Search results for: wave model.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7827

Search results for: wave model.

4167 Validity and Reliability of Competency Assessment Implementation (CAI) Instrument Using Rasch Model

Authors: Nurfirdawati Muhamad Hanafi, Azmanirah Ab Rahman, Marina Ibrahim Mukhtar, Jamil Ahmad, Sarebah Warman

Abstract:

This study was conducted to generate empirical evidence on validity and reliability of the item of Competency Assessment Implementation (CAI) Instrument using Rasch Model for polythomous data aided by Winstep software version 3.68. The construct validity was examined by analyzing the point-measure correlation index (PTMEA), infit and outfit MNSQ values; meanwhile the reliability was examined by analyzing item reliability index. A survey technique was used as the major method with the CAI instrument on 156 teachers from vocational schools. The results have shown that the reliability of CAI Instrument items were between 0.80 and 0.98. PTMEA Correlation is in positive values, in which the item is able to distinguish between the ability of the respondent. Statistical data obtained show that out of 154 items, 12 items from the instrument suggested to be omitted. This study is hoped could bring a new direction to the process of data analysis in educational research.

Keywords: Competency Assessment, Reliability, Validity, Item Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2831
4166 Improved Weighted Matching for Speaker Recognition

Authors: Ozan Mut, Mehmet Göktürk

Abstract:

Matching algorithms have significant importance in speaker recognition. Feature vectors of the unknown utterance are compared to feature vectors of the modeled speakers as a last step in speaker recognition. A similarity score is found for every model in the speaker database. Depending on the type of speaker recognition, these scores are used to determine the author of unknown speech samples. For speaker verification, similarity score is tested against a predefined threshold and either acceptance or rejection result is obtained. In the case of speaker identification, the result depends on whether the identification is open set or closed set. In closed set identification, the model that yields the best similarity score is accepted. In open set identification, the best score is tested against a threshold, so there is one more possible output satisfying the condition that the speaker is not one of the registered speakers in existing database. This paper focuses on closed set speaker identification using a modified version of a well known matching algorithm. The results of new matching algorithm indicated better performance on YOHO international speaker recognition database.

Keywords: Automatic Speaker Recognition, Voice Recognition, Pattern Recognition, Digital Audio Signal Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
4165 Discrimination of Alcoholic Subjects using Second Order Autoregressive Modelling of Brain Signals Evoked during Visual Stimulus Perception

Authors: Ramaswamy Palaniappan

Abstract:

In this paper, a second order autoregressive (AR) model is proposed to discriminate alcoholics using single trial gamma band Visual Evoked Potential (VEP) signals using 3 different classifiers: Simplified Fuzzy ARTMAP (SFA) neural network (NN), Multilayer-perceptron-backpropagation (MLP-BP) NN and Linear Discriminant (LD). Electroencephalogram (EEG) signals were recorded from alcoholic and control subjects during the presentation of visuals from Snodgrass and Vanderwart picture set. Single trial VEP signals were extracted from EEG signals using Elliptic filtering in the gamma band spectral range. A second order AR model was used as gamma band VEP exhibits pseudo-periodic behaviour and second order AR is optimal to represent this behaviour. This circumvents the requirement of having to use some criteria to choose the correct order. The averaged discrimination errors of 2.6%, 2.8% and 11.9% were given by LD, MLP-BP and SFA classifiers. The high LD discrimination results show the validity of the proposed method to discriminate between alcoholic subjects.

Keywords: Linear Discriminant, Neural Network, VisualEvoked Potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
4164 Towards an Integrated Proposal for Performance Measurement Indicators (Financial and Operational) in Advanced Production Practices

Authors: José A. D. Machuca, Bernabé Escobar-Pérez, Pedro Garrido Vega, Darkys E. Lujan García

Abstract:

Starting with an analysis of the financial and operational indicators that can be found in the specialised literature, this study aims to contribute to improvements in the performance measurement systems used when the unit of analysis is the manufacturing plant. For this a search was done in the highest impact Journals of Production and Operations Management and Management Accounting , with the aim of determining the financial and operational indicators used to evaluate performance when Advanced Production Practices have been implemented, more specifically when the practices implemented are Total Quality Management, JIT/Lean Manufacturing and Total Productive Maintenance. This has enabled us to obtain a classification of the two types of indicators based on how much each is used. For the financial indicators we have also prepared a proposal that can be adapted to manufacturing plants- accounting features. In the near future we will propose a model that links practices implementation with financial and operational indicators and these two last with each other. We aim to will test this model empirically with the data obtained in the High Performance Manufacturing Project.

Keywords: Advanced Production Practices, Financial Indicators, Non-Financial Indicators

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
4163 Theoretical Study on Torsional Strengthening of Multi-cell RC Box Girders

Authors: Abeer A. M., Allawi A. A., Chai H. K.

Abstract:

A new analytical method to predict the torsional capacity and behavior of R.C multi-cell box girders strengthened with carbon fiber reinforced polymer (CFRP) sheets is presented. Modification was done on the Softened Truss Model (STM) in the proposed method; the concrete torsional problem is solved by combining the equilibrium conditions, compatibility conditions and constitutive laws of materials by taking into account the confinement of concrete with CFRP sheets. A specific algorithm is developed to predict the torsional behavior of reinforced concrete multi-cell box girders with or without strengthening by CFRP sheets. Applications of the developed method as an assessment tool to strengthened multicell box girders with CFRP and first analytical example that demonstrate the contribution of the CFRP materials on the torsional response is also included.

Keywords: Carbon fiber reinforced polymer, Concrete torsion, Modified Softened Truss Model, Multi-Cell box girder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4364
4162 The Effect of Diversity Sensitive Orientation on Job Satisfaction and Turnover Intention

Authors: Hyeondal Jeong, Yoonjung Baek

Abstract:

The main purpose of this paper is to examine the effect of diversity sensitive orientation on job satisfaction and turnover intention. Diversity sensitive orientation is the attitude of the individual to respect and accommodate diversity. This is focused on an individual’s perception of diversity. Although being made from the most diversity related research team and organizational level, this study deals with diversity issues at the individual level. To test the proposed research model and hypothesis, the data were collected from 291 Korean employees. The study conducted a confirmatory factor analysis for the validity test. Furthermore, structural equation modeling (SEM) was employed to test the hypothesized relationship in the conceptual model. The results of this paper were as followings: First, diversity sensitive orientation was positively related to job satisfaction. Second, diversity sensitive orientation was negatively related to turnover intention. In other words, the positive influence of the diversity sensitive orientation has been verified. Based on the findings, this study suggested implications and directions for future research.

Keywords: Diversity sensitive orientation, job satisfaction, turnover intention, perception, cognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
4161 On Supporting a Meta-design Approach in Socio-Technical Ontology Engineering

Authors: Mesnan Silalahi, Dana Indra Sensuse, Indra Budi

Abstract:

Many studies have revealed the fact of the complexity of ontology building process. Therefore there is a need for a new approach which one of that addresses the socio-technical aspects in the collaboration to reach a consensus. Meta-design approach is considered applicable as a method in the methodological model of socio-technical ontology engineering. Principles in the meta-design framework are applied in the construction phases of the ontology. A web portal is developed to support the meta-design principles requirements. To validate the methodological model semantic web applications were developed and integrated in the portal and also used as a way to show the usefulness of the ontology. The knowledge based system will be filled with data of Indonesian medicinal plants. By showing the usefulness of the developed ontology in a semantic web application, we motivate all stakeholders to participate in the development of knowledge based system of medicinal plants in Indonesia.

Keywords: Socio-technical, meta-design, ontology engineering methodology, semantic web application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2520
4160 Review of the Model-Based Supply Chain Management Research in the Construction Industry

Authors: Aspasia Koutsokosta, Stefanos Katsavounis

Abstract:

This paper reviews the model-based qualitative and quantitative Operations Management research in the context of Construction Supply Chain Management (CSCM). Construction industry has been traditionally blamed for low productivity, cost and time overruns, waste, high fragmentation and adversarial relationships. The construction industry has been slower than other industries to employ the Supply Chain Management (SCM) concept and develop models that support the decision-making and planning. However the last decade there is a distinct shift from a project-based to a supply-based approach of construction management. CSCM comes up as a new promising management tool of construction operations and improves the performance of construction projects in terms of cost, time and quality. Modeling the Construction Supply Chain (CSC) offers the means to reap the benefits of SCM, make informed decisions and gain competitive advantage. Different modeling approaches and methodologies have been applied in the multi-disciplinary and heterogeneous research field of CSCM. The literature review reveals that a considerable percentage of the CSC modeling research accommodates conceptual or process models which present general management frameworks and do not relate to acknowledged soft Operations Research methods. We particularly focus on the model-based quantitative research and categorize the CSCM models depending on their scope, objectives, modeling approach, solution methods and software used. Although over the last few years there has been clearly an increase of research papers on quantitative CSC models, we identify that the relevant literature is very fragmented with limited applications of simulation, mathematical programming and simulation-based optimization. Most applications are project-specific or study only parts of the supply system. Thus, some complex interdependencies within construction are neglected and the implementation of the integrated supply chain management is hindered. We conclude this paper by giving future research directions and emphasizing the need to develop optimization models for integrated CSCM. We stress that CSC modeling needs a multi-dimensional, system-wide and long-term perspective. Finally, prior applications of SCM to other industries have to be taken into account in order to model CSCs, but not without translating the generic concepts to the context of construction industry.

Keywords: Construction supply chain management, modeling, operations research, optimization and simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2825
4159 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment

Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee

Abstract:

Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.

Keywords: Deep neural models, natural language inference, recognizing textual entailment, sentence-to-sentence relation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
4158 Identification of Risks Associated with Process Automation Systems

Authors: J. K. Visser, H. T. Malan

Abstract:

A need exists to identify the sources of risks associated with the process automation systems within petrochemical companies or similar energy related industries. These companies use many different process automation technologies in its value chain. A crucial part of the process automation system is the information technology component featuring in the supervisory control layer. The ever-changing technology within the process automation layers and the rate at which it advances pose a risk to safe and predictable automation system performance. The age of the automation equipment also provides challenges to the operations and maintenance managers of the plant due to obsolescence and unavailability of spare parts. The main objective of this research was to determine the risk sources associated with the equipment that is part of the process automation systems. A secondary objective was to establish whether technology managers and technicians were aware of the risks and share the same viewpoint on the importance of the risks associated with automation systems. A conceptual model for risk sources of automation systems was formulated from models and frameworks in literature. This model comprised six categories of risk which forms the basis for identifying specific risks. This model was used to develop a questionnaire that was sent to 172 instrument technicians and technology managers in the company to obtain primary data. 75 completed and useful responses were received. These responses were analyzed statistically to determine the highest risk sources and to determine whether there was difference in opinion between technology managers and technicians. The most important risks that were revealed in this study are: 1) the lack of skilled technicians, 2) integration capability of third-party system software, 3) reliability of the process automation hardware, 4) excessive costs pertaining to performing maintenance and migrations on process automation systems, and 5) requirements of having third-party communication interfacing compatibility as well as real-time communication networks.

Keywords: Distributed control system, identification of risks, information technology, process automation system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 967
4157 A System Dynamic Based DSS for Ecological Urban Management in Alexandria, Egypt

Authors: Mona M. Salem, Khaled S. Al-Hagla, Hany M. Ayad

Abstract:

The concept of urban metabolism has increasingly been employed in a diverse range of disciplines as a mean to analyze and theorize the city. Urban ecology has a particular focus on the implications of applying the metabolism concept to the urban realm. This approach has been developed by a few researchers, though it has rarely if ever been used in policy development for city planning. The aim of this research is to use ecologically informed urban planning interventions to increase the sustainability of urban metabolism; with special focus on land stock as a most important city resource by developing a system dynamic based DSS. This model identifies two critical management strategy variables for the Strategic Urban Plan Alexandria SUP 2032. As a result, this comprehensive and precise quantitative approach is needed to monitor, measure, evaluate and observe dynamic urban changes working as a decision support system (DSS) for policy making.

Keywords: Alexandria SUP 2032, DSS, ecology, land resource, LULCC, management, metabolism, model, scenarios, System dynamics, urban development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1197
4156 Effect of Time-Periodic Boundary Temperature on the Onset of Nanofluid Convection in a Layer of a Saturated Porous Medium

Authors: J.C. Umavathi

Abstract:

The linear stability of nanofluid convection in a horizontal porous layer is examined theoretically when the walls of the porous layer are subjected to time-periodic temperature modulation. The model used for the nanofluid incorporates the effects of Brownian motion and thermopherosis, while the Darcy model is used for the porous medium. The analysis revels that for a typical nanofluid (with large Lewis number) the prime effect of the nanofluids is via a buoyancy effect coupled with the conservation of nanoparticles. The contribution of nanoparticles to the thermal energy equation being a second-order effect. It is found that the critical thermal Rayleigh number can be found reduced or decreased by a substantial amount, depending on whether the basic nanoparticle distribution is top-heavy or bottom-heavy. Oscillatory instability is possible in the case of a bottom-heavy nanoparticle distribution, phase angle and frequency of modulation.

Keywords: Brownian motion and thermophoresis, Porous medium, Nanofluid, Natural convection, Thermal modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170
4155 Maximum Power Point Tracking for Small Scale Wind Turbine Using Multilayer Perceptron Neural Network Implementation without Mechanical Sensor

Authors: Piyangkun Kukutapan, Siridech Boonsang

Abstract:

The article proposes maximum power point tracking without mechanical sensor using Multilayer Perceptron Neural Network (MLPNN). The aim of article is to reduce the cost and complexity but still retain efficiency. The experimental is that duty cycle is generated maximum power, if it has suitable qualification. The measured data from DC generator, voltage (V), current (I), power (P), turnover rate of power (dP), and turnover rate of voltage (dV) are used as input for MLPNN model. The output of this model is duty cycle for driving the converter. The experiment implemented using Arduino Uno board. This diagram is compared to MPPT using MLPNN and P&O control (Perturbation and Observation control). The experimental results show that the proposed MLPNN based approach is more efficiency than P&O algorithm for this application.

Keywords: Maximum power point tracking, multilayer perceptron neural network, optimal duty cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
4154 Key Factors Influencing Individual Knowledge Capability in KIFs

Authors: Salman Iqbal

Abstract:

Knowledge management (KM) literature has mainly focused on the antecedents of KM. The purpose of this study is to investigate the effect of specific human resource management (HRM) practices on employee knowledge sharing and its outcome as individual knowledge capability. Based on previous literature, a model is proposed for the study and hypotheses are formulated. The cross-sectional dataset comes from a sample of 19 knowledge intensive firms (KIFs). This study has run an item parceling technique followed by Confirmatory Factor Analysis (CFA) on the latent constructs of the research model. Employees’ collaboration and their interpersonal trust can help to improve their knowledge sharing behaviour and knowledge capability within organisations. This study suggests that in future, by using a larger sample, better statistical insight is possible. The findings of this study are beneficial for scholars, policy makers and practitioners. The empirical results of this study are entirely based on employees’ perceptions and make a significant research contribution, given there is a dearth of empirical research focusing on the subcontinent.

Keywords: Employees’ collaboration, individual knowledge capability, knowledge sharing, monetary rewards, structural equation modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1353
4153 Disaggregating and Forecasting the Total Energy Consumption of a Building: A Case Study of a High Cooling Demand Facility

Authors: Juliana Barcelos Cordeiro, Khashayar Mahani, Farbod Farzan, Mohsen A. Jafari

Abstract:

Energy disaggregation has been focused by many energy companies since energy efficiency can be achieved when the breakdown of energy consumption is known. Companies have been investing in technologies to come up with software and/or hardware solutions that can provide this type of information to the consumer. On the other hand, not all people can afford to have these technologies. Therefore, in this paper, we present a methodology for breaking down the aggregate consumption and identifying the highdemanding end-uses profiles. These energy profiles will be used to build the forecast model for optimal control purpose. A facility with high cooling load is used as an illustrative case study to demonstrate the results of proposed methodology. We apply a high level energy disaggregation through a pattern recognition approach in order to extract the consumption profile of its rooftop packaged units (RTUs) and present a forecast model for the energy consumption.  

Keywords: Energy consumption forecasting, energy efficiency, load disaggregation, pattern recognition approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
4152 Instruction and Learning Design Consideration for the Development of Mobile Learning Application

Authors: M. Sarrab, M. Elbasir

Abstract:

The use of information technology in education have changed not only the learners learning style but also the way they taught, where nowadays learners are connected with diversity of information sources with means of knowledge available everywhere. The advantage of network wireless technologies and mobility technologies used in the education and learning processes lead to mobile learning as a new model of learning technology. Currently, most of mobile learning applications are developed for the formal education and learning environment. Despite the long history and large amount of research on mobile learning and instruction design model still there is a need of well-defined process in designing mobile learning applications. Based on this situation, this paper emphasizes on identifying instruction design phase’s considerations and influencing factors in developing mobile learning application. This set of instruction design steps includes analysis, design, development, implementation, evaluation and continuous has been built from a literature study, with focus on standards for learning, mobile application software quality and guidelines. The effort is part of an Omani-funded research project investigating the development, adoption and dissemination of mobile learning in Oman.

Keywords: Instruction design, mobile learning, mobile application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
4151 Design of a MSF Desalination Plant to be Supplied by a New Specific 42 MW Power Plant Located in Iran

Authors: Rouzbeh Shafaghat, Hoda Shafaghat, Fatemeh Ghanbari, Pouya Sirous Rezaei, Rohollah Espanani

Abstract:

Nowadays, desalination of salt water is considered an important industrial process. In many parts of the world, particularly in the gulf countries, the multi-stage flash (MSF) water desalination has an essential contribution in the production of fresh water. In this study, a simple mathematical model is defined to design a MSF desalination system and the feasibility of using the MSF desalination process in proximity of a 42 MW power plant is investigated. This power plant can just provide 10 ton/h superheated steam from low pressure (LP) section of heat recovery steam generator (HRSG) for thermal desalting system. The designed MSF system with gained output ratio (GOR) of 10.3 has 24 flashing stages and can produce 2480 ton/d of fresh water. The expected performance characteristics of the designed MSF desalination plant are determined. In addition, the effect of motive water pressure on the amount of non-condensable gases removed by water jet vacuum pumps is investigated.

Keywords: Design, dual-purpose power plant, mathematical model, MSF desalination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3986
4150 Identifying the Kinematic Parameters of Hexapod Machine Tool

Authors: M. M. Agheli, M. J. Nategh

Abstract:

Hexapod Machine Tool (HMT) is a parallel robot mostly based on Stewart platform. Identification of kinematic parameters of HMT is an important step of calibration procedure. In this paper an algorithm is presented for identifying the kinematic parameters of HMT using inverse kinematics error model. Based on this algorithm, the calibration procedure is simulated. Measurement configurations with maximum observability are decided as the first step of this algorithm for a robust calibration. The errors occurring in various configurations are illustrated graphically. It has been shown that the boundaries of the workspace should be searched for the maximum observability of errors. The importance of using configurations with sufficient observability in calibrating hexapod machine tools is verified by trial calibration with two different groups of randomly selected configurations. One group is selected to have sufficient observability and the other is in disregard of the observability criterion. Simulation results confirm the validity of the proposed identification algorithm.

Keywords: Calibration, Hexapod Machine Tool (HMT), InverseKinematics Error Model, Observability, Parallel Robot, ParameterIdentification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367
4149 Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection

Authors: Javier Sedano-Cibrián, Julio Manuel de Luis-Ruiz, Rubén Pérez-Álvarez, Raúl Pereda-García, Beatriz Malagón-Picón

Abstract:

Structural inspection activities are necessary to ensure the correct functioning of infrastructures. UAV techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. In this paper, a methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of RGB and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.

Keywords: Aerial thermography, data processing, drone, low-cost, point cloud.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 341
4148 Combining Fuzzy Logic and Data Miningto Predict the Result of an EIA Review

Authors: Kevin Fong-Rey Liu, Jia-Shen Chen, Han-Hsi Liang, Cheng-Wu Chen, Yung-Shuen Shen

Abstract:

The purpose of determining impact significance is to place value on impacts. Environmental impact assessment review is a process that judges whether impact significance is acceptable or not in accordance with the scientific facts regarding environmental, ecological and socio-economical impacts described in environmental impact statements (EIS) or environmental impact assessment reports (EIAR). The first aim of this paper is to summarize the criteria of significance evaluation from the past review results and accordingly utilize fuzzy logic to incorporate these criteria into scientific facts. The second aim is to employ data mining technique to construct an EIS or EIAR prediction model for reviewing results which can assist developers to prepare and revise better environmental management plans in advance. The validity of the previous prediction model proposed by authors in 2009 is 92.7%. The enhanced validity in this study can attain 100.0%.

Keywords: Environmental impact assessment review, impactsignificance, fuzzy logic, data mining, classification tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
4147 3D Point Cloud Model Color Adjustment by Combining Terrestrial Laser Scanner and Close Range Photogrammetry Datasets

Authors: M. Pepe, S. Ackermann, L. Fregonese, C. Achille

Abstract:

3D models obtained with advanced survey techniques such as close-range photogrammetry and laser scanner are nowadays particularly appreciated in Cultural Heritage and Archaeology fields. In order to produce high quality models representing archaeological evidences and anthropological artifacts, the appearance of the model (i.e. color) beyond the geometric accuracy, is not a negligible aspect. The integration of the close-range photogrammetry survey techniques with the laser scanner is still a topic of study and research. By combining point cloud data sets of the same object generated with both technologies, or with the same technology but registered in different moment and/or natural light condition, could construct a final point cloud with accentuated color dissimilarities. In this paper, a methodology to uniform the different data sets, to improve the chromatic quality and to highlight further details by balancing the point color will be presented.

Keywords: Color models, cultural heritage, laser scanner, photogrammetry, point cloud color.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
4146 Multi-Objective Analysis of Cost and Social Benefits in Rural Road Networks

Authors: J. K. Shrestha, A. Benta, R. B. Lopes, N. Lopes

Abstract:

This paper presents a multi-objective model for addressing two main objectives in designing rural roads networks: minimization of user operation costs and maximization of population covered. As limited budgets often exist, a reasonable trade-off must be obtained in order to account for both cost and social benefits in this type of networks. For a real-world rural road network, the model is solved, where all non-dominated solutions were obtained. Afterwards, an analysis is made on the (possibly) most interesting solutions (the ones providing better trade-offs). This analysis, coupled with the knowledge of the real world scenario (typically provided by decision makers) provides a suitable method for the evaluation of road networks in rural areas of developing countries.

Keywords: Multi-objective, user operation cost, population covered, rural road network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
4145 Improvement of Passengers Ride Comfort in Rail Vehicles Equipped with Air Springs

Authors: H. Sayyaadi, N. Shokouhi

Abstract:

In rail vehicles, air springs are very important isolating component, which guarantee good ride comfort for passengers during their trip. In the most new rail–vehicle models, developed by researchers, the thermo–dynamical effects of air springs are ignored and secondary suspension is modeled by simple springs and dampers. As the performance of suspension components have significant effects on rail–vehicle dynamics and ride comfort of passengers, a complete nonlinear thermo–dynamical air spring model, which is a combination of two different models, is introduced. Result from field test shows remarkable agreement between proposed model and experimental data. Effects of air suspension parameters on the system performances are investigated here and then these parameters are tuned to minimize Sperling ride comfort index during the trip. Results showed that by modification of air suspension parameters, passengers comfort is improved and ride comfort index is reduced about 10%.

Keywords: Air spring, Ride comfort improvement, Thermo– dynamical effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3123
4144 Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology

Authors: Muhamad Sani Buang, Shahrul Azam Abdullah, Juri Saedon

Abstract:

There is not much effective guideline on development of design parameters selection on spring back for advanced high strength steel sheet metal in U-channel process during cold forming process. This paper presents the development of predictive model for spring back in U-channel process on advanced high strength steel sheet employing Response Surface Methodology (RSM). The experimental was performed on dual phase steel sheet, DP590 in Uchannel forming process while design of experiment (DoE) approach was used to investigates the effects of four factors namely blank holder force (BHF), clearance (C) and punch travel (Tp) and rolling direction (R) were used as input parameters using two level values by applying Full Factorial design (24 ). From a statistical analysis of variant (ANOVA), result showed that blank holder force (BHF), clearance (C) and punch travel (Tp) displayed significant effect on spring back of flange angle (β2 ) and wall opening angle (β1 ), while rolling direction (R) factor is insignificant. The significant parameters are optimized in order to reduce the spring back behavior using Central Composite Design (CCD) in RSM and the optimum parameters were determined. A regression model for spring back was developed. The effect of individual parameters and their response was also evaluated. The results obtained from optimum model are in agreement with the experimental values.  

Keywords: Advance high strength steel, U-channel process, Springback, Design of Experiment, Optimization, Response Surface Methodology (RSM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2298
4143 Full-genomic Network Inference for Non-model organisms: A Case Study for the Fungal Pathogen Candida albicans

Authors: Jörg Linde, Ekaterina Buyko, Robert Altwasser, Udo Hahn, Reinhard Guthke

Abstract:

Reverse engineering of full-genomic interaction networks based on compendia of expression data has been successfully applied for a number of model organisms. This study adapts these approaches for an important non-model organism: The major human fungal pathogen Candida albicans. During the infection process, the pathogen can adapt to a wide range of environmental niches and reversibly changes its growth form. Given the importance of these processes, it is important to know how they are regulated. This study presents a reverse engineering strategy able to infer fullgenomic interaction networks for C. albicans based on a linear regression, utilizing the sparseness criterion (LASSO). To overcome the limited amount of expression data and small number of known interactions, we utilize different prior-knowledge sources guiding the network inference to a knowledge driven solution. Since, no database of known interactions for C. albicans exists, we use a textmining system which utilizes full-text research papers to identify known regulatory interactions. By comparing with these known regulatory interactions, we find an optimal value for global modelling parameters weighting the influence of the sparseness criterion and the prior-knowledge. Furthermore, we show that soft integration of prior-knowledge additionally improves the performance. Finally, we compare the performance of our approach to state of the art network inference approaches.

Keywords: Pathogen, network inference, text-mining, Candida albicans, LASSO, mutual information, reverse engineering, linear regression, modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
4142 Numerical Simulation of Axially Loaded to Failure Large Diameter Bored Pile

Authors: M. Ezzat, Y. Zaghloul, T. Sorour, A. Hefny, M. Eid

Abstract:

Ultimate capacity of large diameter bored piles is usually determined from pile loading tests as recommended by several international codes and foundation design standards. However, loading of this type of piles till achieving apparent failure is practically seldom. In this paper, numerical analyses are carried out to simulate load test of a large diameter bored pile performed at the location of Alzey highway bridge project (Germany). Test results of pile load settlement relationship till failure as well as results of the base and shaft resistances are available. Apparent failure was indicated in this test by the significant increase of the induced settlement during the last load increment applied on the pile head. Measurements of this pile load test are used to assess the quality of the numerical models investigated. Three different material soil models are implemented in the analyses: Mohr coulomb (MC), Soft soil (SS), and Modified Mohr coulomb (MMC). Very good agreement is obtained between the field measured settlement and the calculated settlement using the MMC model. Results of analysis showed also that the MMC constitutive model is superior to MC, and SS models in predicting the ultimate base and shaft resistances of the large diameter bored pile. After calibrating the numerical model, behavior of large diameter bored piles under axial loads is discussed and the formation of the plastic zone around the pile is explored. Results obtained showed that the plastic zone below the base of the pile at failure extended laterally to about four times the pile diameter and vertically to about three times the pile diameter.

Keywords: Ultimate capacity, large diameter bored piles, plastic zone, failure, pile load test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 919
4141 Material Handling Equipment Selection using Hybrid Monte Carlo Simulation and Analytic Hierarchy Process

Authors: Amer M. Momani, Abdulaziz A. Ahmed

Abstract:

The many feasible alternatives and conflicting objectives make equipment selection in materials handling a complicated task. This paper presents utilizing Monte Carlo (MC) simulation combined with the Analytic Hierarchy Process (AHP) to evaluate and select the most appropriate Material Handling Equipment (MHE). The proposed hybrid model was built on the base of material handling equation to identify main and sub criteria critical to MHE selection. The criteria illustrate the properties of the material to be moved, characteristics of the move, and the means by which the materials will be moved. The use of MC simulation beside the AHP is very powerful where it allows the decision maker to represent his/her possible preference judgments as random variables. This will reduce the uncertainty of single point judgment at conventional AHP, and provide more confidence in the decision problem results. A small business pharmaceutical company is used as an example to illustrate the development and application of the proposed model.

Keywords: Analytic Hierarchy Process (AHP), Materialhandling equipment selection, Monte Carlo simulation, Multi-criteriadecision making

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3138
4140 Trace Emergence of Ants- Traffic Flow, based upon Exclusion Process

Authors: Ali Lemouari, Mohamed Benmohamed

Abstract:

Biological evolution has generated a rich variety of successful solutions; from nature, optimized strategies can be inspired. One interesting example is the ant colonies, which are able to exhibit a collective intelligence, still that their dynamic is simple. The emergence of different patterns depends on the pheromone trail, leaved by the foragers. It serves as positive feedback mechanism for sharing information. In this paper, we use the dynamic of TASEP as a model of interaction at a low level of the collective environment in the ant-s traffic flow. This work consists of modifying the movement rules of particles “ants" belonging to the TASEP model, so that it adopts with the natural movement of ants. Therefore, as to respect the constraints of having no more than one particle per a given site, and in order to avoid collision within a bidirectional circulation, we suggested two strategies: decease strategy and waiting strategy. As a third work stage, this is devoted to the study of these two proposed strategies- stability. As a final work stage, we applied the first strategy to the whole environment, in order to get to the emergence of traffic flow, which is a way of learning.

Keywords: Ants system, emergence, exclusion process, pheromone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
4139 Single Event Transient Tolerance Analysis in 8051 Microprocessor Using Scan Chain

Authors: Jun Sung Go, Jong Kang Park, Jong Tae Kim

Abstract:

As semi-conductor manufacturing technology evolves; the single event transient problem becomes more significant issue. Single event transient has a critical impact on both combinational and sequential logic circuits, so it is important to evaluate the soft error tolerance of the circuits at the design stage. In this paper, we present a soft error detecting simulation using scan chain. The simulation model generates a single event transient randomly in the circuit, and detects the soft error during the execution of the test patterns. We verified this model by inserting a scan chain in an 8051 microprocessor using 65 nm CMOS technology. While the test patterns generated by ATPG program are passing through the scan chain, we insert a single event transient and detect the number of soft errors per sub-module. The experiments show that the soft error rates per cell area of the SFR module is 277% larger than other modules.

Keywords: Scan chain, single event transient, soft error, 8051 processor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
4138 When Explanations “Cause“ Error: A Look at Representations and Compressions

Authors: Michael Lissack

Abstract:

We depend upon explanation in order to “make sense" out of our world. And, making sense is all the more important when dealing with change. But, what happens if our explanations are wrong? This question is examined with respect to two types of explanatory model. Models based on labels and categories we shall refer to as “representations." More complex models involving stories, multiple algorithms, rules of thumb, questions, ambiguity we shall refer to as “compressions." Both compressions and representations are reductions. But representations are far more reductive than compressions. Representations can be treated as a set of defined meanings – coherence with regard to a representation is the degree of fidelity between the item in question and the definition of the representation, of the label. By contrast, compressions contain enough degrees of freedom and ambiguity to allow us to make internal predictions so that we may determine our potential actions in the possibility space. Compressions are explanatory via mechanism. Representations are explanatory via category. Managers are often confusing their evocation of a representation (category inclusion) as the creation of a context of compression (description of mechanism). When this type of explanatory error occurs, more errors follow. In the drive for efficiency such substitutions are all too often proclaimed – at the manager-s peril..

Keywords: Coherence, Emergence, Reduction, Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1239