation, bright-dark pulse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24764105 Integration of Acceleration Feedback Control with Automatic Generation Control in Intelligent Load Frequency Control
Authors: H. Zainuddin, F. Hanafi, M. H. Hairi, A. Aman, M.H.N. Talib
Abstract:
This paper investigates the effects of knowledge-based acceleration feedback control integrated with Automatic Generation Control (AGC) to enhance the quality of frequency control of governing system. The Intelligent Acceleration Feedback Controller (IAFC) is proposed to counter the over and under frequency occurrences due to major load change in power system network. Therefore, generator tripping and load shedding operations can be reduced. Meanwhile, the integration of IAFC with AGC, a well known Load-Frequency Control (LFC) is essential to ensure the system frequency is restored to the nominal value. Computer simulations of frequency response of governing system are used to optimize the parameters of IAFC. As a result, there is substantial improvement on the LFC of governing system that employing the proposed control strategy.
Keywords: Knowledge-based Supplementary Control, Acceleration Feedback, Load Frequency Control, Automatic Generation Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17014104 Electrical and Magnetic Modelling of a Power Transformer: A Bond Graph Approach
Authors: Gilberto Gonzalez-A, Dunia Nuñez-P
Abstract:
Bond graph models of an electrical transformer including the nonlinear saturation are presented. The transformer using electrical and magnetic circuits are modelled. These models determine the relation between self and mutual inductances, and the leakage and magnetizing inductances of power transformers with two windings using the properties of a bond graph. The equivalence between electrical and magnetic variables is given. The modelling and analysis using this methodology to three phase power transformers can be extended.Keywords: Bond graph, electrical transformer, magnetic circuits, nonlinear saturation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45814103 Ginzburg-Landau Model : an Amplitude Evolution Equation for Shallow Wake Flows
Authors: Imad Chaddad, Andrei A. Kolyshkin
Abstract:
Linear and weakly nonlinear analysis of shallow wake flows is presented in the present paper. The evolution of the most unstable linear mode is described by the complex Ginzburg-Landau equation (CGLE). The coefficients of the CGLE are calculated numerically from the solution of the corresponding linear stability problem for a one-parametric family of shallow wake flows. It is shown that the coefficients of the CGLE are not so sensitive to the variation of the base flow profile.Keywords: Ginzburg-Landau equation, shallow wake flow, weakly nonlinear theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15784102 Industrial Compressor Anti-Surge Computer Control
Authors: Ventzas Dimitrios, Petropoulos George
Abstract:
The paper presents a compressor anti-surge control system, that results in maximizing compressor throughput with pressure standard deviation reduction, increased safety margin between design point and surge limit line and avoiding possible machine surge. Alternative control strategies are presented.Keywords: Anti-surge, control, compressor, PID control, safety, fault tolerance, start-up, ESD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89654101 Estimation of Critical Period for Weed Control in Corn in Iran
Authors: Sohrab Mahmoodi, Ali Rahimi
Abstract:
The critical period for weed control (CPWC) is the period in the crop growth cycle during which weeds must be controlled to prevent unacceptable yield losses. Field studies were conducted in 2005 and 2006 in the University of Birjand at the south east of Iran to determine CPWC of corn using a randomized complete block design with 14 treatments and four replications. The treatments consisted of two different periods of weed interference, a critical weed-free period and a critical time of weed removal, were imposed at V3, V6, V9, V12, V15, and R1 (based on phonological stages of corn development) with a weedy check and a weed-free check. The CPWC was determined with the use of 2.5, 5, 10, 15 and 20% acceptable yield loss levels by non-linear Regression method and fitting Logistic and Gompertz nonlinear equations to relative yield data. The CPWC of corn was from 5- to 15-leaf stage (19-55 DAE) to prevent yield losses of 5%. This period to prevent yield losses of 2.5, 10 and 20% was 4- to 17-leaf stage (14-59 DAE), 6- to 12-leaf stage (25-47 DAE) and 8- to 9-leaf stage (31-36 DAE) respectively. The height and leaf area index of corn were significantly decreased by weed competition in both weed free and weed infested treatments (P<0.01). Results also showed that there was a significant positive correlation between yield and LAI of corn at silk stage when competing with weeds (r= 0.97).
Keywords: Corn, Critical period, Gompertz, Logistic, Weed control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20304100 Control of a DC Servomotor Using Fuzzy Logic Sliding Mode Model Following Controller
Authors: Phongsak Phakamach
Abstract:
A DC servomotor position control system using a Fuzzy Logic Sliding mode Model Following Control or FLSMFC approach is presented. The FLSMFC structure consists of an integrator and variable structure system. The integral control is introduced into it in order to eliminated steady state error due to step and ramp command inputs and improve control precision, while the fuzzy control would maintain the insensitivity to parameter variation and disturbances. The FLSMFC strategy is implemented and applied to a position control of a DC servomotor drives. Experimental results indicated that FLSMFC system performance with respect to the sensitivity to parameter variations is greatly reduced. Also, excellent control effects and avoids the chattering phenomenon.
Keywords: Sliding mode model following control, fuzzy logic, DC servomotor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915