Search results for: financial models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3088

Search results for: financial models

2728 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method

Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas

Abstract:

To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.

Keywords: Building energy prediction, data mining, demand response, electricity market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
2727 Corporate Governance Networks and Interlocking Directorates in the Czech Republic

Authors: Ondřej Nowak

Abstract:

This paper presents an exploration into the structure of the corporate governance network and interlocking directorates in the Czech Republic. First a literature overview and a basic terminology of the network theory is presented. Further in the text, statistics and other calculations relevant to corporate governance networks are presented. For this purpose an empirical data set consisting of 2 906 joint stock companies in the Czech Republic was examined. Industries with the highest average number of interlocks per company were healthcare, and energy and utilities. There is no observable link between the financial performance of the company and the number of its interlocks. Also interlocks with financial companies are very rare.

Keywords: Corporate Governance, Interlocking Directorates, Network Theory, Czech Republic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
2726 Nonstationarity Modeling of Economic and Financial Time Series

Authors: C. Slim

Abstract:

Traditional techniques for analyzing time series are based on the notion of stationarity of phenomena under study, but in reality most economic and financial series do not verify this hypothesis, which implies the implementation of specific tools for the detection of such behavior. In this paper, we study nonstationary non-seasonal time series tests in a non-exhaustive manner. We formalize the problem of nonstationary processes with numerical simulations and take stock of their statistical characteristics. The theoretical aspects of some of the most common unit root tests will be discussed. We detail the specification of the tests, showing the advantages and disadvantages of each. The empirical study focuses on the application of these tests to the exchange rate (USD/TND) and the Consumer Price Index (CPI) in Tunisia, in order to compare the Power of these tests with the characteristics of the series.

Keywords: Stationarity, unit root tests, economic time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 864
2725 Accounting Performance of the Leading Companies in the Construction Sector in Brazil during the Period 2009-2012

Authors: Fabrício José Piacente, Vanessa de Cillos Silva, Thigo Luiz Mello Melato

Abstract:

The construction industry has been demonstrating increased growth and importance in Brazil’s national economic development. This study aims to evaluate the financial performance of the leading companies in the construction sector in Brazil in the period from 2009 to 2012. An analysis is made of the capital structure, liquidity, and profitability of the six largest companies in the construction sector in Brazil: Brookfield, Cyrela, Gafisa, MRV, PDG and Rossi. The results are then compared with standard industry ratios. It was found that among the companies analyzed, MRV and Cyrela showed the best relative performance in the period under consideration.

Keywords: Accounting ratios, construction, financial performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
2724 Verification Process of Cylindrical Contact Force Models for Internal Contact Modeling

Authors: Cândida M. Pereira, Amílcar L. Ramalho, Jorge A. Ambrósio

Abstract:

In the numerical solution of the forward dynamics of a multibody system, the positions and velocities of the bodies in the system are obtained first. With the information of the system state variables at each time step, the internal and external forces acting on the system are obtained by appropriate contact force models if the continuous contact method is used instead of a discrete contact method. The local deformation of the bodies in contact, represented by penetration, is used to compute the contact force. The ability and suitability with current cylindrical contact force models to describe the contact between bodies with cylindrical geometries with particular focus on internal contacting geometries involving low clearances and high loads simultaneously is discussed in this paper. A comparative assessment of the performance of each model under analysis for different contact conditions, in particular for very different penetration and clearance values, is presented. It is demonstrated that some models represent a rough approximation to describe the conformal contact between cylindrical geometries because contact forces are underestimated.

Keywords: Clearance joints, Contact mechanics, Contact dynamics, Internal cylindrical contact, Multibody dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321
2723 Optical and Double Folding Analysis for 6Li+16O Elastic Scattering

Authors: Abd Elrahman Elgamala, N. Darwish, I. Bondouk, Sh. Hamada

Abstract:

Available experimental angular distributions for 6Li elastically scattered from 16O nucleus in the energy range 13.0–50.0 MeV are investigated and reanalyzed using optical model of the conventional phenomenological potential and also using double folding optical model of different interaction models: DDM3Y1, CDM3Y1, CDM3Y2, and CDM3Y3. All the involved models of interaction are of M3Y Paris except DDM3Y1 which is of M3Y Reid and the main difference between them lies in the different values for the parameters of the incorporated density distribution function F(ρ). We have extracted the renormalization factor NR for 6Li+16O nuclear system in the energy range 13.0–50.0 MeV using the aforementioned interaction models.

Keywords: Elastic scattering, optical model, folding potential, density distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 550
2722 Models of Copyrights System

Authors: A. G. Matveev

Abstract:

The copyrights system is a combination of different elements. The number, content and the correlation of these elements are different for different legal orders. The models of copyrights systems display this system in terms of the interaction of economic and author's moral rights. Monistic and dualistic models are the most popular ones. The article deals with different points of view on the monism and dualism in copyright system. A specific model of the copyright in Switzerland in the XXth century is analyzed. The evolution of a French dualistic model of copyright is shown. The author believes that one should talk not about one, but rather about a number of dualism forms of copyright system.

Keywords: Copyright, exclusive copyright, economic rights, author's moral rights, rights of personality, monistic model, dualistic model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2734
2721 Dynamic Analyses for Passenger Volume of Domestic Airline and High Speed Rail

Authors: Shih-Ching Lo

Abstract:

Discrete choice model is the most used methodology for studying traveler-s mode choice and demand. However, to calibrate the discrete choice model needs to have plenty of questionnaire survey. In this study, an aggregative model is proposed. The historical data of passenger volumes for high speed rail and domestic civil aviation are employed to calibrate and validate the model. In this study, different models are compared so as to propose the best one. From the results, systematic equations forecast better than single equation do. Models with the external variable, which is oil price, are better than models based on closed system assumption.

Keywords: forecasting, passenger volume, dynamic competition model, external variable, oil price

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463
2720 Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements

Authors: S. M. Gupta, Vanita Aggarwal, Som Nath Sachdeva

Abstract:

The work reported through this paper is an experimental work conducted on High Performance Concrete (HPC) with super plasticizer with the aim to develop some models suitable for prediction of compressive strength of HPC mixes. In this study, the effect of varying proportions of fly ash (0% to 50% @ 10% increment) on compressive strength of high performance concrete has been evaluated. The mix designs studied were M30, M40 and M50 to compare the effect of fly ash addition on the properties of these concrete mixes. In all eighteen concrete mixes that have been designed, three were conventional concretes for three grades under discussion and fifteen were HPC with fly ash with varying percentages of fly ash. The concrete mix designing has been done in accordance with Indian standard recommended guidelines. All the concrete mixes have been studied in terms of compressive strength at 7 days, 28 days, 90 days, and 365 days. All the materials used have been kept same throughout the study to get a perfect comparison of values of results. The models for compressive strength prediction have been developed using Linear Regression method (LR), Artificial Neural Network (ANN) and Leave-One-Out Validation (LOOV) methods.

Keywords: ANN, concrete mixes, compressive strength, fly ash, high performance concrete, linear regression, strength prediction models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077
2719 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.

Keywords: Deep learning, long-short-term memory, energy, renewable energy load forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
2718 Pilot Induced Oscillations Adaptive Suppression in Fly-By-Wire Systems

Authors: Herlandson C. Moura, Jorge H. Bidinotto, Eduardo M. Belo

Abstract:

The present work proposes the development of an adaptive control system which enables the suppression of Pilot Induced Oscillations (PIO) in Digital Fly-By-Wire (DFBW) aircrafts. The proposed system consists of a Modified Model Reference Adaptive Control (M-MRAC) integrated with the Gain Scheduling technique. The PIO oscillations are detected using a Real Time Oscillation Verifier (ROVER) algorithm, which then enables the system to switch between two reference models; one in PIO condition, with low proneness to the phenomenon and another one in normal condition, with high (or medium) proneness. The reference models are defined in a closed loop condition using the Linear Quadratic Regulator (LQR) control methodology for Multiple-Input-Multiple-Output (MIMO) systems. The implemented algorithms are simulated in software implementations with state space models and commercial flight simulators as the controlled elements and with pilot dynamics models. A sequence of pitch angles is considered as the reference signal, named as Synthetic Task (Syntask), which must be tracked by the pilot models. The initial outcomes show that the proposed system can detect and suppress (or mitigate) the PIO oscillations in real time before it reaches high amplitudes.

Keywords: Adaptive control, digital fly-by-wire, oscillations suppression, PIO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 744
2717 Mathematical Expression for Machining Performance

Authors: Md. Ashikur Rahman Khan, M. M. Rahman

Abstract:

In electrical discharge machining (EDM), a complete and clear theory has not yet been established. The developed theory (physical models) yields results far from reality due to the complexity of the physics. It is difficult to select proper parameter settings in order to achieve better EDM performance. However, modelling can solve this critical problem concerning the parameter settings. Therefore, the purpose of the present work is to develop mathematical model to predict performance characteristics of EDM on Ti-5Al-2.5Sn titanium alloy. Response surface method (RSM) and artificial neural network (ANN) are employed to develop the mathematical models. The developed models are verified through analysis of variance (ANOVA). The ANN models are trained, tested, and validated utilizing a set of data. It is found that the developed ANN and mathematical model can predict performance of EDM effectively. Thus, the model has found a precise tool that turns EDM process cost-effective and more efficient.

Keywords: Analysis of variance, artificial neural network, material removal rate, modelling, response surface method, surface finish.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
2716 Kinetic Façade Design Using 3D Scanning to Convert Physical Models into Digital Models

Authors: Do-Jin Jang, Sung-Ah Kim

Abstract:

In designing a kinetic façade, it is hard for the designer to make digital models due to its complex geometry with motion. This paper aims to present a methodology of converting a point cloud of a physical model into a single digital model with a certain topology and motion. The method uses a Microsoft Kinect sensor, and color markers were defined and applied to three paper folding-inspired designs. Although the resulted digital model cannot represent the whole folding range of the physical model, the method supports the designer to conduct a performance-oriented design process with the rough physical model in the reduced folding range.

Keywords: Design media, kinetic façades, tangible user interface, 3D scanning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
2715 JaCoText: A Pretrained Model for Java Code-Text Generation

Authors: Jessica Lòpez Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, El Hassane Ettifouri

Abstract:

Pretrained transformer-based models have shown high performance in natural language generation task. However, a new wave of interest has surged: automatic programming language generation. This task consists of translating natural language instructions to a programming code. Despite the fact that well-known pretrained models on language generation have achieved good performance in learning programming languages, effort is still needed in automatic code generation. In this paper, we introduce JaCoText, a model based on Transformers neural network. It aims to generate java source code from natural language text. JaCoText leverages advantages of both natural language and code generation models. More specifically, we study some findings from the state of the art and use them to (1) initialize our model from powerful pretrained models, (2) explore additional pretraining on our java dataset, (3) carry out experiments combining the unimodal and bimodal data in the training, and (4) scale the input and output length during the fine-tuning of the model. Conducted experiments on CONCODE dataset show that JaCoText achieves new state-of-the-art results.

Keywords: Java code generation, Natural Language Processing, Sequence-to-sequence Models, Transformers Neural Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855
2714 A Discrete-Event-Simulation Approach for Logistic Systems with Real Time Resource Routing and VR Integration

Authors: Gerrit Alves, Jürgen Roßmann, Roland Wischnewski

Abstract:

Today, transport and logistic systems are often tightly integrated in the production. Lean production and just-in-time delivering create multiple constraints that have to be fulfilled. As transport networks often have evolved over time they are very expensive to change. This paper describes a discrete-event-simulation system which simulates transportation models using real time resource routing and collision avoidance. It allows for the specification of own control algorithms and validation of new strategies. The simulation is integrated into a virtual reality (VR) environment and can be displayed in 3-D to show the progress. Simulation elements can be selected through VR metaphors. All data gathered during the simulation can be presented as a detailed summary afterwards. The included cost-benefit calculation can help to optimize the financial outcome. The operation of this approach is shown by the example of a timber harvest simulation.

Keywords: Discrete-Event-Simulation, Logistic, Simulation, Virtual Reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
2713 Application of Adaptive Network-Based Fuzzy Inference System in Macroeconomic Variables Forecasting

Authors: Ε. Giovanis

Abstract:

In this paper we apply an Adaptive Network-Based Fuzzy Inference System (ANFIS) with one input, the dependent variable with one lag, for the forecasting of four macroeconomic variables of US economy, the Gross Domestic Product, the inflation rate, six monthly treasury bills interest rates and unemployment rate. We compare the forecasting performance of ANFIS with those of the widely used linear autoregressive and nonlinear smoothing transition autoregressive (STAR) models. The results are greatly in favour of ANFIS indicating that is an effective tool for macroeconomic forecasting used in academic research and in research and application by the governmental and other institutions

Keywords: Linear models, Macroeconomics, Neuro-Fuzzy, Non-Linear models

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
2712 Business Diversification Strategies in the Italian Energy Markets

Authors: F. Di Pillo, G. Capece, L. Cricelli, N. Levialdi

Abstract:

The liberalization and privatization processes have forced public utility companies to face new competitive challenges, implementing strategies to gain market share and, at the same time, keep the old customers. To this end, many companies have carried out mergers, acquisitions and conglomerations in order to diversify their business. This paper focuses on companies operating in the free energy market in Italy. In the last decade, this sector has undergone profound changes that have radically changed the competitive scenario and have led companies to implement diversification strategies of the business. Our work aims to evaluate the economic and financial performances obtained by energy companies, following the beginning of the liberalization process, verifying the possible relationship with the implemented diversification strategies.

Keywords: Business diversification strategies, M&A, the Italian energy market liberalization, economic and financial performances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
2711 PM10 Prediction and Forecasting Using CART: A Case Study for Pleven, Bulgaria

Authors: Snezhana G. Gocheva-Ilieva, Maya P. Stoimenova

Abstract:

Ambient air pollution with fine particulate matter (PM10) is a systematic permanent problem in many countries around the world. The accumulation of a large number of measurements of both the PM10 concentrations and the accompanying atmospheric factors allow for their statistical modeling to detect dependencies and forecast future pollution. This study applies the classification and regression trees (CART) method for building and analyzing PM10 models. In the empirical study, average daily air data for the city of Pleven, Bulgaria for a period of 5 years are used. Predictors in the models are seven meteorological variables, time variables, as well as lagged PM10 variables and some lagged meteorological variables, delayed by 1 or 2 days with respect to the initial time series, respectively. The degree of influence of the predictors in the models is determined. The selected best CART models are used to forecast future PM10 concentrations for two days ahead after the last date in the modeling procedure and show very accurate results.

Keywords: Cross-validation, decision tree, lagged variables, short-term forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 737
2710 Moving from Rule-based to Principle-based in Public Sector: Preparers' Perspective

Authors: Roshayani Arshad, Normah Omar, Siti Fatimah Awang

Abstract:

The move from cash accounting to accrual accounting, or rule-based to principle-based accounting, by many governments is part of an ongoing efforts in promoting a more business-like and performance-focused public sector. Using questionnaire responses from preparers of financial statements of public universities in Malaysia, this study examines the implementation challenges and benefits of principle-based accounting. Results from these responses suggest that most respondents perceived significant costs would be incurred in relation to staff training and recruitment of staffs with relevant technical knowledge. In addition, most respondents also perceived that there will be significant changes in the current accounting system and structure in order to comply with the principle-based accounting requirements. However, most respondents perceived that these changes might not result in significant benefits for management purposes, for example, financial management, budgeting and allocation of resources. Nevertheless, most respondents perceived that principle-based accounting information would facilitate the monitoring function of the board. The general perception is that adoption of principle-based accounting information is not significantly useful than rule-based accounting information is expected to change over time as preparers of the financial statements gradually understand and appreciate the benefits of principle-based accounting information. This infers that the perceived usefulness of different accounting system is a function of familiarity by the preparers.

Keywords: Accrual accounting, principle-based accounting, public sector, rule-based accounting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2956
2709 Environmental Modeling of Storm Water Channels

Authors: L. Grinis

Abstract:

Turbulent flow in complex geometries receives considerable attention due to its importance in many engineering applications. It has been the subject of interest for many researchers. Some of these interests include the design of storm water channels. The design of these channels requires testing through physical models. The main practical limitation of physical models is the so called “scale effect”, that is, the fact that in many cases only primary physical mechanisms can be correctly represented, while secondary mechanisms are often distorted. These observations form the basis of our study, which centered on problems associated with the design of storm water channels near the Dead Sea, in Israel. To help reach a final design decision we used different physical models. Our research showed good coincidence with the results of laboratory tests and theoretical calculations, and allowed us to study different effects of fluid flow in an open channel. We determined that problems of this nature cannot be solved only by means of theoretical calculation and computer simulation. This study demonstrates the use of physical models to help resolve very complicated problems of fluid flow through baffles and similar structures. The study applies these models and observations to different construction and multiphase water flows, among them, those that include sand and stone particles, a significant attempt to bring to the testing laboratory a closer association with reality.

Keywords: Baffles, open channel, physical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914
2708 Characteristics of Corporate Social Responsibility Indicators

Authors: Grigoris Giannarakis, Nikolaos Litinas, Ioannis Theotokas

Abstract:

The aim of the study is to investigate a number of characteristics of Corporate Social Responsibility (CSR) indicators that should be adopted by CSR assessment methodologies. For the purpose of this paper, a survey among the Greek companies that belong to FTSE 20 in Athens Exchange (FTSE/Athex-20) has been conducted, as these companies are expected to pioneer in the field of CSR. The results show consensus as regards the characteristics of indicators such as the need for the adoption of general and specific sector indicators, financial and non-financial indicators, the origin and the weight rate. However, the results are contradictory concerning the appropriate number of indicators for the assessment of CSR and the unit of measurement. Finally, the company-s sector is a more important dimension of CSR than the size and the country where the company operates. The purpose of this paper is to standardize the main characteristics of CSR indicators.

Keywords: Corporate social responsibility, Greece, Indicators

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7958
2707 Numerical Treatment of Matrix Differential Models Using Matrix Splines

Authors: Kholod M. Abualnaja

Abstract:

This paper consider the solution of the matrix differential models using quadratic, cubic, quartic, and quintic splines. Also using the Taylor’s and Picard’s matrix methods, one illustrative example is included.

Keywords: Matrix Splines, Cubic Splines, Quartic Splines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
2706 Data Mining Classification Methods Applied in Drug Design

Authors: Mária Stachová, Lukáš Sobíšek

Abstract:

Data mining incorporates a group of statistical methods used to analyze a set of information, or a data set. It operates with models and algorithms, which are powerful tools with the great potential. They can help people to understand the patterns in certain chunk of information so it is obvious that the data mining tools have a wide area of applications. For example in the theoretical chemistry data mining tools can be used to predict moleculeproperties or improve computer-assisted drug design. Classification analysis is one of the major data mining methodologies. The aim of thecontribution is to create a classification model, which would be able to deal with a huge data set with high accuracy. For this purpose logistic regression, Bayesian logistic regression and random forest models were built using R software. TheBayesian logistic regression in Latent GOLD software was created as well. These classification methods belong to supervised learning methods. It was necessary to reduce data matrix dimension before construct models and thus the factor analysis (FA) was used. Those models were applied to predict the biological activity of molecules, potential new drug candidates.

Keywords: data mining, classification, drug design, QSAR

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2849
2705 Cultural Effects on the Performance of Non- Profit and For-Profit Microfinance Institutions

Authors: Patrick M. Stanton, William R. McCumber

Abstract:

Using a large dataset of more than 2,400 individual microfinance institutions (MFIs) from 120 countries from 1999 to 2016, this study finds that nearly half of the international MFIs operate as for-profit institutions. Formal institutions (business regulatory environment, property rights, social protection, and a developed financial sector) impact the likelihood of MFIs being for-profit across countries. Cultural differences across countries (power distance, individualism, masculinity, and indulgence) seem to be a factor in the legal status of the MFI (non-profit or for-profit). MFIs in countries with stronger formal institutions, a greater degree of power distance, and a higher degree of collectivism experience better financial and social performance.

Keywords: Hofstede cultural dimensions, international finance, microfinance institutions, non-profit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 997
2704 Application of the Least Squares Method in the Adjustment of Chlorodifluoromethane (HCFC-142b) Regression Models

Authors: L. J. de Bessa Neto, V. S. Filho, J. V. Ferreira Nunes, G. C. Bergamo

Abstract:

There are many situations in which human activities have significant effects on the environment. Damage to the ozone layer is one of them. The objective of this work is to use the Least Squares Method, considering the linear, exponential, logarithmic, power and polynomial models of the second degree, to analyze through the coefficient of determination (R²), which model best fits the behavior of the chlorodifluoromethane (HCFC-142b) in parts per trillion between 1992 and 2018, as well as estimates of future concentrations between 5 and 10 periods, i.e. the concentration of this pollutant in the years 2023 and 2028 in each of the adjustments. A total of 809 observations of the concentration of HCFC-142b in one of the monitoring stations of gases precursors of the deterioration of the ozone layer during the period of time studied were selected and, using these data, the statistical software Excel was used for make the scatter plots of each of the adjustment models. With the development of the present study, it was observed that the logarithmic fit was the model that best fit the data set, since besides having a significant R² its adjusted curve was compatible with the natural trend curve of the phenomenon.

Keywords: Chlorodifluoromethane (HCFC-142b), ozone (O3), least squares method, regression models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
2703 Comparison of Response Surface Designs in a Spherical Region

Authors: Boonorm Chomtee, John J. Borkowski

Abstract:

The objective of the research is to study and compare response surface designs: Central composite designs (CCD), Box- Behnken designs (BBD), Small composite designs (SCD), Hybrid designs, and Uniform shell designs (USD) over sets of reduced models when the design is in a spherical region for 3 and 4 design variables. The two optimality criteria ( D and G ) are considered which larger values imply a better design. The comparison of design optimality criteria of the response surface designs across the full second order model and sets of reduced models for 3 and 4 factors based on the two criteria are presented.

Keywords: design optimality criteria, reduced models, response surface design, spherical design region

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1260
2702 Exploring DeFi Through Three Case Studies: Transparency, Social Impact and Regulation

Authors: Dhaksha Vivekanandan

Abstract:

DeFi is a network that avoids reliance on financial intermediaries through its peer-to-peer financial network. DeFi operates outside of government control; hence, it is important for us to understand its impacts. This study employs a literature review to understand DeFi and its emergence, as well as its implications on transparency, social impact, and regulation. Further, three case studies are analysed within the context of these categories. DeFi’s provision of increased transparency poses environmental and storage costs and can lead to user privacy being endangered. DeFi allows for the provision of entrepreneurial incentives and protection against monetary censorship and capital control. Despite DeFi's transparency issues and volatility costs, it has huge potential to reduce poverty; however, regulation surrounding DeFi still requires further tightening by governments.

Keywords: DeFi, transparency, regulation, social impact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 250
2701 Analytical Model Based Evaluation of Human Machine Interfaces Using Cognitive Modeling

Authors: Belkacem Chikhaoui, Helene Pigot

Abstract:

Cognitive models allow predicting some aspects of utility and usability of human machine interfaces (HMI), and simulating the interaction with these interfaces. The action of predicting is based on a task analysis, which investigates what a user is required to do in terms of actions and cognitive processes to achieve a task. Task analysis facilitates the understanding of the system-s functionalities. Cognitive models are part of the analytical approaches, that do not associate the users during the development process of the interface. This article presents a study about the evaluation of a human machine interaction with a contextual assistant-s interface using ACTR and GOMS cognitive models. The present work shows how these techniques may be applied in the evaluation of HMI, design and research by emphasizing firstly the task analysis and secondly the time execution of the task. In order to validate and support our results, an experimental study of user performance is conducted at the DOMUS laboratory, during the interaction with the contextual assistant-s interface. The results of our models show that the GOMS and ACT-R models give good and excellent predictions respectively of users performance at the task level, as well as the object level. Therefore, the simulated results are very close to the results obtained in the experimental study.

Keywords: HMI, interface evaluation, Analytical evaluation, cognitivemodeling, user modeling, user performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
2700 Accounting for SMEs – How Important is Size in Choosing between Global and Local Standards?

Authors: Cătălin Nicolae Albu, Nadia Albu, Maria Mădălina Gîrbină

Abstract:

There is limited evidence from various countries about the possible impact of various criteria to be used to determine the scope of the IFRS for SMEs issued in 2009 and, research is needed in this area. We provide evidence from Romania, an emerging economy member of the European Union. The aim of this paper is to analyze in a local setting if size is a relevant factor for deciding between local and global standards for SMEs. Our results indicate that size is a moderate indicator of the existence of possible users interested in financial statements and that there is a difference between the scopes of the standard determined on various criteria.. Also, we suggest that the international exposure is quite reduced in the case of SMEs, but is sufficient to suggest that at least some SMEs would benefit from international comparability of financial statements

Keywords: SMEs, IFRS for SMEs, accounting regulation, entity's size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861
2699 Aggregation Scheduling Algorithms in Wireless Sensor Networks

Authors: Min Kyung An

Abstract:

In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.

Keywords: Data aggregation, convergecast, gathering, approximation, interference, omni-directional, directional.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 799