Search results for: phase error accumulation methodology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4242

Search results for: phase error accumulation methodology

402 Topographical Image Transference Compatibility Generated Through Moiré Technique Applying Parametrical Softwares of Computer Assisted Design

Authors: M. V. G. Silva, J. Gazzola, I. M. Dal Fabbro, A. C. L. Lino

Abstract:

Computer aided design accounts with the support of parametric software in the design of machine components as well as of any other pieces of interest. The complexities of the element under study sometimes offer certain difficulties to computer design, or ever might generate mistakes in the final body conception. Reverse engineering techniques are based on the transformation of already conceived body images into a matrix of points which can be visualized by the design software. The literature exhibits several techniques to obtain machine components dimensional fields, as contact instrument (MMC), calipers and optical methods as laser scanner, holograms as well as moiré methods. The objective of this research work was to analyze the moiré technique as instrument of reverse engineering, applied to bodies of nom complex geometry as simple solid figures, creating matrices of points. These matrices were forwarded to a parametric software named SolidWorks to generate the virtual object. Volume data obtained by mechanical means, i.e., by caliper, the volume obtained through the moiré method and the volume generated by the SolidWorks software were compared and found to be in close agreement. This research work suggests the application of phase shifting moiré methods as instrument of reverse engineering, serving also to support farm machinery element designs.

Keywords: Reverse engineering, Moiré technique, three dimensional image generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3457
401 Georgia Case: Tourism Expenses of International Visitors on the Basis of Growing Attractiveness

Authors: Nino Abesadze, Marine Mindorashvili, Nino Paresashvili

Abstract:

At present actual tourism indicators cannot be calculated in Georgia, making it impossible to perform their quantitative analysis. Therefore, the study conducted by us is highly important from a theoretical as well as practical standpoint. The main purpose of the article is to make complex statistical analysis of tourist expenses of foreign visitors and to calculate statistical attractiveness indices of the tourism potential of Georgia. During the research, the method involving random and proportional selection has been applied. Computer software SPSS was used to compute statistical data for corresponding analysis. Corresponding methodology of tourism statistics was implemented according to international standards. Important information was collected and grouped from major Georgian airports, and a representative population of foreign visitors and a rule of selection of respondents were determined. The results show a trend of growth in tourist numbers and the share of tourists from post-soviet countries are constantly increasing. The level of satisfaction with tourist facilities and quality of service has improved, but still we have a problem of disparity between the service quality and the prices. The design of tourist expenses of foreign visitors is diverse; competitiveness of tourist products of Georgian tourist companies is higher. Attractiveness of popular cities of Georgia has increased by 43%.

Keywords: Tourist, expenses, indexes, statistics, analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 915
400 Leveraging Hyperledger Iroha for the Issuance and Verification of Higher-Education Certificates

Authors: Vasiliki Vlachou, Christos Kontzinos, Ourania Markaki, Panagiotis Kokkinakos, Vagelis Karakolis, John Psarras

Abstract:

Higher Education is resisting the pull of technology, especially as this concerns the issuance and verification of degrees and certificates. It is widely known that education certificates are largely produced in paper form making them vulnerable to damage while holders of such certificates are dependent on the universities and other issuing organisations. QualiChain is an EU Horizon 2020 (H2020) research project aiming to transform and revolutionise the domain of public education and its ties with the job market by leveraging blockchain, analytics and decision support to develop a platform for the verification and sharing of education certificates. Blockchain plays an integral part in the QualiChain solution in providing a trustworthy environment to store, share and manage such accreditations. Under the context of this paper, three prominent blockchain platforms (Ethereum, Hyperledger Fabric, Hyperledger Iroha) were considered as a means of experimentation for creating a system with the basic functionalities that will be needed for trustworthy degree verification. The methodology and respective system developed and presented in this paper used Hyperledger Iroha and proved that this specific platform can be used to easily develop decentralize applications. Future papers will attempt to further experiment with other blockchain platforms and assess which has the best potential.

Keywords: Blockchain, degree verification, higher education certificates, Hyperledger Iroha.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830
399 Requirements Driven Multiple View Paradigm for Developing Security Architecture

Authors: K. Chandra Sekaran

Abstract:

This paper describes a paradigmatic approach to develop architecture of secure systems by describing the requirements from four different points of view: that of the owner, the administrator, the user, and the network. Deriving requirements and developing architecture implies the joint elicitation and describing the problem and the structure of the solution. The view points proposed in this paper are those we consider as requirements towards their contributions as major parties in the design, implementation, usage and maintenance of secure systems. The dramatic growth of the technology of Internet and the applications deployed in World Wide Web have lead to the situation where the security has become a very important concern in the development of secure systems. Many security approaches are currently being used in organizations. In spite of the widespread use of many different security solutions, the security remains a problem. It is argued that the approach that is described in this paper for the development of secure architecture is practical by all means. The models representing these multiple points of view are termed the requirements model (views of owner and administrator) and the operations model (views of user and network). In this paper, this multiple view paradigm is explained by first describing the specific requirements and or characteristics of secure systems (particularly in the domain of networks) and the secure architecture / system development methodology.

Keywords: Multiple view paradigms, requirements model, operations model, secure system, owner, administrator, user, network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
398 Multi-Line Flexible Alternating Current Transmission System (FACTS) Controller for Transient Stability Analysis of a Multi-Machine Power System Network

Authors: A.V.Naresh Babu, S.Sivanagaraju

Abstract:

A considerable progress has been achieved in transient stability analysis (TSA) with various FACTS controllers. But, all these controllers are associated with single transmission line. This paper is intended to discuss a new approach i.e. a multi-line FACTS controller which is interline power flow controller (IPFC) for TSA of a multi-machine power system network. A mathematical model of IPFC, termed as power injection model (PIM) presented and this model is incorporated in Newton-Raphson (NR) power flow algorithm. Then, the reduced admittance matrix of a multi-machine power system network for a three phase fault without and with IPFC is obtained which is required to draw the machine swing curves. A general approach based on L-index has also been discussed to find the best location of IPFC to reduce the proximity to instability of a power system. Numerical results are carried out on two test systems namely, 6-bus and 11-bus systems. A program in MATLAB has been written to plot the variation of generator rotor angle and speed difference curves without and with IPFC for TSA and also a simple approach has been presented to evaluate critical clearing time for test systems. The results obtained without and with IPFC are compared and discussed.

Keywords: Flexible alternating current transmission system (FACTS), first swing stability, interline power flow controller (IPFC), power injection model (PIM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196
397 Method for Tuning Level Control Loops Based on Internal Model Control and Closed Loop Step Test Data

Authors: Arnaud Nougues

Abstract:

This paper describes a two-stage methodology derived from IMC (Internal Model Control) for tuning a PID (Proportional-Integral-Derivative) controller for levels or other integrating processes in an industrial environment. Focus is ease of use and implementation speed which are critical for an industrial application. Tuning can be done with minimum effort and without the need of time-consuming open-loop step tests on the plant. The first stage of the method applies to levels only: the vessel residence time is calculated from equipment dimensions and used to derive a set of preliminary PI (Proportional-Integral) settings with IMC. The second stage, re-tuning in closed-loop, applies to levels as well as other integrating processes: a tuning correction mechanism has been developed based on a series of closed-loop simulations with model errors. The tuning correction is done from a simple closed-loop step test and application of a generic correlation between observed overshoot and integral time correction. A spin-off of the method is that an estimate of the vessel residence time (levels) or open-loop process gain (other integrating process) is obtained from the closed-loop data.

Keywords: closed-loop model identification, IMC-PID tuning method, integrating process control, on-line PID tuning adaptation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 577
396 Supply Chain Resilience Triangle: The Study and Development of a Framework

Authors: M. Bevilacqua, F. E. Ciarapica, G. Marcucci

Abstract:

Supply Chain Resilience has been broadly studied during the last decade, focusing the research on many aspects of Supply Chain performance. Consequently, different definitions of Supply Chain Resilience have been developed by the research community, drawing inspiration also from other fields of study such as ecology, sociology, psychology, economy et al. This way, the definitions so far developed in the extant literature are therefore very heterogeneous, and many authors have pointed out a lack of consensus in this field of analysis. The aim of this research is to find common points between these definitions, through the development of a framework of study: the Resilience Triangle. The Resilience Triangle is a tool developed in the field of civil engineering, with the objective of modeling the loss of resilience of a given structure during and after the occurrence of a disruption such as an earthquake. The Resilience Triangle is a simple yet powerful tool: in our opinion, it can summarize all the features that authors have captured in the Supply Chain Resilience definitions over the years. This research intends to recapitulate within this framework all these heterogeneities in Supply Chain Resilience research. After collecting a various number of Supply Chain Resilience definitions present in the extant literature, the methodology approach provides a taxonomy step with the scope of collecting and analyzing all the data gathered. The next step provides the comparison of the data obtained with the plotting of a disruption profile, in order to contextualize the Resilience Triangle in the Supply Chain context. The tool and the results developed in this research will allow to lay the foundation for future Supply Chain Resilience modeling and measurement work.

Keywords: Supply chain resilience, resilience definition, supply chain resilience triangle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2708
395 A Test Methodology to Measure the Open-Loop Voltage Gain of an Operational Amplifier

Authors: Maninder Kaur Gill, Alpana Agarwal

Abstract:

It is practically not feasible to measure the open-loop voltage gain of the operational amplifier in the open loop configuration. It is because the open-loop voltage gain of the operational amplifier is very large. In order to avoid the saturation of the output voltage, a very small input should be given to operational amplifier which is not possible to be measured practically by a digital multimeter. A test circuit for measurement of open loop voltage gain of an operational amplifier has been proposed and verified using simulation tools as well as by experimental methods on breadboard. The main advantage of this test circuit is that it is simple, fast, accurate, cost effective, and easy to handle even on a breadboard. The test circuit requires only the device under test (DUT) along with resistors. This circuit has been tested for measurement of open loop voltage gain for different operational amplifiers. The underlying goal is to design testable circuits for various analog devices that are simple to realize in VLSI systems, giving accurate results and without changing the characteristics of the original system. The DUTs used are LM741CN and UA741CP. For LM741CN, the simulated gain and experimentally measured gain (average) are calculated as 89.71 dB and 87.71 dB, respectively. For UA741CP, the simulated gain and experimentally measured gain (average) are calculated as 101.15 dB and 105.15 dB, respectively. These values are found to be close to the datasheet values.

Keywords: Device under test, open-loop voltage gain, operational amplifier, test circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3334
394 Development of a Biomaterial from Naturally Occurring Chloroapatite Mineral for Biomedical Applications

Authors: H. K. G. K. D. K. Hapuhinna, R. D. Gunaratne, H. M. J. C. Pitawala

Abstract:

Hydroxyapatite is a bioceramic which can be used for applications in orthopedics and dentistry due to its structural similarity with the mineral phase of mammalian bones and teeth. In this study, it was synthesized, chemically changing natural Eppawala chloroapatite mineral as a value-added product. Sol-gel approach and solid state sintering were used to synthesize products using diluted nitric acid, ethanol and calcium hydroxide under different conditions. Synthesized Eppawala hydroxyapatite powder was characterized using X-ray Fluorescence (XRF), X-ray Powder Diffraction (XRD), Fourier-transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) in order to find out its composition, crystallinity, presence of functional groups, bonding type, surface morphology, microstructural features, and thermal dependence and stability, respectively. The XRD results reflected the formation of a hexagonal crystal structure of hydroxyapatite. Elementary composition and microstructural features of products were discussed based on the XRF and SEM results of the synthesized hydroxyapatite powder. TGA and DSC results of synthesized products showed high thermal stability and good material stability in nature. Also, FTIR spectroscopy results confirmed the formation of hydroxyapatite from apatite via the presence of hydroxyl groups. Those results coincided with the FTIR results of mammalian bones including human bones. The study concludes that there is a possibility of producing hydroxyapatite using commercially available Eppawala chloroapatite in Sri Lanka.

Keywords: Dentistry, eppawala chloroapatite, hydroxyapatite, orthopedics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817
393 Electronic Health Record System: A Perspective to Improve the Value of Services Rendered to Patients in Healthcare Organization in Rwanda, Case of CHUB and Hopital De Nemba

Authors: Mugabe Nzarama Gabriel

Abstract:

In Rwanda, many healthcare organizations are still using a paper based patients’ data record system although it still present weaknesses to share health patients’ information across different services when necessary. In developed countries, the EHR has been put in place to revolutionize the paper based record system but still the EHR has some challenges related to privacy, security, or interoperability. The purpose of this research was to assess the existing patients’ data record system in healthcare sector in Rwanda, see what an EHR can improve to the system in place and assess the acceptance of EHR as system which is interoperable, very secure and interoperable and see whether stakeholders are ready to adopt the system. The case based methodology was used and TAM theoretical framework to design the questionnaire for the survey. A judgmental sample across two cases, CHUB and Hopital de Nemba, has been selected and SPSS has been used for descriptive statistics. After a qualitative analysis, the findings showed that the paper based record is useful, gives complete information about the patient, protects the privacy of patients but it is still less secure and less interoperable. The respondents shown that they are ready to use the proposed EHR System and want it secure, capable of enforcing the privacy but still they are not all ready for the interoperability. A conclusion has been formulated; recommendations and further research have been proposed.

Keywords: EHR system, healthcare service, TAM, privacy, interoperability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1102
392 Practical Design Procedures of 3D Reinforced Concrete Shear Wall-Frame Structure Based on Structural Optimization Method

Authors: H. Nikzad, S. Yoshitomi

Abstract:

This study investigates and develops the structural optimization method. The effect of size constraints on practical solution of reinforced concrete (RC) building structure with shear wall is proposed. Cross-sections of beam and column, and thickness of shear wall are considered as design variables. The objective function to be minimized is total cost of the structure by using a simple and efficient automated MATLAB platform structural optimization methodology. With modification of mathematical formulations, the result is compared with optimal solution without size constraints. The most suitable combination of section sizes is selected as for the final design application based on linear static analysis. The findings of this study show that defining higher value of upper bound of sectional sizes significantly affects optimal solution, and defining of size constraints play a vital role in finding of global and practical solution during optimization procedures. The result and effectiveness of proposed method confirm the ability and efficiency of optimal solutions for 3D RC shear wall-frame structure.

Keywords: Structural optimization, linear static analysis, ETABS, MATLAB, RC shear wall-frame structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300
391 Prediction of the Epileptic Events 'Epileptic Seizures' by Neural Networks and Expert Systems

Authors: Kifah Tout, Nisrine Sinno, Mohamad Mikati

Abstract:

Many studies have focused on the nonlinear analysis of electroencephalography (EEG) mainly for the characterization of epileptic brain states. It is assumed that at least two states of the epileptic brain are possible: the interictal state characterized by a normal apparently random, steady-state EEG ongoing activity; and the ictal state that is characterized by paroxysmal occurrence of synchronous oscillations and is generally called in neurology, a seizure. The spatial and temporal dynamics of the epileptogenic process is still not clear completely especially the most challenging aspects of epileptology which is the anticipation of the seizure. Despite all the efforts we still don-t know how and when and why the seizure occurs. However actual studies bring strong evidence that the interictal-ictal state transition is not an abrupt phenomena. Findings also indicate that it is possible to detect a preseizure phase. Our approach is to use the neural network tool to detect interictal states and to predict from those states the upcoming seizure ( ictal state). Analysis of the EEG signal based on neural networks is used for the classification of EEG as either seizure or non-seizure. By applying prediction methods it will be possible to predict the upcoming seizure from non-seizure EEG. We will study the patients admitted to the epilepsy monitoring unit for the purpose of recording their seizures. Preictal, ictal, and post ictal EEG recordings are available on such patients for analysis The system will be induced by taking a body of samples then validate it using another. Distinct from the two first ones a third body of samples is taken to test the network for the achievement of optimum prediction. Several methods will be tried 'Backpropagation ANN' and 'RBF'.

Keywords: Artificial neural network (ANN), automatic prediction, epileptic seizures analysis, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
390 In-Flight Radiometric Performances Analysis of an Airborne Optical Payload

Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yaokai Liu, Xinhong Wang, Yongsheng Zhou

Abstract:

Performances analysis of remote sensing sensor is required to pursue a range of scientific research and application objectives. Laboratory analysis of any remote sensing instrument is essential, but not sufficient to establish a valid inflight one. In this study, with the aid of the in situ measurements and corresponding image of three-gray scale permanent artificial target, the in-flight radiometric performances analyses (in-flight radiometric calibration, dynamic range and response linearity, signal-noise-ratio (SNR), radiometric resolution) of self-developed short-wave infrared (SWIR) camera are performed. To acquire the inflight calibration coefficients of the SWIR camera, the at-sensor radiances (Li) for the artificial targets are firstly simulated with in situ measurements (atmosphere parameter and spectral reflectance of the target) and viewing geometries using MODTRAN model. With these radiances and the corresponding digital numbers (DN) in the image, a straight line with a formulation of L = G × DN + B is fitted by a minimization regression method, and the fitted coefficients, G and B, are inflight calibration coefficients. And then the high point (LH) and the low point (LL) of dynamic range can be described as LH= (G × DNH + B) and LL= B, respectively, where DNH is equal to 2n − 1 (n is the quantization number of the payload). Meanwhile, the sensor’s response linearity (δ) is described as the correlation coefficient of the regressed line. The results show that the calibration coefficients (G and B) are 0.0083 W·sr−1m−2µm−1 and −3.5 W·sr−1m−2µm−1; the low point of dynamic range is −3.5 W·sr−1m−2µm−1 and the high point is 30.5 W·sr−1m−2µm−1; the response linearity is approximately 99%. Furthermore, a SNR normalization method is used to assess the sensor’s SNR, and the normalized SNR is about 59.6 when the mean value of radiance is equal to 11.0 W·sr−1m−2µm−1; subsequently, the radiometric resolution is calculated about 0.1845 W•sr-1m-2μm-1. Moreover, in order to validate the result, a comparison of the measured radiance with a radiative-transfer-code-predicted over four portable artificial targets with reflectance of 20%, 30%, 40%, 50% respectively, is performed. It is noted that relative error for the calibration is within 6.6%.

Keywords: Calibration, dynamic range, radiometric resolution, SNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340
389 Effect of Manganese Doping on Ferrroelectric Properties of (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 Lead-Free Piezoceramic

Authors: Chongtham Jiten, Radhapiyari Laishram, K. Chandramani Singh

Abstract:

Alkaline niobate (Na0.5K0.5)NbO3 ceramic system has attracted major attention in view of its potential for replacing the highly toxic but superior lead zirconate titanate (PZT) system for piezoelectric applications. Recently, a more detailed study of this system reveals that the ferroelectric and piezoelectric properties are optimized in the Li- and V-modified system having the composition (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3. In the present work, we further study the pyroelectric behaviour of this composition along with another doped with Mn4+. So, (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 + x MnO2 (x = 0, and 0.01 wt. %) ceramic compositions were synthesized by conventional ceramic processing route. X-ray diffraction study reveals that both the undoped and Mn4+-doped ceramic samples prepared crystallize into a perovskite structure having orthorhombic symmetry. Dielectric study indicates that Mn4+ doping has little effect on both the Curie temperature (Tc) and tetragonal-orthorhombic phase transition temperature (Tot). The bulk density, room-temperature dielectric constant (εRT), and room-c The room-temperature coercive field (Ec) is observed to be lower in Mn4+ doped sample. The detailed analysis of the P-E hysteresis loops over the range of temperature from about room temperature to Tot points out that enhanced ferroelectric properties exist in this temperature range with better thermal stability for the Mn4+ doped ceramic. The study reveals that small traces of Mn4+ can modify (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 system so as to improve its ferroelectric properties with good thermal stability over a wide range of temperature.

Keywords: Ceramics, dielectric properties, ferroelectric properties, lead-free, sintering, thermal stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1018
388 Development of a Feedback Control System for a Lab-Scale Biomass Combustion System Using Programmable Logic Controller

Authors: Samuel O. Alamu, Seong W. Lee, Blaise Kalmia, Marc J. Louise Caballes, Xuejun Qian

Abstract:

The application of combustion technologies for thermal conversion of biomass and solid wastes to energy has been a major solution to the effective handling of wastes over a long period of time. Lab-scale biomass combustion systems have been observed to be economically viable and socially acceptable, but major concerns are the environmental impacts of the process and deviation of temperature distribution within the combustion chamber. Both high and low combustion chamber temperature may affect the overall combustion efficiency and gaseous emissions. Therefore, there is an urgent need to develop a control system which measures the deviations of chamber temperature from set target values, sends these deviations (which generates disturbances in the system) in the form of feedback signal (as input), and control operating conditions for correcting the errors. In this research study, major components of the feedback control system were determined, assembled, and tested. In addition, control algorithms were developed to actuate operating conditions (e.g., air velocity, fuel feeding rate) using ladder logic functions embedded in the Programmable Logic Controller (PLC). The developed control algorithm having chamber temperature as a feedback signal is integrated into the lab-scale swirling fluidized bed combustor (SFBC) to investigate the temperature distribution at different heights of the combustion chamber based on various operating conditions. The air blower rates and the fuel feeding rates obtained from automatic control operations were correlated with manual inputs. There was no observable difference in the correlated results, thus indicating that the written PLC program functions were adequate in designing the experimental study of the lab-scale SFBC. The experimental results were analyzed to study the effect of air velocity operating at 222-273 ft/min and fuel feeding rate of 60-90 rpm on the chamber temperature. The developed temperature-based feedback control system was shown to be adequate in controlling the airflow and the fuel feeding rate for the overall biomass combustion process as it helps to minimize the steady-state error.

Keywords: Air flow, biomass combustion, feedback control system, fuel feeding, ladder logic, programmable logic controller, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 585
387 Modelling and Control of Milk Fermentation Process in Biochemical Reactor

Authors: Jožef Ritonja

Abstract:

The biochemical industry is one of the most important modern industries. Biochemical reactors are crucial devices of the biochemical industry. The essential bioprocess carried out in bioreactors is the fermentation process. A thorough insight into the fermentation process and the knowledge how to control it are essential for effective use of bioreactors to produce high quality and quantitatively enough products. The development of the control system starts with the determination of a mathematical model that describes the steady state and dynamic properties of the controlled plant satisfactorily, and is suitable for the development of the control system. The paper analyses the fermentation process in bioreactors thoroughly, using existing mathematical models. Most existing mathematical models do not allow the design of a control system for controlling the fermentation process in batch bioreactors. Due to this, a mathematical model was developed and presented that allows the development of a control system for batch bioreactors. Based on the developed mathematical model, a control system was designed to ensure optimal response of the biochemical quantities in the fermentation process. Due to the time-varying and non-linear nature of the controlled plant, the conventional control system with a proportional-integral-differential controller with constant parameters does not provide the desired transient response. The improved adaptive control system was proposed to improve the dynamics of the fermentation. The use of the adaptive control is suggested because the parameters’ variations of the fermentation process are very slow. The developed control system was tested to produce dairy products in the laboratory bioreactor. A carbon dioxide concentration was chosen as the controlled variable. The carbon dioxide concentration correlates well with the other, for the quality of the fermentation process in significant quantities. The level of the carbon dioxide concentration gives important information about the fermentation process. The obtained results showed that the designed control system provides minimum error between reference and actual values of carbon dioxide concentration during a transient response and in a steady state. The recommended control system makes reference signal tracking much more efficient than the currently used conventional control systems which are based on linear control theory. The proposed control system represents a very effective solution for the improvement of the milk fermentation process.

Keywords: Bioprocess engineering, biochemical reactor, fermentation process, modeling, adaptive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
386 Investigation on a Wave-Powered Electrical Generator Consisted of a Geared Motor-Generator Housed by a Double-Cone Rolling on Concentric Circular Rails

Authors: Barenten Suciu

Abstract:

An electrical generator able to harness energy from the water waves and designed as a double-cone geared motor-generator (DCGMG), is proposed and theoretically investigated. Similar to a differential gear mechanism, used in the transmission system of the auto vehicle wheels, an angular speed differential is created between the cones rolling on two concentric circular rails. Water wave acting on the floating DCGMG produces and a gear-box amplifies the speed differential to gain sufficient torque for power generation. A model that allows computation of the speed differential, torque, and power of the DCGMG is suggested. Influence of various parameters, regarding the construction of the DCGMG, as well as the contact between the double-cone and rails, on the electro-mechanical output, is emphasized. Results obtained indicate that the generated electrical power can be increased by augmenting the mass of the double-cone, the span of the rails, the apex angle of the cones, the friction between cones and rails, the amplification factor of the gear-box, and the efficiency of the motor-generator. Such findings are useful to formulate a design methodology for the proposed wave-powered generator.

Keywords: Wave-powered electrical generator, double-cone, circular concentric rails, amplification of angular speed differential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 717
385 Developing Leadership and Teamwork Skills of Pre-Service Teacher through Learning Camp

Authors: Sirimanee Banjong

Abstract:

This study aimed to 1) develop pre-service teachers’ leadership skills through camp-based learning, and 2) develop preservice teachers’ teamwork skills through camp-based learning. An applied research methodology was used. The target group was derived from a purposive selection. It involved 32 fourth-year students in Early Childhood Education Program enrolling a course entitled Seminar in Early Childhood Education provided during second semester of academic year 2013. The treatment was camp-based learning activities which applied a PDCA process including four stages: 1) plan, 2) do, 3) check, and 4) act. Research instruments were a learning camp program, a camp-based learning management plan, a 5-level assessment form for leadership skills and a 5-level assessment form for assessing teamwork skills. Data were analyzed using descriptive statistics. Results were: 1) pre-service teachers’ leadership skills yielded the before treatment average score at x= 3.4, S.D.=0.6 2and the after-treatment average score at x 4.29 , S.D.=0.66 pre-service teachers’ teamwork skills yielded the before-treatment average score at x=3.31, S.D.=0.60 and the after-treatment average score at x=4.42, S.D.=0.66 Both differences were statistically significant at the .05 level. Thus, the pre-service teachers’ leadership and teamwork skills were significantly improved through the camp-based learning approach.

Keywords: Learning camp, leadership skills, teamwork skills.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1350
384 Preparation of Fe3Si/Ferrite Micro- and Nano-Powder Composite

Authors: R. Bures, M. Streckova, M. Faberova, P. Kurek

Abstract:

Composite material based on Fe3Si micro-particles and Mn-Zn nano-ferrite was prepared using powder metallurgy technology. The sol-gel followed by autocombustion process was used for synthesis of Mn0.8Zn0.2Fe2O4 ferrite. 3 wt.% of mechanically milled ferrite was mixed with Fe3Si powder alloy. Mixed micro-nano powder system was homogenized by the Resonant Acoustic Mixing using ResodynLabRAM Mixer. This non-invasive homogenization technique was used to preserve spherical morphology of Fe3Si powder particles. Uniaxial cold pressing in the closed die at pressure 600 MPa was applied to obtain a compact sample. Microwave sintering of green compact was realized at 800°C, 20 minutes, in air. Density of the powders and composite was measured by Hepycnometry. Impulse excitation method was used to measure elastic properties of sintered composite. Mechanical properties were evaluated by measurement of transverse rupture strength (TRS) and Vickers hardness (HV). Resistivity was measured by 4 point probe method. Ferrite phase distribution in volume of the composite was documented by metallographic analysis. It has been found that nano-ferrite particle distributed among micro- particles of Fe3Si powder alloy led to high relative density (~93%) and suitable mechanical properties (TRS >100 MPa, HV ~1GPa, E-modulus ~140 GPa) of the composite. High electric resistivity (R~6.7 ohm.cm) of prepared composite indicate their potential application as soft magnetic material at medium and high frequencies.

Keywords: Micro- and nano-composite, soft magnetic materials, microwave sintering, mechanical and electric properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3791
383 A Large Ion Collider Experiment (ALICE) Diffractive Detector Control System for RUN-II at the Large Hadron Collider

Authors: J. C. Cabanillas-Noris, M. I. Martínez-Hernández, I. León-Monzón

Abstract:

The selection of diffractive events in the ALICE experiment during the first data taking period (RUN-I) of the Large Hadron Collider (LHC) was limited by the range over which rapidity gaps occur. It would be possible to achieve better measurements by expanding the range in which the production of particles can be detected. For this purpose, the ALICE Diffractive (AD0) detector has been installed and commissioned for the second phase (RUN-II). Any new detector should be able to take the data synchronously with all other detectors and be operated through the ALICE central systems. One of the key elements that must be developed for the AD0 detector is the Detector Control System (DCS). The DCS must be designed to operate safely and correctly this detector. Furthermore, the DCS must also provide optimum operating conditions for the acquisition and storage of physics data and ensure these are of the highest quality. The operation of AD0 implies the configuration of about 200 parameters, from electronics settings and power supply levels to the archiving of operating conditions data and the generation of safety alerts. It also includes the automation of procedures to get the AD0 detector ready for taking data in the appropriate conditions for the different run types in ALICE. The performance of AD0 detector depends on a certain number of parameters such as the nominal voltages for each photomultiplier tube (PMT), their threshold levels to accept or reject the incoming pulses, the definition of triggers, etc. All these parameters define the efficiency of AD0 and they have to be monitored and controlled through AD0 DCS. Finally, AD0 DCS provides the operator with multiple interfaces to execute these tasks. They are realized as operating panels and scripts running in the background. These features are implemented on a SCADA software platform as a distributed control system which integrates to the global control system of the ALICE experiment.

Keywords: AD0, ALICE, DCS, LHC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
382 Mapping of Solar Radiation Anomalies Based on Climate Change

Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Francisco Pereira, Elton Rossini

Abstract:

The use of alternative energy sources to meet energy demand reduces environmental damage. To diversify an energy matrix and to minimize global warming, a solar energy is gaining space, being an important source of renewable energy, and its potential depends on the climatic conditions of the region. Brazil presents a great solar potential for a generation of electric energy, so the knowledge of solar radiation and its characteristics are fundamental for the study of energy use. Due to the above reasons, this article aims to verify the climatic variability corresponding to the variations in solar radiation anomalies, in the face of climate change scenarios. The data used in this research are part of the Intercomparison of Interconnected Models, Phase 5 (CMIP5), which contributed to the preparation of the fifth IPCC-AR5 report. The solar radiation data were extracted from The Australian Community Climate and Earth System Simulator (ACCESS) model using the RCP 4.5 and RCP 8.5 scenarios that represent an intermediate structure and a pessimistic framework, the latter being the most worrisome in all cases. In order to allow the use of solar radiation as a source of energy in a given location and/or region, it is important, first, to determine its availability, thus justifying the importance of the study. The results pointed out, for the 75-year period (2026-2100), based on a pessimistic scenario, indicate a drop in solar radiation of the approximately 12% in the eastern region of Rio Grande do Sul. Factors that influence the pessimistic prospects of this scenario should be better observed by the responsible authorities, since they can affect the possibility to produce electricity from solar radiation.

Keywords: Climate change, solar radiation, energy utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 992
381 Optimal Efficiency Control of Pulse Width Modulation - Inverter Fed Motor Pump Drive Using Neural Network

Authors: O. S. Ebrahim, M. A. Badr, A. S. Elgendy, K. O. Shawky, P. K. Jain

Abstract:

This paper demonstrates an improved Loss Model Control (LMC) for a 3-phase induction motor (IM) driving pump load. Compared with other power loss reduction algorithms for IM, the presented one has the advantages of fast and smooth flux adaptation, high accuracy, and versatile implementation. The performance of LMC depends mainly on the accuracy of modeling the motor drive and losses. A loss-model for IM drive that considers the surplus power loss caused by inverter voltage harmonics using closed-form equations and also includes the magnetic saturation has been developed. Further, an Artificial Neural Network (ANN) controller is synthesized and trained offline to determine the optimal flux level that achieves maximum drive efficiency. The drive’s voltage and speed control loops are connecting via the stator frequency to avoid the possibility of excessive magnetization. Besides, the resistance change due to temperature is considered by a first-order thermal model. The obtained thermal information enhances motor protection and control. These together have the potential of making the proposed algorithm reliable. Simulation and experimental studies are performed on 5.5 kW test motor using the proposed control method. The test results are provided and compared with the fixed flux operation to validate the effectiveness.

Keywords: Artificial neural network, ANN, efficiency optimization, induction motor, IM, Pulse Width Modulated, PWM, harmonic losses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 358
380 Effect of Architecture and Operating Conditions of Vehicle on Bulb Lifetime in Automotive

Authors: Hatice Özbek, Caner Çil, Ahmet Rodoplu

Abstract:

Automotive lighting is the leading function in the configuration of vehicle architecture. Especially headlights and taillights from external lighting functions are among the structures that determine the stylistic character of the vehicle. At the same time, the fact that lighting functions are related to many other functions brings along difficulties in design. Customers expect maximum quality from the vehicle. In these circumstances, it is necessary to make designs that aim to keep the performance of bulbs with limited working lives at the highest level. With this study, the factors that influence the working lives of filament lamps were examined and bulb explosions that can occur sooner than anticipated in the future were prevented while the vehicle was still in the design phase by determining the relations with electrical, dynamical and static variables. Especially the filaments of the bulbs used in the front lighting of the vehicle are deformed in a shorter time due to the high voltage requirement. In addition to this, rear lighting lamps vibrate as a result of the tailgate opening and closing and cause the filaments to be exposed to high stress. With this study, the findings that cause bulb explosions were evaluated. Among the most important findings: 1. The structure of the cables to the lighting functions of the vehicle and the effect of the voltage values are drawn; 2. The effect of the vibration to bulb throughout the life of the vehicle; 3 The effect of the loads carried to bulb while the vehicle doors are opened and closed. At the end of the study, the maximum performance was established in the bulb lifetimes with the optimum changes made in the vehicle architecture based on the findings obtained.

Keywords: Vehicle architecture, automotive lighting functions, filament lamps, bulb lifetime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
379 Automatic Detection of Defects in Ornamental Limestone Using Wavelets

Authors: Maria C. Proença, Marco Aniceto, Pedro N. Santos, José C. Freitas

Abstract:

A methodology based on wavelets is proposed for the automatic location and delimitation of defects in limestone plates. Natural defects include dark colored spots, crystal zones trapped in the stone, areas of abnormal contrast colors, cracks or fracture lines, and fossil patterns. Although some of these may or may not be considered as defects according to the intended use of the plate, the goal is to pair each stone with a map of defects that can be overlaid on a computer display. These layers of defects constitute a database that will allow the preliminary selection of matching tiles of a particular variety, with specific dimensions, for a requirement of N square meters, to be done on a desktop computer rather than by a two-hour search in the storage park, with human operators manipulating stone plates as large as 3 m x 2 m, weighing about one ton. Accident risks and work times are reduced, with a consequent increase in productivity. The base for the algorithm is wavelet decomposition executed in two instances of the original image, to detect both hypotheses – dark and clear defects. The existence and/or size of these defects are the gauge to classify the quality grade of the stone products. The tuning of parameters that are possible in the framework of the wavelets corresponds to different levels of accuracy in the drawing of the contours and selection of the defects size, which allows for the use of the map of defects to cut a selected stone into tiles with minimum waste, according the dimension of defects allowed.

Keywords: Automatic detection, wavelets, defects, fracture lines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1166
378 Application of Systems Engineering Tools and Methods to Improve Healthcare Delivery Inside the Emergency Department of a Mid-Size Hospital

Authors: Mohamed Elshal, Hazim El-Mounayri, Omar El-Mounayri

Abstract:

Emergency department (ED) is considered as a complex system of interacting entities: patients, human resources, software and hardware systems, interfaces, and other systems. This paper represents a research for implementing a detailed Systems Engineering (SE) approach in a mid-size hospital in central Indiana. This methodology will be applied by “The Initiative for Product Lifecycle Innovation (IPLI)” institution at Indiana University to study and solve the crowding problem with the aim of increasing throughput of patients and enhance their treatment experience; therefore, the nature of crowding problem needs to be investigated with all other problems that leads to it. The presented SE methods are workflow analysis and systems modeling where SE tools such as Microsoft Visio are used to construct a group of system-level diagrams that demonstrate: patient’s workflow, documentation and communication flow, data systems, human resources workflow and requirements, leadership involved, and integration between ER different systems. Finally, the ultimate goal will be managing the process through implementation of an executable model using commercialized software tools, which will identify bottlenecks, improve documentation flow, and help make the process faster.

Keywords: Systems modeling, ED operation, workflow modeling, systems analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1042
377 A Study on Architectural Characteristics‎ of Traditional Iranian Ordinary Houses in Mashhad, Iran

Authors: Rana Daneshvar Salehi

Abstract:

In many Iranian cities including ‎‎Mashhad‎, the capital of ‎‎‎‎Razavi Khorasan Province‎, ‎ordinary samples of domestic architecture ‎on a ‎small scale is not ‎‎‎considered as ‎heritage. ‎While the ‎principals of house formation are ‎‎respected in all ‎‎traditional Iranian ‎‎‎‎houses‎; ‎from moderate to great ones. During the past decade, Mashhad has lost its identity, and has become a modern city. Identifying it as the capital of the Islamic Culture in 2017 by ISESCO and consequently looking for new developments and transfiguration caused to demolish a large ‎number ‎of ‎traditional modest habitation. ‎For this ‎reason, the present paper aims to introduce ‎the three ‎undiscovered houses with the ‎historical and monumental values located in the ‎oldest ‎neighborhoods of Mashhad which have been neglected in the cultural ‎heritage field. The preliminary phase of this approach will be a measured survey to identify the significant characteristics ‎of ‎selected dwellings and understand the challenges through focusing on building ‎form, orientation, ‎‎room function, space proportion and ornamental elements’ details. A comparison between the ‎‎case studies and the wealthy domestically buildings ‎presents that a house belongs to inhabitants ‎with an average income could introduce the same accurate, regular, harmonic and proportionate ‎design which can be found in the great mansions. It reveals that an ordinary traditional house can ‎be regarded as valuable construction not only for its historical characteristics but also ‎for its ‎aesthetical and architectural features that could avoid further destructions in the future.

Keywords: Traditional ordinary house, architectural characteristic, proportion, heritage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 806
376 Localizing and Recognizing Integral Pitches of Cheque Document Images

Authors: Bremananth R., Veerabadran C. S., Andy W. H. Khong

Abstract:

Automatic reading of handwritten cheque is a computationally complex process and it plays an important role in financial risk management. Machine vision and learning provide a viable solution to this problem. Research effort has mostly been focused on recognizing diverse pitches of cheques and demand drafts with an identical outline. However most of these methods employ templatematching to localize the pitches and such schemes could potentially fail when applied to different types of outline maintained by the bank. In this paper, the so-called outline problem is resolved by a cheque information tree (CIT), which generalizes the localizing method to extract active-region-of-entities. In addition, the weight based density plot (WBDP) is performed to isolate text entities and read complete pitches. Recognition is based on texture features using neural classifiers. Legal amount is subsequently recognized by both texture and perceptual features. A post-processing phase is invoked to detect the incorrect readings by Type-2 grammar using the Turing machine. The performance of the proposed system was evaluated using cheque and demand drafts of 22 different banks. The test data consists of a collection of 1540 leafs obtained from 10 different account holders from each bank. Results show that this approach can easily be deployed without significant design amendments.

Keywords: Cheque reading, Connectivity checking, Text localization, Texture analysis, Turing machine, Signature verification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
375 Dynamic Threshold Adjustment Approach For Neural Networks

Authors: Hamza A. Ali, Waleed A. J. Rasheed

Abstract:

The use of neural networks for recognition application is generally constrained by their inherent parameters inflexibility after the training phase. This means no adaptation is accommodated for input variations that have any influence on the network parameters. Attempts were made in this work to design a neural network that includes an additional mechanism that adjusts the threshold values according to the input pattern variations. The new approach is based on splitting the whole network into two subnets; main traditional net and a supportive net. The first deals with the required output of trained patterns with predefined settings, while the second tolerates output generation dynamically with tuning capability for any newly applied input. This tuning comes in the form of an adjustment to the threshold values. Two levels of supportive net were studied; one implements an extended additional layer with adjustable neuronal threshold setting mechanism, while the second implements an auxiliary net with traditional architecture performs dynamic adjustment to the threshold value of the main net that is constructed in dual-layer architecture. Experiment results and analysis of the proposed designs have given quite satisfactory conducts. The supportive layer approach achieved over 90% recognition rate, while the multiple network technique shows more effective and acceptable level of recognition. However, this is achieved at the price of network complexity and computation time. Recognition generalization may be also improved by accommodating capabilities involving all the innate structures in conjugation with Intelligence abilities with the needs of further advanced learning phases.

Keywords: Classification, Recognition, Neural Networks, Pattern Recognition, Generalization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
374 A Study on the Effect of Mg and Ag Additions and Age Hardening Treatment on the Properties of As-Cast Al-Cu-Mg-Ag Alloys

Authors: Ahmed. S. Alasmari, M. S. Soliman, Magdy M. El-Rayes

Abstract:

This study focuses on the effect of the addition of magnesium (Mg) and silver (Ag) on the mechanical properties of aluminum based alloys. The alloying elements will be added at different levels using the factorial design of experiments of 22; the two factors are Mg and Ag at two levels of concentration. The superior mechanical properties of the produced Al-Cu-Mg-Ag alloys after aging will be resulted from a unique type of precipitation named as Ω-phase. The formed precipitate enhanced the tensile strength and thermal stability. This paper further investigated the microstructure and mechanical properties of as cast Al–Cu–Mg–Ag alloys after being complete homogenized treatment at 520 °C for 8 hours followed by isothermally age hardening process at 190 °C for different periods of time. The homogenization at 520 °C for 8 hours was selected based on homogenization study at various temperatures and times. The alloys’ microstructures were studied by using optical microscopy (OM). In addition to that, the fracture surface investigation was performed using a scanning electronic microscope (SEM). Studying the microstructure of aged Al-Cu-Mg-Ag alloys reveal that the grains are equiaxed with an average grain size of about 50 µm. A detailed fractography study for fractured surface of the aged alloys exhibited a mixed fracture whereby the random fracture suggested crack propagation along the grain boundaries while the dimples indicated that the fracture was ductile. The present result has shown that alloy 5 has the highest hardness values and the best mechanical behaviors.

Keywords: Precipitation hardening, aluminum alloys, aging, design of experiments, analysis of variance, heat treatments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1184
373 Can Exams Be Shortened? Using a New Empirical Approach to Test in Finance Courses

Authors: Eric S. Lee, Connie Bygrave, Jordan Mahar, Naina Garg, Suzanne Cottreau

Abstract:

Marking exams is universally detested by lecturers. Final exams in many higher education courses often last 3.0 hrs. Do exams really need to be so long? Can we justifiably reduce the number of questions on them? Surprisingly few have researched these questions, arguably because of the complexity and difficulty of using traditional methods. To answer these questions empirically, we used a new approach based on three key elements: Use of an unusual variation of a true experimental design, equivalence hypothesis testing, and an expanded set of six psychometric criteria to be met by any shortened exam if it is to replace a current 3.0-hr exam (reliability, validity, justifiability, number of exam questions, correspondence, and equivalence). We compared student performance on each official 3.0-hr exam with that on five shortened exams having proportionately fewer questions (2.5, 2.0, 1.5, 1.0, and 0.5 hours) in a series of four experiments conducted in two classes in each of two finance courses (224 students in total). We found strong evidence that, in these courses, shortening of final exams to 2.0 hrs was warranted on all six psychometric criteria. Shortening these exams by one hour should result in a substantial one-third reduction in lecturer time and effort spent marking, lower student stress, and more time for students to prepare for other exams. Our approach provides a relatively simple, easy-to-use methodology that lecturers can use to examine the effect of shortening their own exams.

Keywords: Exam length, psychometric criteria, synthetic experimental designs, test length.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503